Loading [Contrib]/a11y/accessibility-menu.js

A Single-Cell Approach in Modeling the Dynamics of Tumor Microregions

  • Received: 01 January 2005 Accepted: 29 June 2018 Published: 01 August 2005
  • MSC : 92C10, 92C37, 92C50, 76D05, 76M20.

  • Interactions between tumor cells and their environment lead to the formation of microregions containing nonhomogeneous subpopulations of cells and steep gradients in oxygen, glucose, and other metabolites. To address the formation of tumor microregions on the level of single cells, I propose a new two-dimensional time-dependent mathematical model taking explicitly into account the individually regulated biomechanical processes of tumor cells and the effect of oxygen consumption on their metabolism. Numerical simulations of the self-organized formation of tumor microregions are presented and the dynamics of such a process is discussed.

    Citation: Katarzyna A. Rejniak. A Single-Cell Approach in Modeling the Dynamics of Tumor Microregions[J]. Mathematical Biosciences and Engineering, 2005, 2(3): 643-655. doi: 10.3934/mbe.2005.2.643

    Related Papers:

    [1] Avner Friedman, Yangjin Kim . Tumor cells proliferation and migration under the influence of their microenvironment. Mathematical Biosciences and Engineering, 2011, 8(2): 371-383. doi: 10.3934/mbe.2011.8.371
    [2] Peter Hinow, Philip Gerlee, Lisa J. McCawley, Vito Quaranta, Madalina Ciobanu, Shizhen Wang, Jason M. Graham, Bruce P. Ayati, Jonathan Claridge, Kristin R. Swanson, Mary Loveless, Alexander R. A. Anderson . A spatial model of tumor-host interaction: Application of chemotherapy. Mathematical Biosciences and Engineering, 2009, 6(3): 521-546. doi: 10.3934/mbe.2009.6.521
    [3] Elena Izquierdo-Kulich, Margarita Amigó de Quesada, Carlos Manuel Pérez-Amor, Magda Lopes Texeira, José Manuel Nieto-Villar . The dynamics of tumor growth and cells pattern morphology. Mathematical Biosciences and Engineering, 2009, 6(3): 547-559. doi: 10.3934/mbe.2009.6.547
    [4] H. J. Alsakaji, F. A. Rihan, K. Udhayakumar, F. El Ktaibi . Stochastic tumor-immune interaction model with external treatments and time delays: An optimal control problem. Mathematical Biosciences and Engineering, 2023, 20(11): 19270-19299. doi: 10.3934/mbe.2023852
    [5] Donggu Lee, Sunju Oh, Sean Lawler, Yangjin Kim . Bistable dynamics of TAN-NK cells in tumor growth and control of radiotherapy-induced neutropenia in lung cancer treatment. Mathematical Biosciences and Engineering, 2025, 22(4): 744-809. doi: 10.3934/mbe.2025028
    [6] Yuyang Xiao, Juan Shen, Xiufen Zou . Mathematical modeling and dynamical analysis of anti-tumor drug dose-response. Mathematical Biosciences and Engineering, 2022, 19(4): 4120-4144. doi: 10.3934/mbe.2022190
    [7] Maria Vittoria Barbarossa, Christina Kuttler, Jonathan Zinsl . Delay equations modeling the effects of phase-specific drugs and immunotherapy on proliferating tumor cells. Mathematical Biosciences and Engineering, 2012, 9(2): 241-257. doi: 10.3934/mbe.2012.9.241
    [8] Samantha L Elliott, Emek Kose, Allison L Lewis, Anna E Steinfeld, Elizabeth A Zollinger . Modeling the stem cell hypothesis: Investigating the effects of cancer stem cells and TGF−β on tumor growth. Mathematical Biosciences and Engineering, 2019, 16(6): 7177-7194. doi: 10.3934/mbe.2019360
    [9] Marek Bodnar, Urszula Foryś . Time Delay In Necrotic Core Formation. Mathematical Biosciences and Engineering, 2005, 2(3): 461-472. doi: 10.3934/mbe.2005.2.461
    [10] Haihua Zhou, Yaxin Liu, Zejia Wang, Huijuan Song . Linear stability for a free boundary problem modeling the growth of tumor cord with time delay. Mathematical Biosciences and Engineering, 2024, 21(2): 2344-2365. doi: 10.3934/mbe.2024103
  • Interactions between tumor cells and their environment lead to the formation of microregions containing nonhomogeneous subpopulations of cells and steep gradients in oxygen, glucose, and other metabolites. To address the formation of tumor microregions on the level of single cells, I propose a new two-dimensional time-dependent mathematical model taking explicitly into account the individually regulated biomechanical processes of tumor cells and the effect of oxygen consumption on their metabolism. Numerical simulations of the self-organized formation of tumor microregions are presented and the dynamics of such a process is discussed.


  • This article has been cited by:

    1. P. Van Liedekerke, M. M. Palm, N. Jagiella, D. Drasdo, Simulating tissue mechanics with agent-based models: concepts, perspectives and some novel results, 2015, 2, 2196-4378, 401, 10.1007/s40571-015-0082-3
    2. Fergus R. Cooper, Ruth E. Baker, Alexander G. Fletcher, Numerical Analysis of the Immersed Boundary Method for Cell-Based Simulation, 2017, 39, 1064-8275, B943, 10.1137/16M1092246
    3. YANGJIN KIM, MAGDALENA A. STOLARSKA, HANS G. OTHMER, A HYBRID MODEL FOR TUMOR SPHEROID GROWTH IN VITRO I: THEORETICAL DEVELOPMENT AND EARLY RESULTS, 2007, 17, 0218-2025, 1773, 10.1142/S0218202507002479
    4. Nikodem J. Popławski, Ubirajara Agero, J. Scott Gens, Maciej Swat, James A. Glazier, Alexander R. A. Anderson, Front Instabilities and Invasiveness of Simulated Avascular Tumors, 2009, 71, 0092-8240, 1189, 10.1007/s11538-009-9399-5
    5. Daniel K. Wells, Yishan Chuang, Louis M. Knapp, Dirk Brockmann, William L. Kath, Joshua N. Leonard, Martin Meier-Schellersheim, Spatial and Functional Heterogeneities Shape Collective Behavior of Tumor-Immune Networks, 2015, 11, 1553-7358, e1004181, 10.1371/journal.pcbi.1004181
    6. S.N. Antontsev, A.A. Papin , M.A. Tokareva, E.I. Leonova, E.A. Gridushko , Modeling of Tumor Occurrence and Growth - I, 2020, 1561-9451, 70, 10.14258/izvasu(2020)4-11
    7. Katarzyna A. Rejniak, 2014, Chapter 23, 978-3-642-40192-3, 507, 10.1007/978-3-642-40193-0_23
    8. Timothy J. Newman, 2007, Chapter 10, 978-3-7643-8101-1, 221, 10.1007/978-3-7643-8123-3_10
    9. Yoonseok Kam, Katarzyna A. Rejniak, Alexander R.A. Anderson, Cellular modeling of cancer invasion: Integration of in silico and in vitro approaches, 2012, 227, 00219541, 431, 10.1002/jcp.22766
    10. Katarzyna A. Rejniak, An immersed boundary framework for modelling the growth of individual cells: An application to the early tumour development, 2007, 247, 00225193, 186, 10.1016/j.jtbi.2007.02.019
    11. S.M. Wise, J.S. Lowengrub, V. Cristini, An adaptive multigrid algorithm for simulating solid tumor growth using mixture models, 2011, 53, 08957177, 1, 10.1016/j.mcm.2010.07.007
    12. Katarzyna A. Rejniak, Alexander R. A. Anderson, A Computational Study of the Development of Epithelial Acini: II. Necessary Conditions for Structure and Lumen Stability, 2008, 70, 0092-8240, 1450, 10.1007/s11538-008-9308-3
    13. Katarzyna A. Rejniak, 2007, Chapter 13, 978-3-7643-8101-1, 301, 10.1007/978-3-7643-8123-3_13
    14. Nara Yoon, Robert Vander Velde, Andriy Marusyk, Jacob G. Scott, Optimal Therapy Scheduling Based on a Pair of Collaterally Sensitive Drugs, 2018, 80, 0092-8240, 1776, 10.1007/s11538-018-0434-2
    15. Katarzyna A. Rejniak, Alexander R. A. Anderson, A Computational Study of the Development of Epithelial Acini: I. Sufficient Conditions for the Formation of a Hollow Structure, 2008, 70, 0092-8240, 677, 10.1007/s11538-007-9274-1
    16. P. Gerlee, A.R.A. Anderson, Evolution of cell motility in an individual-based model of tumour growth, 2009, 259, 00225193, 67, 10.1016/j.jtbi.2009.03.005
    17. G. U. Unnikrishnan, V. U. Unnikrishnan, J. N. Reddy, C. T. Lim, Review on the Constitutive Models of Tumor Tissue for Computational Analysis, 2010, 63, 0003-6900, 10.1115/1.4002427
    18. Nikodem J. Poplawski, Abbas Shirinifard, Ubirajara Agero, J. Scott Gens, Maciej Swat, James A. Glazier, Gustavo Stolovitzky, Front Instabilities and Invasiveness of Simulated 3D Avascular Tumors, 2010, 5, 1932-6203, e10641, 10.1371/journal.pone.0010641
    19. K. Saetzler, C. Sonnenschein, A.M. Soto, Systems biology beyond networks: Generating order from disorder through self-organization, 2011, 21, 1044579X, 165, 10.1016/j.semcancer.2011.04.004
    20. EUNOK JUNG, DO WAN KIM, JONGGUL LEE, WANHO LEE, MULTIDIMENSIONAL OPEN SYSTEM FOR VALVELESS PUMPING, 2015, 52, 1015-8634, 1973, 10.4134/BKMS.2015.52.6.1973
    21. Yibao Li, Junseok Kim, Three-dimensional simulations of the cell growth and cytokinesis using the immersed boundary method, 2016, 271, 00255564, 118, 10.1016/j.mbs.2015.11.005
    22. Maymona Al-Husari, Craig Murdoch, Steven D. Webb, A cellular automaton model examining the effects of oxygen, hydrogen ions and lactate on early tumour growth, 2014, 69, 0303-6812, 839, 10.1007/s00285-013-0719-x
    23. Alexander G. Fletcher, Fergus Cooper, Ruth E. Baker, Mechanocellular models of epithelial morphogenesis, 2017, 372, 0962-8436, 20150519, 10.1098/rstb.2015.0519
    24. Krzysztof Psiuk-Maksymowicz, Damian Borys, Sebastian Student, Andrzej Świerniak, 2014, Chapter 23, 978-3-319-06592-2, 261, 10.1007/978-3-319-06593-9_23
    25. Chun-Chao Wang, Leen Jamal, Kevin A. Janes, Normal morphogenesis of epithelial tissues and progression of epithelial tumors, 2012, 4, 19395094, 51, 10.1002/wsbm.159
    26. Andreas Deutsch, Sabine Dormann, 2017, Chapter 14, 978-1-4899-7978-0, 347, 10.1007/978-1-4899-7980-3_14
    27. Jonathan F. Li, John Lowengrub, The effects of cell compressibility, motility and contact inhibition on the growth of tumor cell clusters using the Cellular Potts Model, 2014, 343, 00225193, 79, 10.1016/j.jtbi.2013.10.008
    28. Fabiano L. Ribeiro, Kayo N. Ribeiro, A one dimensional model of population growth, 2015, 434, 03784371, 201, 10.1016/j.physa.2015.03.021
    29. Yibao Li, Ana Yun, Junseok Kim, An immersed boundary method for simulating a single axisymmetric cell growth and division, 2012, 65, 0303-6812, 653, 10.1007/s00285-011-0476-7
    30. Katarzyna A. Rejniak, Alexander R. A. Anderson, Hybrid models of tumor growth, 2011, 3, 1939-5094, 115, 10.1002/wsbm.102
    31. Katarzyna A. Rejniak, Shizhen E. Wang, Nicole S. Bryce, Hang Chang, Bahram Parvin, Jerome Jourquin, Lourdes Estrada, Joe W. Gray, Carlos L. Arteaga, Alissa M. Weaver, Vito Quaranta, Alexander R. A. Anderson, Andrew D. McCulloch, Linking Changes in Epithelial Morphogenesis to Cancer Mutations Using Computational Modeling, 2010, 6, 1553-7358, e1000900, 10.1371/journal.pcbi.1000900
    32. Sunmi Lee, Eunok Jung, A two-chamber model of valveless pumping using the immersed boundary method, 2008, 206, 00963003, 876, 10.1016/j.amc.2008.09.047
    33. P. Van Liedekerke, A. Buttenschön, D. Drasdo, 2018, 9780128117187, 245, 10.1016/B978-0-12-811718-7.00014-9
    34. Alexander R. A. Anderson, 2008, Chapter 11, 978-0-8176-4712-4, 1, 10.1007/978-0-8176-4713-1_11
    35. J S Lowengrub, H B Frieboes, F Jin, Y-L Chuang, X Li, P Macklin, S M Wise, V Cristini, Nonlinear modelling of cancer: bridging the gap between cells and tumours, 2010, 23, 0951-7715, R1, 10.1088/0951-7715/23/1/R01
    36. Jia Zhao, Qi Wang, A 3D Multi-Phase Hydrodynamic Model for Cytokinesis of Eukaryotic Cells, 2016, 19, 1815-2406, 663, 10.4208/cicp.181014.140715a
    37. Vladimir Kalinin, Cell – extracellular matrix interaction in glioma growth. In silico model, 2020, 17, 1613-4516, 10.1515/jib-2020-0027
    38. Jia Zhao, Qi Wang, Modeling cytokinesis of eukaryotic cells driven by the actomyosin contractile ring, 2016, 32, 20407939, e02774, 10.1002/cnm.2774
    39. Alexander R. A. Anderson, Katarzyna A. Rejniak, Philip Gerlee, Vito Quaranta, Microenvironment driven invasion: a multiscale multimodel investigation, 2009, 58, 0303-6812, 579, 10.1007/s00285-008-0210-2
    40. Sina Anvari, Shruti Nambiar, Jun Pang, Nima Maftoon, Computational Models and Simulations of Cancer Metastasis, 2021, 1134-3060, 10.1007/s11831-021-09554-1
    41. Daniela Loessner, J. Paige Little, Graeme J. Pettet, Dietmar W. Hutmacher, A multiscale road map of cancer spheroids – incorporating experimental and mathematical modelling to understand cancer progression, 2013, 126, 1477-9137, 2761, 10.1242/jcs.123836
    42. Jesse A Engelberg, Glen EP Ropella, C Anthony Hunt, Essential operating principles for tumor spheroid growth, 2008, 2, 1752-0509, 10.1186/1752-0509-2-110
    43. Nara Yoon, Nikhil Krishnan, Jacob Scott, Theoretical modeling of collaterally sensitive drug cycles: shaping heterogeneity to allow adaptive therapy, 2021, 83, 0303-6812, 10.1007/s00285-021-01671-6
    44. Alexander R.A. Anderson, Mohamed Hassanein, Kevin M. Branch, Jenny Lu, Nichole A. Lobdell, Julie Maier, David Basanta, Brandy Weidow, Archana Narasanna, Carlos L. Arteaga, Albert B. Reynolds, Vito Quaranta, Lourdes Estrada, Alissa M. Weaver, Microenvironmental Independence Associated with Tumor Progression, 2009, 69, 0008-5472, 8797, 10.1158/0008-5472.CAN-09-0437
    45. Cicely K. Macnamara, Biomechanical modelling of cancer: Agent‐based force‐based models of solid tumours within the context of the tumour microenvironment, 2021, 1, 2689-9655, 10.1002/cso2.1018
    46. Shreyas U. Hirway, Seth H. Weinberg, A review of computational modeling, machine learning and image analysis in cancer metastasis dynamics, 2022, 3, 2689-9655, 10.1002/cso2.1044
    47. Alexander Nestor-Bergmann, Guy B. Blanchard, Nathan Hervieux, Alexander G. Fletcher, Jocelyn Étienne, Bénédicte Sanson, Nir Gov, Adhesion-regulated junction slippage controls cell intercalation dynamics in an Apposed-Cortex Adhesion Model, 2022, 18, 1553-7358, e1009812, 10.1371/journal.pcbi.1009812
    48. Maxim Kuznetsov, Andrey Kolobov, Agent-Based Model for Studying the Effects of Solid Stress and Nutrient Supply on Tumor Growth, 2023, 11, 2227-7390, 1900, 10.3390/math11081900
    49. Roman Vetter, Steve V.M. Runser, Dagmar Iber, PolyHoop: Soft particle and tissue dynamics with topological transitions, 2024, 00104655, 109128, 10.1016/j.cpc.2024.109128
    50. Marco Scianna, Selected aspects of avascular tumor growth reproduced by a hybrid model of cell dynamics and chemical kinetics, 2024, 370, 00255564, 109168, 10.1016/j.mbs.2024.109168
    51. Steve Runser, Roman Vetter, Dagmar Iber, SimuCell3D: three-dimensional simulation of tissue mechanics with cell polarization, 2024, 2662-8457, 10.1038/s43588-024-00620-9
    52. Shreyas U. Hirway, Kylie G. Nairon, Aleksander Skardal, Seth H. Weinberg, A Multicellular Mechanochemical Model to Investigate Tumor Microenvironment Remodeling and Pre-Metastatic Niche Formation, 2024, 1865-5025, 10.1007/s12195-024-00831-0
  • Reader Comments
  • © 2005 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3343) PDF downloads(572) Cited by(52)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog