Loading [Contrib]/a11y/accessibility-menu.js

Physiologically structured populations with diffusion and dynamic boundary conditions

  • Received: 01 March 2010 Accepted: 29 June 2018 Published: 01 April 2011
  • MSC : 92D25, 47N60, 47D06, 35B35.

  • We consider a linear size-structured population model with diffusion in the size-space. Individuals are recruited into the population at arbitrary sizes. We equip the model with generalized Wentzell-Robin (or dynamic) boundary conditions. This approach allows the modelling of populations in which individuals may have distinguished physiological states. We establish existence and positivity of solutions by showing that solutions are governed by a positive quasicontractive semigroup of linear operators on the biologically relevant state space. These results are obtained by establishing dissipativity of a suitably perturbed semigroup generator. We also show that solutions of the model exhibit balanced exponential growth, that is, our model admits a finite-dimensional global attractor. In case of strictly positive fertility we are able to establish that solutions in fact exhibit asynchronous exponential growth.

    Citation: József Z. Farkas, Peter Hinow. Physiologically structured populations with diffusion and dynamicboundary conditions[J]. Mathematical Biosciences and Engineering, 2011, 8(2): 503-513. doi: 10.3934/mbe.2011.8.503

    Related Papers:

    [1] Agnieszka Bartłomiejczyk, Henryk Leszczyński . Structured populations with diffusion and Feller conditions. Mathematical Biosciences and Engineering, 2016, 13(2): 261-279. doi: 10.3934/mbe.2015002
    [2] Karl Peter Hadeler . Structured populations with diffusion in state space. Mathematical Biosciences and Engineering, 2010, 7(1): 37-49. doi: 10.3934/mbe.2010.7.37
    [3] Alessia Andò, Simone De Reggi, Davide Liessi, Francesca Scarabel . A pseudospectral method for investigating the stability of linear population models with two physiological structures. Mathematical Biosciences and Engineering, 2023, 20(3): 4493-4515. doi: 10.3934/mbe.2023208
    [4] Sebastian Aniţa, Bedreddine Ainseba . Internal eradicability for an epidemiological model with diffusion. Mathematical Biosciences and Engineering, 2005, 2(3): 437-443. doi: 10.3934/mbe.2005.2.437
    [5] Ranjit Kumar Upadhyay, Swati Mishra . Population dynamic consequences of fearful prey in a spatiotemporal predator-prey system. Mathematical Biosciences and Engineering, 2019, 16(1): 338-372. doi: 10.3934/mbe.2019017
    [6] Ming Mei, Yau Shu Wong . Novel stability results for traveling wavefronts in an age-structured reaction-diffusion equation. Mathematical Biosciences and Engineering, 2009, 6(4): 743-752. doi: 10.3934/mbe.2009.6.743
    [7] Guangrui Li, Ming Mei, Yau Shu Wong . Nonlinear stability of traveling wavefronts in an age-structured reaction-diffusion population model. Mathematical Biosciences and Engineering, 2008, 5(1): 85-100. doi: 10.3934/mbe.2008.5.85
    [8] Aníbal Coronel, Fernando Huancas, Ian Hess, Alex Tello . The diffusion identification in a SIS reaction-diffusion system. Mathematical Biosciences and Engineering, 2024, 21(1): 562-581. doi: 10.3934/mbe.2024024
    [9] Fang Liu, Yanfei Du . Spatiotemporal dynamics of a diffusive predator-prey model with delay and Allee effect in predator. Mathematical Biosciences and Engineering, 2023, 20(11): 19372-19400. doi: 10.3934/mbe.2023857
    [10] Ali Moussaoui, Vitaly Volpert . The influence of immune cells on the existence of virus quasi-species. Mathematical Biosciences and Engineering, 2023, 20(9): 15942-15961. doi: 10.3934/mbe.2023710
  • We consider a linear size-structured population model with diffusion in the size-space. Individuals are recruited into the population at arbitrary sizes. We equip the model with generalized Wentzell-Robin (or dynamic) boundary conditions. This approach allows the modelling of populations in which individuals may have distinguished physiological states. We establish existence and positivity of solutions by showing that solutions are governed by a positive quasicontractive semigroup of linear operators on the biologically relevant state space. These results are obtained by establishing dissipativity of a suitably perturbed semigroup generator. We also show that solutions of the model exhibit balanced exponential growth, that is, our model admits a finite-dimensional global attractor. In case of strictly positive fertility we are able to establish that solutions in fact exhibit asynchronous exponential growth.


  • This article has been cited by:

    1. Philippe Michel, Tarik Mohamed Touaoula, Asymptotic behavior for a class of the renewal nonlinear equation with diffusion, 2013, 36, 01704214, 323, 10.1002/mma.2591
    2. Andrea Pugliese, Fabio Milner, A structured population model with diffusion in structure space, 2018, 77, 0303-6812, 2079, 10.1007/s00285-018-1246-6
    3. Marta Latorre, Sergio Segura de León, Elliptic 1-Laplacian equations with dynamical boundary conditions, 2018, 464, 0022247X, 1051, 10.1016/j.jmaa.2018.02.006
    4. Agnieszka Bartłomiejczyk, Henryk Leszczyński, Method of lines for physiologically structured models with diffusion, 2015, 94, 01689274, 140, 10.1016/j.apnum.2015.03.006
    5. Guihong Fan, Yijun Lou, Horst R. Thieme, Jianhong Wu, Stability and persistence in ODE modelsfor populations with many stages, 2015, 12, 1551-0018, 661, 10.3934/mbe.2015.12.661
    6. Meng Bai, Shihe Xu, On a size-structured population model with infinite states-at-birth and distributed delay in birth process, 2013, 92, 0003-6811, 1916, 10.1080/00036811.2012.711820
    7. Àngel Calsina, Odo Diekmann, József Z. Farkas, Structured populations with distributed recruitment: from PDE to delay formulation, 2016, 39, 01704214, 5175, 10.1002/mma.3898
    8. Martin J. Bohner, Veli B. Shakhmurov, Separable Differential Operators with Parameters, 2020, 0971-3514, 10.1007/s12591-020-00542-8
    9. Agnieszka Bartłomiejczyk, Henryk Leszczński, Agnieszka Marciniak, Rothe’s method for physiologically structured models with diffusion, 2018, 68, 0139-9918, 211, 10.1515/ms-2017-0094
    10. Carles Barril, Àngel Calsina, Sílvia Cuadrado, Jordi Ripoll, On the basic reproduction number in continuously structured populations, 2021, 44, 0170-4214, 799, 10.1002/mma.6787
    11. Agnieszka Bartłomiejczyk, Henryk Leszczyński, Structured populations with diffusion and Feller conditions, 2016, 13, 1551-0018, 261, 10.3934/mbe.2015002
    12. Àngel Calsina, József Z. Farkas, On a strain-structured epidemic model, 2016, 31, 14681218, 325, 10.1016/j.nonrwa.2016.01.014
    13. Àngel Calsina, József Z. Farkas, Steady states in a structured epidemic model with Wentzell boundary condition, 2012, 12, 1424-3199, 495, 10.1007/s00028-012-0142-6
    14. El Mustapha Ait Ben Hassi, Salah-Eddine Chorfi, Lahcen Maniar, Omar Oukdach, Lipschitz stability for an inverse source problem in anisotropic parabolic equations with dynamic boundary conditions, 2020, 0, 2163-2480, 0, 10.3934/eect.2020094
    15. El Mustapha Ait Ben Hassi, Salah-Eddine Chorfi, Lahcen Maniar, Stable determination of coefficients in semilinear parabolic system with dynamic boundary conditions, 2022, 38, 0266-5611, 115007, 10.1088/1361-6420/ac91ed
    16. Salah-Eddine Chorfi, Ghita El Guermai, Abdelaziz Khoutaibi, Lahcen Maniar, Boundary null controllability for the heat equation with dynamic boundary conditions, 2023, 12, 2163-2480, 542, 10.3934/eect.2022041
    17. Salah-Eddine Chorfi, Ghita El Guermai, Lahcen Maniar, Walid Zouhair, Impulse null approximate controllability for heat equation with dynamic boundary conditions, 2022, 0, 2156-8472, 0, 10.3934/mcrf.2022026
    18. Lahcen Maniar, Omar Oukdach, Walid Zouhair, Lebeau–Robbiano Inequality for Heat Equation with Dynamic Boundary Conditions and Optimal Null Controllability, 2023, 0971-3514, 10.1007/s12591-023-00633-2
    19. Rodrigo Lecaros, Roberto Morales, Ariel Pérez, Sebastián Zamorano, Discrete Carleman estimates and application to controllability for a fully-discrete parabolic operator with dynamic boundary conditions, 2023, 365, 00220396, 832, 10.1016/j.jde.2023.05.014
    20. Mahmoud Baroun, Hind El Baggari, Ilham Ouled Driss, Said Boulite, Impulse controllability for the heat equation with inverse square potential and dynamic boundary conditions, 2023, 0265-0754, 10.1093/imamci/dnad012
    21. Salah-Eddine Chorfi, Ghita El Guermai, Lahcen Maniar, Walid Zouhair, Finite-Time Stabilization and Impulse Control of Heat Equation with Dynamic Boundary Conditions, 2023, 1079-2724, 10.1007/s10883-023-09646-0
    22. Alessandro Camasta, Genni Fragnelli, Fourth-order differential operators with interior degeneracy and generalized Wentzell boundary conditions, 2022, 2022, 1072-6691, 87, 10.58997/ejde.2022.87
  • Reader Comments
  • © 2011 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3081) PDF downloads(543) Cited by(21)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog