Citation: Katsumasa Satoh, Yasuhide Tsuji. A study on photonic crystal slab waveguide with absolute photonic band gap[J]. AIMS Materials Science, 2018, 5(1): 116-126. doi: 10.3934/matersci.2018.1.116
[1] | Joannopoulos JD, Villeneuve PR, Fan S (1997) Photonic crystals: pitting a new twist on light. Nature 386: 143–149. doi: 10.1038/386143a0 |
[2] | Villeneuve PR, Piche M (1992) Photonic band gaps in two-dimensional square and hexagonal lattices. Phys Rev B 46: 4969–4972. doi: 10.1103/PhysRevB.46.4969 |
[3] | Anderson CM, Giapis KP (1996) Larger two-dimensional photonic band gaps. Phys Rev Lett 77: 2949–2951. doi: 10.1103/PhysRevLett.77.2949 |
[4] | Kee CS, Kim JE, Park HY (1997) Absolute photonic bandgap in a two-dimensional square lattice of square dierectric rods in air. Phys Rev E 56: R6293. |
[5] | Anderson CM, Giapis KP (1997) Symmetry reduction in group 4 mm photonic crystals. Phys Rev B 56: 7313–7320. doi: 10.1103/PhysRevB.56.7313 |
[6] | Qiu M, He S (1999) Large complete bandgap in two-dimensional photonic crystals with elliptic air holes. Phys Rev B 60: 10610–10612. doi: 10.1103/PhysRevB.60.10610 |
[7] | Shen L, He S, Xian S (2002) Large absolute band gaps in two-dimensional photonic crystals formed by large dielectric pixels. Phys Rev B 66: 165315. doi: 10.1103/PhysRevB.66.165315 |
[8] | Trifonov T, Marsal LF, Rodriguez A, et al. (2004) E ects of symmetry reduction in twodimensional square and triangular lattices. Phys Rev B 69: 235112. doi: 10.1103/PhysRevB.69.235112 |
[9] | Wen F, David S, Checoury X, et al. (2008) Two-dimensional photonic crystals with large complete photonic band gaps in both TE and TM polarizations. Opt Express 16: 12278–12289. doi: 10.1364/OE.16.012278 |
[10] | Cerjan A, Fan S (2017) Complete photonic band gaps in supercell photonic crystals. Phys Rev A 96: 051802. doi: 10.1103/PhysRevA.96.051802 |
[11] | Kurt H, Citrin DS (2005) Annular photonic crystals. Opt Express 13: 10316–10326. doi: 10.1364/OPEX.13.010316 |
[12] | Kurt H, Hao R, Chen Y, et al. (2008) Design of annular photonic crystal slabs. Opt Lett 33: 1614–1616. doi: 10.1364/OL.33.001614 |
[13] | Shi P, Huang K, Kanng X, et al. (2010) Creation of large band gap with anisotropic annular photonic crystal slab structure. Opt Express 18: 5221–5228. doi: 10.1364/OE.18.005221 |
[14] | Razari B, Kalafi M (2006) Engineering absolute band gap in anisotropic hexagonal photonic crystals. Opt Commun 266: 159–163. doi: 10.1016/j.optcom.2006.04.035 |
[15] | Razari B, Khalkhali FT, Bala AS, et al. (2009) Absolute band gap properties in two-dimensional photonic crystals composed of air rings in anisotropic tellurium background. Opt Commun 282: 2861–2869. doi: 10.1016/j.optcom.2009.04.048 |
[16] | Khalkhali FT, Razari B, Kalafi M (2011) Enlargement of absolute photonic band gap in modified 2D anisotropic annular photonic crystals. Opt Commun 284: 3315–3322. doi: 10.1016/j.optcom.2011.03.006 |
[17] | Erol AE, Sӧzüer HS (2015) High transmission through a 90° bend in a polarization-independent single-mode photonic crystal waveguide. Opt Express 23: 32690–32695. doi: 10.1364/OE.23.032690 |
[18] | Tsuji Y, Morita Y, Hirayama K (2006) Photonic crystal waveguide based on 2-D photonic crystal with absolute photonic band gap. IEEE Photonic Tech L 18: 2410–2412. doi: 10.1109/LPT.2006.885295 |
[19] | Morita Y, Tsuji Y, Hirayama K (2008) Proposal for a compact resonant-coupling-type polarization splitter based on photonic crystal waveguide with absolute photonic bandgap. IEEE Photonic Tech L 20: 93–95. doi: 10.1109/LPT.2007.912558 |
[20] | Wu H, Citrin DS, Jiang L, et al. (2015) Polarization-Independent Single-ModeWaveguidingWith Honeycomb Photonic Crystals. IEEE Photonic Tech L 27: 840–843. doi: 10.1109/LPT.2015.2394463 |
[21] | Rani P, Kara Y, Sinha RK (2016) Design and analysis of polarization independent all-optical logic gates in silicon-on-insulator photonic crystal. Opt Commun 374: 148–155. doi: 10.1016/j.optcom.2016.04.037 |
[22] | Sӓynӓtjoki A, Mulot M, Ahopelto J, et al. (2007) Dispersion engineering of photonic crystal waveguides with ring-shaped holes. Opt Express 15: 8323–8328. doi: 10.1364/OE.15.008323 |
[23] | Hou J, Citrin DS, Wu H, et al. (2011) Enhanced bandgap in annular photonic-crystal silicon-oninsulator asymmetric slabs. Opt Lett 36: 2263–2265. doi: 10.1364/OL.36.002263 |
[24] | Wang F, Cheng YZ, Wang X, et al. (2018) Effective modulation of the photonic band gap based on Ge/ZnS one-dimensional photonic crystal at the infrared band. Opt Mater 75: 373–378. doi: 10.1016/j.optmat.2017.10.053 |
[25] | Wang X, Qi D, Wang F, et al. (2017) Design and fabrication of energy effcient film based on one-dimensional photonic band gap structures. J Alloy Compd 697: 1–4. doi: 10.1016/j.jallcom.2016.12.047 |
[26] | Qi D, Wang X, Cheng Y, et al. (2016) Design and characterization of one-dimensional photonic crystals based on ZnS/Ge for infrared-visible compatible stealth applications. Opt Mater 62: 52–56. doi: 10.1016/j.optmat.2016.09.024 |
[27] | Okamoto K (2005) Fundamentals of optical waveguides, 2Eds, Academic Press. |
[28] | Koshiba M (1992) Optical waveguide theory by the finite element method, Tokyo/Dordrecht: KTK Scientific Publishers/Kluwer Academic Publishers. |
[29] | Tsuji Y, Koshiba M (2002) Finite element method using port truncation by perfectly matched layer boundary conditions for optical waveguide discontinuity problems. J Lightwave Technol 20: 463–468. doi: 10.1109/50.988995 |
[30] | Koshiba M, Tsuji Y, Sasaki S (2001) High-performance absorbing boundary conditions for photonic crystal waveguide a simulations. IEEE Microw Wirel Co 11: 152–154. doi: 10.1109/7260.916327 |