Citation: Cabinet Chivimbiso Musuna-Garwe, Netai Mukaratirwa-Muchanyereyi, Mathew Mupa, Courtie Mahamadi, Munyaradzi Mujuru. Preparation and characterization of nanocarbons from Nicotiana tabacum stems[J]. AIMS Materials Science, 2018, 5(6): 1242-1254. doi: 10.3934/matersci.2018.6.1242
[1] | Madhu R, Palanisamy S, Chen SM, et al. (2014) A low temperature synthesis of activated carbon from the bio waste for simultaneous electrochemical determination of hydroquinone and catechol. J Electroanal Chem 727: 84–90. doi: 10.1016/j.jelechem.2014.06.005 |
[2] | Hui TS, Zaini MAA (2015) Potassium hydroxide activation of carbon: a commentary. Carbon Lett 16: 275–280. doi: 10.5714/CL.2015.16.4.275 |
[3] | Ravelo-Pérez LM, Herrera-Herrera AV, Hernandez-Borges J, et al. (2010) Carbon nanotubes: Solid-phase extraction. J Chromatogr A 1217: 2618–2641. doi: 10.1016/j.chroma.2009.10.083 |
[4] | Li X, Xing W, Zhuo S, et al. (2011) Preparation of capacitor's electrode from sunflower seed shell. Bioresource Technol 102: 1118–1123. doi: 10.1016/j.biortech.2010.08.110 |
[5] | Ashokumar M, Narayanan NT, Gupta BK, et al. (2013) Conversion of industrial bio-waste into useful nanomaterials. ACS Sustain Chem Eng 1: 619–626. doi: 10.1021/sc3001564 |
[6] | Rahman MA, Amin SMR, Alam AMS (2012) Removal of methylene blue from waste water using activated carbon prepared from rice husk. Dhaka Univ J Sci 60: 185–189. |
[7] | Álvarez-Torrellas S, García-Lovera R, Rodríguez A, et al. (2015) Removal of methylene blue by adsorption on mesoporous carbon from peach stones. Chem Eng Trans 43: 1963–1968. |
[8] | Mohan MA, Chadaga M (2014) Methylene blue colour removal using physically and chemically activated cashew nut shell activated carbon. IJTEEE 2: 64–69. |
[9] | Molina-Sabio M, Rodriguez-Reinoso F (2004) Role of chemical activation in the development of carbon porosity. Colloid Surface A 241: 15–25. doi: 10.1016/j.colsurfa.2004.04.007 |
[10] | Peševski MĐ, Iliev BM, Živković DL, et al. (2010) Possibilities for utilization of tobacco stems for production of energetic briquettes. J Agr Sci 55: 45–54. doi: 10.2298/JAS1001045P |
[11] | Graciano RML, de Freitas VP, Ábel FM (2014) Simultan sacharification and fermentation of tobacco samples. Analecta Technica Szegedinensia 8: 80–89. doi: 10.14232/analecta.2014.2.80-89 |
[12] | Qi BC, Aldrich C (2008) Biosorption of heavy metals from aqueous solutions with tobacco dust. Bioresource Technol 99: 5595–5601. doi: 10.1016/j.biortech.2007.10.042 |
[13] | Ghosh RK, Reddy DD (2013) Tobacco stem ash as an adsorbent for removal of methylene blue from aqueous solution: equilibrium, kinetics, and mechanism of adsorption. Water Air Soil Poll 224: 1582. doi: 10.1007/s11270-013-1582-5 |
[14] | Wang X, Ouyang Y, Li X, et al. (2008) Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys Rev Lett 100: 206803. doi: 10.1103/PhysRevLett.100.206803 |
[15] | Li W, Zhang LB, Peng JH, et al. (2008) Preparation of high surface area activated carbons from tobacco stems with K2CO3 activation using microwave radiation. Ind Crop Prod 27: 341–347. doi: 10.1016/j.indcrop.2007.11.011 |
[16] | Abechi SE, Gimba CE, Uzairu A, et al. (2013) Preparation and characterization of activated carbon from palm kernel shell by chemical activation. Res J Chem Sci 3: 54–61. |
[17] | Viswanathan I, Neel P, Varadarajan TK (2009) Methods of activation and specific applications of carbon materials. National Centre for Catalysis Research, Indian Institute of Technology Madras, Chennai 600 036. |
[18] | Makeswari M, Santhi S (2013) Optimization of preparation of activated carbon from Ricinus communis leaves by microwave-assisted zinc chloride chemical activation: Competitive adsorption of Ni2+ ions from aqueous solution. J Chem 2013: 314790. |
[19] | ASTM D4607-94 (2006) Standard Test Method for Determination of Iodine Number of Activated Carbon. American Society for Testing and Materials, Annual book of ASTM standards. |
[20] | Cao W, Hu SS, Ye LH, et al. (2015) Trace-chitosan-wrapped multi-walled carbon nanotubes as a new sorbent in dispersive micro solid-phase extraction to determine phenolic compounds. J Chromatogr A 1390: 13–21. doi: 10.1016/j.chroma.2015.02.060 |
[21] | Purkayastha MD, Manhar AK, Mandal M, et al. (2014) Industrial waste-derived nanoparticles and microspheres can be potent antimicrobial and functional ingredients. J Appl Chem 2014: 171427. |
[22] | Deng XJ, Guo QJ, Chen XP, et al. (2014) Rapid and effective sample clean-up based on magnetic multiwalled carbon nanotubes for the determination of pesticide residues in tea by gas chromatography–mass spectrometry. Food Chem 145: 853–858. doi: 10.1016/j.foodchem.2013.08.137 |
[23] | Hou X, Lei SR, Qui ST, et al. (2014) A multi-residue method for the determination of pesticides in tea using multi-walled carbon nanotubes as a dispersive solid phase extraction absorbent. Food Chem 153: 121–129. doi: 10.1016/j.foodchem.2013.12.031 |
[24] | Rodriguez-Reinos F, Molina-Sabio M, Gonzalez MT (1995) The use of steam and CO2 as activating agents in the preparation of activated carbons. Carbon 33: 15–23. doi: 10.1016/0008-6223(94)00100-E |
[25] | Hu B, Wang K, Wu LH, et al. (2010) Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv Mater 22: 813–828. doi: 10.1002/adma.200902812 |
[26] | Senthilkumar ST, Selvan RK (2013) The biomass derived activated carbon for supercapacitor. AIP Conf Proc 1538: 124–127. |
[27] | Strachowski P, Bystrzejewski M (2015) Comparative studies of sorption of phenolic compounds onto carbon-encapsulated iron nanoparticles, carbon nanotubes and activated carbon. Colloid Surface A 467: 113–123. doi: 10.1016/j.colsurfa.2014.11.044 |
[28] | Marsh H, Rodriguez-Reinoso F (2006) SEM and TEM Images of Structures in Activated Carbons, In: Activated Carbon, 1st edition, Elsevier, 366–382. |
[29] | Akbari B, Tavandashti MP, Zandrahimi M (2011) Particle size characterization of nanoparticles-A Practical approach. IJMSE 8: 48–56. |
[30] | Hashim M, Sa'adu L (2014) A flexible solid state EDLC from a commercially prepared multiwalled carbon nanortubes and hybrid polymer electrolyte. J Mater Sci Res 3: 13–21. |
[31] | Wang HL, Xu ZW, Kohandehghan A, et al. (2013) Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy. ACS Nano 7: 5131–5141. doi: 10.1021/nn400731g |