Citation: Michael A. Andrews, Chris T. Bauch. Parameterizing a dynamic influenza model using longitudinal versus age-stratified case notifications yields different predictions of vaccine impacts[J]. Mathematical Biosciences and Engineering, 2019, 16(5): 3753-3770. doi: 10.3934/mbe.2019186
[1] | L. Simonsen, The global impact of influenza on morbidity and mortality, Vaccine, 17 (1999), S3–S10. |
[2] | C. Bauch and D. Rand, A moment closure model for sexually transmitted disease transmission through a concurrent partnership network, Proc. R. Soc. Lond. B, 267 (2000), 2019–2027. |
[3] | D. Rand and H. Wilson, Chaotic stochasticity: a ubiquitous source of unpredictability in epidemics, Proc. R. Soc. Lond. B, 246 (1991), 179–184. |
[4] | C. Innes, M. Anand and C.T. Bauch, The impact of human-environment interactions on the stability of forest-grassland mosaic ecosystems, Sci. Rep., 3 (2013), 2689. |
[5] | van B. Minus and R. A. David, The unit of selection in viscous populations and the evolution of altruism, J. Theor. Biol., 193 (1998), 631–648. |
[6] | D. A. Rand and H. B. Wilson, Using spatio-temporal chaos and intermediate-scale determinism to quantify spatially extended ecosystems, Proc. R. Soc. Lond. B, 259 (1995), 111–117. |
[7] | D. J. Earn, P. Rohani, B. M. Bolker, et al., A simple model for complex dynamical transitions in epidemics, Science, 287 (2000), 667–670. |
[8] | M. Keeling, D. Rand and A. Morris, Correlation models for childhood epidemics, Proc. R. Soc. Lond. B, 264 (1997), 1149–1156. |
[9] | J. Dushoff, J. Plotkin, C. Viboud, et al., Vaccinating to protect a vulnerable subpopulation, PLOS Med., 4 (2007), e174. |
[10] | M. Alexander, C. Bowman, S. Moghadas, et al., A vaccination model for transmission dynamics of influenza, SIAM J. Appl. Dyn. Sys., 3 (2004), 503–524. |
[11] | J. Glasser, D. Taneri, Z. Feng, et al., Evaluation of targeted influenza vaccination strategies via population modeling, PLOS One, 5 (2010), e12777. |
[12] | J. M. Tchuenche, N. Dube, C. P. Bhunu, et al., The impact of media coverage on the transmission dynamics of human influenza, BMC Public Health, 11 (2011), S5. |
[13] | S. P. Tully, A. M. Anonychuk, D. M. Sanchez, et al., Time for change? an economic evaluation of integrated cervical screening and hpv immunization programs in Canada, Vaccine, 30 (2012), 425–435. |
[14] | C. R. Wells and C. T. Bauch, The impact of personal experiences with infection and vaccination on behaviour–incidence dynamics of seasonal influenza, Epidemics, 4 (2012), 139–151. |
[15] | C. Wells, E. Klein and C. Bauch, Policy resistance undermines superspreader vaccination strategies for influenza, PLOS Comput. Biol., 9 (2013), e1002945. |
[16] | Y. Hsieh, Age groups and spread of influenza: Implications for vaccination strategy, BMC Infect. Dis., 10 (2010), 106. |
[17] | M. Baguelin, S. Flasche, A. Camacho, et al., Assessing optimal target populations for influenza vaccination programmes: An evidence synthesis and modelling study, PLOS Med., 10 (2013), e1001527. |
[18] | E. Thommes, A. Chit, G. Meier, et al., Examining ontario's universal influenza immunization program with a multi-strain dynamic model, Vaccine, 32 (2014), 5098–5117. |
[19] | M. A. Andrews and C. T. Bauch, Disease interventions can interfere with one another through disease-behaviour interactions, PLoS Comput. Biol., 11 (2015), e1004291. |
[20] | M. A. Andrews and C. T. Bauch, The impacts of simultaneous disease intervention decisions on epidemic outcomes, J. Theor. Biol., 395 (2016), 1–10. |
[21] | J. Medlock and A. Galvani, Optimizing influenza vaccine distribution, Science, 325 (2009), 1705–1708. |
[22] | T. A. Reichert, N. Sugaya, D. S. Fedson, et al., The japanese experience with vaccinating schoolchildren against influenza, N. Engl. J. Med., 344 (2001), 889–896. |
[23] | A. Monto, F. M. Davenport and J. A. N. an T. Francis, Effect of vaccination of a school-age population upon the course of an A2/Hong Kong influenza epidemic, Bull. W.H.O., 41 (1969), 537–542. |
[24] | P. A. Piedra, M. J. Gaglani, C. A. Kozinetz, et al., Herd immunity in adults against influenza- related illnesses with use of the trivalent-live attenuated vaccine (CAIV-T) in children, Vaccine,23 (2005), 1540–1548. |
[25] | D. Weyecker, J. Edelsberg, M. E. Halloran, et al., Population-wide benefits of routine vaccination of children against influenza, Vaccine, 23 (2005), 1284–1293. |
[26] | M. E. Halloran, I. M. Longini, D. M. Cowart, et al., Community interventions and the epidemic prevention potential, Vaccine, 20 (2002), 3254–3262. |
[27] | I. M. Longini and M. E. Halloran, Strategy for distribution of influenza vaccine to high-risk groups and children, Am. J. Epidem., 161 (2005), 303–306. |
[28] | P. Beutels, Y. Vandendijck, L. Willem, et al., Seasonal influenza vaccination: prioritizing children or other target groups? Part II: cost-effectiveness analysis, Technical report, Belgian Health Care Knowledge Centre (KCE), 2013. |
[29] | E. Vynnycky and W. Edmunds, Analyses of the 1957 (asian) influenza pandemic in the united kingdom and the impact of school closures, Epidem. Infect., 136 (2008), 166–179. |
[30] | R. J. Pitman, Estimating the clinical impact of introducing paediatric influenza vaccination in england and wales, Vaccine, 30 (2012), 1208–1224. |
[31] | P. Poletti, M. Ajelli and S. Merler, The effect of risk perception on the 2009 H1N1 pandemic influenza dynamics, PLOS One, 6 (2011), e16460. |
[32] | J. T. Wu, K. Leung, R. Perera, et al., Inferring influenza infection attack rate from seroprevalence data, PLOS Pathogens, 10 (2014), e1004054. |
[33] | N. Goeyvaerts, L. Willem, K. V. Kerckhove, et al., Estimating dynamic transmission model parameters for seasonal influenza by fitting to age and season-specific influenza-like illness incidence, Epidemics, 13 (2015), 1–9. |
[34] | J. B. Axelson, R. Yaari, B. T. Grenfell, et al., Multiannual forecasting of seasonal influenza dynamics reveals climatic and evolutionary drivers, Proc. Natl. Acad. Sci. USA, 111 (2014), 9538–9542. |
[35] | R. M. Anderson and R. M. May, Infectious Diseases of Humans: Dynamics and Control, Oxford University Press, 1992. |
[36] | J. Mossong, N. Hens, M. Jit, et al., Social contacts and mixing patterns relevant to the spread of infectious diseases, PLOS Med., 5 (2008), e74. |
[37] | Ontario Ministry of Finance, Ontario Population Projections Update 2010-2036, 2011. Available from: http://www.fin.gov.on.ca/en/economy/demographics/projections/projections2010-2036.pdf. |
[38] | Ontario Ministry of Finance, Ontario Population Projections Update 2012-2036, 2013. Available from: http://www.fin.gov.on.ca/en/economy/demographics/projections/projections2012-2036.pdf. |
[39] | Ontario Ministry of Finance, Ontario Population by Age 2013-2041, 2015. Available from: http: //www.fin.gov.on.ca/en/economy/demographics/projections/table6.html. |
[40] | Statistics Canada, Focus on Geography Series, 2011 Census, 2012. Available from: http://www12.statcan.gc.ca/census-recensement/2011/as-sa/fogs-spg/Facts-pr-eng.cfm?Lang=Eng&GK=PR&GC=35. |
[41] | E. Zagheni, F. Billari, P. Manfredi, et al., Using time-use data to parameterize models for the spread of close-contact infectious diseases, Am. J. Epidem., 168 (2008), 1082–1090. |
[42] | Government of Canada Publications, FluWatch, 2015. Available from: http://publications. gc.ca/site/eng/9.507424/publication.html. |
[43] | J. Dushoff, J. B. Plotkin, S. A. Levin, et al., Dynamical resonance can account for seasonality of influenza epidemics, PNAS, 101 (2004), 16915–16916. |
[44] | C. Fuhrmann, The effects of weather and climate on the seasonality of influenza: What we know and what we need to know, Geog. Compass, 4 (2010), 718–730. |
[45] | J. Shaman and M. Kohn, Absolute humidity modulates influenza survival, transmission, and seasonality, Proc. Natl. Acad. Sci. USA, 106 (2009), 3243–3248. |
[46] | Ontario Ministry of Health and Long-Term Care, Universal Influenza Immunization Program, 2015. Available from: http://www.health.gov.on.ca/en/pro/programs/publichealth/flu/uiip/. |
[47] | J. Truscott, C. Fraser, W. Hinsley, et al., Quantifying the transmissibility of human influenza and its seasonal variation in temperate regions, PLOS Currents 1. |
[48] | E. Vynnycky, R. Pitman, R. Siddiqui, et al., Estimating the impact if childhood influenza vaccination programmes in england and wales, Vaccine, 26 (2008), 5321–5330. |
[49] | L. F. White, J. Wallinga, L. Finelli, et al., Estimation of the reproductive number and the serial interval in early phase of the 2009 influenza A/H1N1 pandemic in the USA, Influenza and Other Respiratory Viruses, 3 (2009), 267–276. |
[50] | C. Simpson, L. Ritchie, C. Robertson, et al., Effectiveness of H1N1 vaccine for the prevention of pandemic influenza in scotland, UK: A retrospective cohort study, Lancet Infect. Dis., 12 (2012), 696–702. |
[51] | K. Widgren, M. Magnusson, P. Hagstam, et al., Prevailing effectiveness of the 2009 influenza H1N1 pdm09 vaccine during the 2010/11 season in sweden, Eurosurveillance, 18 (2013), 20447. |
[52] | J. Breteler, J. Tam, M. Jit, et al., Efficacy and effectiveness of seasonal and pandemic A (H1N1) 2009 influenza vaccines in low and middle income countries: A systematic review and meta-analysis, Vaccine, 31 (2013), 5168–5177. |
[53] | J. Truscott, C. Fraser, S. Cauchemez, et al., Essential epidemiological mechanisms underpinning the transmission dynamics of seasonal influenza, J. Royal Soc. Interface, 9 (2011), 304–312. |
[54] | S. Blower and H. Dowlatabadi, Sensitivity and uncertainty analysis of complex models of disease transmission: an HIV model, as an example, Int. Statist. Rev., 62 (1994), 229–243. |
[55] | M. Campitelli, M. Inoue, A. Calzavara, et al., Low rates of influenza immunization in young children under ontario's universal influenza immunization program, Pediatrics, 1421–1430. |
[56] | J. J. Cannell, M. Zasloff, C. F. Garland, et al., On the epidemiology of influenza, Virol. J., 5 (2008), 29. |
[57] | S. Cauchemez, A. Valleron, P. Boelle, et al., Estimating the impact of school closure on influenza transmission from sentinel data, Nature, 452 (2008), 750. |
[58] | G. Chowell, C. Ammon, N. Hengartner, et al., Estimation of the reproductive number of the Spanish flu epidemic in Geneva, Switzerland, Vaccine, 24 (2006), 6747–6750. |
[59] | N. Cox and C. Bender, The molecular epidemiology of influenza viruses, Sem. Virol., 6 (1995), 359–370. |
[60] | A. C. Hayward, E. B. Fragaszy, A. Bermingham, Comparative community burden and severity of seasonal and pandemic influenza: Results of the Flu Watch cohort study, Lancet Resp. Med., 2 (2014), 445–454. |
[61] | S. Jiménez-Jorge, S. de Mateo, C. Delgado-Sanz, et al., Effectiveness of influenza vaccine against laboratory-confirmed influenza, in the late 2011-2012 season in Spain, among the population targeted for vaccination, BMC Infect. Dis., 13 (2013), 441. |
[62] | J. C. Kwong, H. Ge, L. C. Rosella, et al., School-based influenza vaccine delivery, vaccination rates, and healthcare use in the context of a universal influenza immunization program: An ecological study, Vaccine, 28 (2010), 2722–2729. |
[63] | J. C. Kwong, T. A. Stukel, J. Lim, et al., The effect of universal influenza immunization on mortality and health care use, PLOS Med., 5 (2008), 1440–1452. |
[64] | K. Moran, S. Maaten, A. Guttmann, et al., Influenza vaccination rates in ontario children: Implications for universal childhood vaccination policy, Vaccine, 27 (2009), 2350–2355. |
[65] | A. S. S. Rao, M. H. Chen, P. Ba'Z, et al., Cohort effects in dynamic models and their impact on vaccination programmes: an example from hepatitis a, BMC Infect. Dis., 6 (2006), 174. |
[66] | J. Shaman, C. Jeon, E. Giovannucci, et al., Shortcomings of vitamin d-based model simulations of seasonal influenza, PLOS One, 6 (2011), e20743. |
[67] | J. Tamerius, C. Viboud, J. Shaman, et al., Impact of school cycles and environmental forcing on the timing of pandemic influenza activity in mexican states, may-december 2009, PLOS Comput. Biol., 11 (2015), e1004337. |
[68] | D. He, J. Dushoff, T. Day, et al., Mechanistic modelling of the three waves of the 1918 influenza pandemic, Theor. Ecol., 4 (2011), 283–288. |