Citation: Martina Bukač, Sunčica Čanić. Longitudinal displacement in viscoelastic arteries:A novel fluid-structure interaction computational model, and experimental validation[J]. Mathematical Biosciences and Engineering, 2013, 10(2): 295-318. doi: 10.3934/mbe.2013.10.295
[1] | Clin. Physiol. Funct. Imaging, 29 (2009), 353-359. |
[2] | Circulation Research, 76 (1995), 468-478. |
[3] | Hypertension, 26 (1995), 48-54. |
[4] | J. Comput. Phys., 227 (2008), 7027-7051. |
[5] | SIAM J. Sci. Comput., 30 (2008), 1778-1805. |
[6] | J. Cardiovasc. Pharmacol., 7 (1985), S99-S104. |
[7] | Journal of Computational Physics. DOI: http://dx.doi.org/10.1016/j.bbr.2011.03.031 (2012). |
[8] | Jones & Bartlett Learning, 2010. |
[9] | Hypertension, 35 (2000), 1049-1054. |
[10] | SIAM J. Appl. Math., 67 (2006), 164-193. |
[11] | Submitted, (2012). |
[12] | North-Holland, Amsterdam, 2000. |
[13] | Am. J. Physiol. Heart Circ. Physiol., 291 (2006), H394-H402. |
[14] | Oxford University Press, USA, 2007. |
[15] | University of Lyon-INSA, Lyon, France, 2011. |
[16] | Journal of Biomechanics, 32 (1999), 1081-1090. |
[17] | J. Tehran Heart Cent, 4 (2009), 91-96. |
[18] | Circulation, 86 (1992), 232-246. |
[19] | North-Holland, Amsterdam, 1983. |
[20] | Ann. Biomed. Eng., 36 (2008), 1-13. |
[21] | Springer-Verlag Italia, Milano, 2009. |
[22] | Second Edition. Springer-Verlag, New York, 1984. |
[23] | in "Handbook of Numerical Analysis" (Eds. P.G.Ciarlet and J.-L.Lions), 9 North-Holland, Amsterdam, (2003). |
[24] | J. Comput. Phys., 228 (2009), 6916-6937. |
[25] | J. Am. Coll. Cardiol., 35 (2000), 164-168. |
[26] | Comput. Methods Appl. Mech. Eng., 29 (1981), 329-349. |
[27] | Springer-Verlag, New York, 2004. |
[28] | Springer-Verlag, New York, 2002. |
[29] | Circulation, 80 (1989), 625-635. |
[30] | Circulation, 112 (2005), 1486-1493. |
[31] | Stroke, 37 (2006), 1103-1105. |
[32] | Radiology, 212 (1999), 493-498. |
[33] | J. Biomech., 35 (2002), 225-236. |
[34] | J. Am. Coll. Cardiol., 13 (1989), 706-715. |
[35] | International Journal for Numerical Methods in Biomedical Engineering, 28 (2012), 604-625. |
[36] | J. Am. Coll. Cardiol., 39 (2002), 1630-1635. |
[37] | Am. J. Physiol. Heart Circ. Physiol., 285 (2003), H384-H391. |
[38] | Ultrasound Med. Biol., 32 (2006), 1493-1498. |
[39] | Hodder Arnold London, UK, 2005. |
[40] | Clin. Physiol. Funct. Imaging, 23 (2003), 247-251. |
[41] | Int. J. Morphol., 24 (2006), 413-416. |
[42] | AJR. Am. J. Roentgenol., 181 (2003), 1695-1704. |
[43] | Cardiovascular Research, 39 (1998), 515-522. |
[44] | Atherosclerosis, 217 (2011), 120-124. |
[45] | Clin. Physiol. Funct. Imaging, 31 (2011), 32-38. |
[46] | Grazer Math. Ber., 348 (2005), 91-112. |
[47] | Atherosclerosis, 176 (2004), 157-164. |
[48] | Physiol. Meas., 29 (2008), 157-179. |
[49] | Vascular Medicine, 2012. |
[50] | Ann. Biomed. Eng., 39 (2011), 897-910. |
1. | Zhongjie Wang, Nigel B. Wood, Xiao Yun Xu, A viscoelastic fluid-structure interaction model for carotid arteries under pulsatile flow, 2015, 31, 20407939, e02709, 10.1002/cnm.2709 | |
2. | Rana Zakerzadeh, Martina Bukac, Paolo Zunino, Computational analysis of energy distribution of coupled blood flow and arterial deformation, 2016, 8, 0975-0770, 70, 10.1007/s12572-015-0142-1 | |
3. | Åsa Rydén Ahlgren, Stig Steen, Simon Segstedt, Tobias Erlöv, Kjell Lindström, Trygve Sjöberg, Hans W. Persson, Stefano Ricci, Piero Tortoli, Magnus Cinthio, Profound Increase in Longitudinal Displacements of the Porcine Carotid Artery Wall Can Take Place Independently of Wall Shear Stress: A Continuation Report, 2015, 41, 03015629, 1342, 10.1016/j.ultrasmedbio.2015.01.005 | |
4. | Heikki Yli-Ollila, Tomi Laitinen, Matti Weckström, Tiina M. Laitinen, New indices of arterial stiffness measured from longitudinal motion of common carotid artery in relation to reference methods, a pilot study, 2016, 36, 14750961, 376, 10.1111/cpf.12240 | |
5. | M. Bukač, S. Čanić, R. Glowinski, B. Muha, A. Quaini, A modular, operator-splitting scheme for fluid-structure interaction problems with thick structures, 2014, 74, 02712091, 577, 10.1002/fld.3863 | |
6. | Heikki Yli-Ollila, Mika P. Tarvainen, Tomi P. Laitinen, Tiina M. Laitinen, Principal Component Analysis of the Longitudinal Carotid Wall Motion in Association with Vascular Stiffness: A Pilot Study, 2016, 42, 03015629, 2873, 10.1016/j.ultrasmedbio.2016.07.020 | |
7. | Agnès Drochon, Sinusoïdal flow of blood in a cylindrical deformable vessel exposed to an external magnetic field, 2016, 73, 1286-0042, 31101, 10.1051/epjap/2016150530 | |
8. | Sibusiso Mabuza, Dmitri Kuzmin, Sunčica Čanić, Martina Bukač, A conservative, positivity preserving scheme for reactive solute transport problems in moving domains, 2014, 276, 00219991, 563, 10.1016/j.jcp.2014.07.049 | |
9. | Ryosuke Taniguchi, Akihiro Hosaka, Takuya Miyahara, Katsuyuki Hoshina, Hiroyuki Okamoto, Kunihiro Shigematsu, Tetsuro Miyata, Ryuji Sugiura, A. Toshimitsu Yokobori, Jr, and Toshiaki Watanabe, Viscoelastic Deterioration of the Carotid Artery Vascular Wall is a Possible Predictor of Coronary Artery Disease, 2015, 22, 1340-3478, 415, 10.5551/jat.24513 | |
10. | Martina Bukač, Sunčica Čanić, Boris Muha, A Nonlinear Fluid-Structure Interaction Problem in Compliant Arteries Treated with Vascular Stents, 2016, 73, 0095-4616, 433, 10.1007/s00245-016-9343-7 | |
11. | A. Yenduri, R. Ghoshal, R.K. Jaiman, A new partitioned staggered scheme for flexible multibody interactions with strong inertial effects, 2017, 315, 00457825, 316, 10.1016/j.cma.2016.10.044 | |
12. | Martina Bukač, Sunčica Čanić, Boris Muha, Roland Glowinski, 2016, Chapter 22, 978-3-319-41587-1, 731, 10.1007/978-3-319-41589-5_22 | |
13. | Zhili Hao, 2020, Understanding the Role of Longitudinal Arterial Wall Motion in Blood Circulation from the Perspective of a Piano String*, 978-1-7281-1990-8, 2703, 10.1109/EMBC44109.2020.9176194 | |
14. | Talha Lone, Angelica Alday, Rana Zakerzadeh, Numerical analysis of stenoses severity and aortic wall mechanics in patients with supravalvular aortic stenosis, 2021, 135, 00104825, 104573, 10.1016/j.compbiomed.2021.104573 | |
15. | Zhili Hao, Radial and Axial Displacement of the Initially-Tensioned Orthotropic Arterial Wall Under the Influence of Harmonics and Wave Reflection, 2022, 5, 2572-7958, 10.1115/1.4054883 | |
16. | Sandra Sjöstrand, Alice Widerström, Ingrid Svensson, Patrick Segers, Tobias Erlöv, Åsa Rydén Ahlgren, Magnus Cinthio, The impact of geometry, intramural friction, and pressure on the antegrade longitudinal motion of the arterial wall: A phantom and finite element study, 2023, 11, 2051-817X, 10.14814/phy2.15746 |