Citation: Luis Gutierrez-Rivera, Robert Peters, Steven Dew, Maria Stepanova. Surface-enhanced Raman spectroscopy detection of protein-ligand binding using D-glucose and glucose binding protein on nanostructured plasmonic substrates[J]. AIMS Materials Science, 2017, 4(2): 522-539. doi: 10.3934/matersci.2017.2.522
[1] | Ross AM, Lahann J (2015) Current trends and challenges in biointerfaces science and engineering. Annu Rev Chem Biomol 6: 161–186. |
[2] | McKeating KS, Aubé A, Masson JF (2016) Biosensors and nanobiosensors for therapeutic drug and response monitoring. Analyst 141: 429–449. doi: 10.1039/C5AN01861G |
[3] | Liu Q, Wu Ch, Cai H, et al. (2014) Cell-based biosensors and their application in biomedicine. Chem Rev 114: 6423–6461. doi: 10.1021/cr2003129 |
[4] | Ding SY, Yi J, Li JF, et al. (2016) Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat Rev Mater 1: 16021. doi: 10.1038/natrevmats.2016.21 |
[5] | Bonifacio A, Cervo S, Sergo V (2015) Label-free surface-enhanced Ranam spectroscopy of biofluids: fundamental aspects and diagnostics applications. Anal Bioanal Chem 407: 8265–8277. doi: 10.1007/s00216-015-8697-z |
[6] | He L, Liu Y, Liu J, et al. (2013) Core-shell noble-metal@metal-organic framework nanoparticles with highly selective sensing property. Angew Chem Int Ed 52: 3741–3745. doi: 10.1002/anie.201209903 |
[7] | Kleinman SL, Frontiera RR, Henry AI, et al. (2013) Creating, characterizing, and controlling chemistry with SERS hot spots. Phys Chem Chem Phys 15: 21–36. doi: 10.1039/C2CP42598J |
[8] | Jahn M, Patze S, Hidi IJ, et al. (2016) Plasmonic nanostructures for surface enhanced spectroscopic methods. Analyst 141: 756–793. doi: 10.1039/C5AN02057C |
[9] | Justino CIL, Freitas AC, Pereira R, et al. (2015) Recent developments in recognition elements for chemical sensors and biosensors. Trac-Trends Anal Chem 68: 2–17. doi: 10.1016/j.trac.2015.03.006 |
[10] | Luo SC, Sivashanmugan K, Liao JD, et al. (2014) Nanofabricated SERS-active substrates for single-molecule to virus detection in vitro: A review. Biosens Bioelectron 61: 232–240. doi: 10.1016/j.bios.2014.05.013 |
[11] | Shiohara A, Wang Y, Liz-Marzan L (2014) Recent approaches toward creation of hot spots for SERS detection. J Photoch Photobio C 21: 2–25. doi: 10.1016/j.jphotochemrev.2014.09.001 |
[12] | Mohammad MA, Muhammad M, Dew SK, et al. (2012) Fundamentals of electron beam exposure and development, In: Stepanova M, Dew SK, Nanofabrication, Techniques and Principles, Wien: Springer-Verlag, 11–41. |
[13] | Chen Y (2015) Nanofabrication by electron beam lithography and its applications: A review. Microelectron Eng 135: 57–72. doi: 10.1016/j.mee.2015.02.042 |
[14] | Muhammad M, Buswell SC, Dew SK, et al. (2011) Nanopatterning of PMMA on insulating surfaces with various anticharging schemes using 30 keV electron beam lithography. J Vac Sci Technol B 29: 06F304. |
[15] | Peters R, Fito T, Gutierrez-Rivera L, et al. (2013) Study of multilayer systems in electron beam lithography. J Vac Sci Technol B 31: 06F407. |
[16] | Gutierrez-Rivera L, Peters R, Dew S, et al. (2013) Application of EBL fabricated nanostructured substrates for SERS detection of protein A in aqueous solution. J Vac Sci Technol B 31: 06F901. |
[17] | Peters RF, Gutierrez-Rivera L, Dew SK, et al. (2015) Surface enhanced Raman spectroscopy detection of biomolecules using EBL fabricated nanostructured substrates. J Vis Exp 97: 52712. Available from: http://www.jove.com/video/52712. |
[18] | Anker JN, Hall WP, Lyandres O, et al. (2008) Biosensing with plasmonic nanosensors. Nat Mater 7: 442–453. doi: 10.1038/nmat2162 |
[19] | Bantz KC, Meyer AF, Wittenberg NJ, et al. (2011) Recent progress in SERS biosensing. Phys Chem 13: 11551–11567. |
[20] | Sun F, Bai T, Zhang L, et al. (2014) Sensitive and fast detection of fructose in complex media via symmetry breaking and signal amplification using surface-enhanced Raman spectroscopy. Anal Chem 86: 2387–2394. doi: 10.1021/ac4040983 |
[21] | Dwyer MA, Hellinga HW (2004) Periplasmic binding proteins: a versatile superfamily for protein engineering. Curr Opin Struc Biol 14: 495–504. doi: 10.1016/j.sbi.2004.07.004 |
[22] | Benson DE, Conrad DW (2001) Design of bioelectronic interfaces by exploiting hinge-bending motions in proteins. Science 293: 1641–1644. doi: 10.1126/science.1062461 |
[23] | Ley C, Holtmann D, Mangold KM, et al. (2011) Immobilization of histidine-tagged proteins on electrodes. Colloid Surface B 88: 539–551. doi: 10.1016/j.colsurfb.2011.07.044 |
[24] | Fan M, Andrade FS, Brolo AG (2011) A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry. Anal Chim Acta 693: 7–25. |
[25] | Cuneo MJ, Johnson SJ, Beese LS, et al. (2003) High resolution structure of E. coli glucose/galactose binding protein bound with glucose. Protein Data Bank ID 2HPH. Available from: http://www.rcsb.org/pdb/explore.do?structureId=2hph. |
[26] | Recombinant glucose-binding protein was synthesized by Valentyna Semenchenko from D.S. Wishart group at the University of Alberta. Available from: http://www.wishartlab.com. |
[27] | Ko H, Singamaneni S, Tsukruk VV (2008) Nanostructured surfaces and assemblies as SERS media. Small 4: 1576–1599. doi: 10.1002/smll.200800337 |
[28] | Rycenga M, Camargo P, Li W, et al. (2010) Understanding the SERS effects of single silver nanoparticles and their dimers, one at a time. J Phys Chem Lett 1: 696–703. doi: 10.1021/jz900286a |
[29] | Halas NJ, Lal S, Chang WS, et al. (2011) Plasmons in strongly coupled metallic nanostructures. Chem Rev 111: 3913–3961. doi: 10.1021/cr200061k |
[30] | Iqbal T (2017) Coupling efficiency of surface plasmon polaritons: far- and near-field analyses. Plasmonics 12: 215–221. doi: 10.1007/s11468-016-0252-z |
[31] | He L, Mao C, Cho S, et al. (2015) Experimental and theoretical photoluminescence studies in nucleic acid assembled gold-upconverting nanoparticle clusters. Nanoscale 7: 17254–17260. doi: 10.1039/C5NR05035A |
[32] | Khoury CG, Norton SJ, Vo-Dinh T (2010) Investigating the plasmonics of a dipole-excited silver nanoshell: Mie theory versus finite element method. Nanotechnology 21: 315203. doi: 10.1088/0957-4484/21/31/315203 |
[33] | RF Module of COMSOL Multiphysics. Available from: https://www.comsol.com/rf-module. |
[34] | Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6: 4370–4379. doi: 10.1103/PhysRevB.6.4370 |
[35] | Zampolli M, Tesei A, Jensen F, et al. (2007) A computationally efficient finite element model with perfectly matched layers applied to scattering from axially symmetric objects. J Acoust Soc Am 122: 1472–1485. doi: 10.1121/1.2764471 |
[36] | Rygula A, Majzner K, Marzec M, et al. (2013) Raman spectroscopy of proteins: a review. J Raman Spectrosc 44: 1061–1076. doi: 10.1002/jrs.4335 |
[37] | Barth A, Zscherp C (2002) What vibrations tell us about proteins. Q Rev Biophys 35: 369–430. doi: 10.1017/S0033583502003815 |
[38] | Hunt JH, Guyot-Sionnest P, Shen YR (1987) Observation of C–H stretch vibrations of monolayers of molecules optical sum-frequency generation. Chem Phys Lett 133: 189–192. doi: 10.1016/0009-2614(87)87049-5 |
[39] | Bright A, Renuga-Devi TS, Gunasekaran S (2010) Spectroscopical vibrational band assignment and qualitative analysis of biomedical compounds with cardiovascular activity. Int J Chem Tech Res 2: 379–388. |
[40] | Longhi G, Zerbi G, Paterlini G, et al. (1987) Conformational dependence of CH(CD)-stretching in D-glucose and some deuterated derivatives as revealed by infrared and Raman spectroscopy. Carbohyd Res 161: 1–22. doi: 10.1016/0008-6215(87)84001-6 |
[41] | Soderholm S, Roos YH, Meinander N, et al. (1999) Raman spectra of fructose and glucose in the amorphous and crystalline state. J Raman Spectrosc 30: 1009–1018. doi: 10.1002/(SICI)1097-4555(199911)30:11<1009::AID-JRS436>3.0.CO;2-# |
[42] | Korolevich MV, Zhbankov RG, Sivchik VV (1990) Calculation of absorption band frequencies and intensities in the IR spectrum of a-D-glucose in a cluster. J Mol Struct 220: 301–313. doi: 10.1016/0022-2860(90)80120-9 |
[43] | Vasko PD, Blackwell J, Koenig JL (1972) Infrared and Raman spectroscopy of carbohydrates. Part II: Normal coordinate analysis of a-D-glucose. Carbohyd Res 23: 407–417. |
[44] | Spedding FH, Stamm RF (1942) The Raman spectra of the sugars in the solid state and in solution. I. The Raman spectra of a- and β-d-glucose. J Chem Phys 10: 176–183. |
[45] | Mahdad-Benzerdjeb A, Taleb-Mokhtari IN, Sekkal-Rahal M (2007) Normal coordinates analysises of disaccharides constituted by D-glycose, D-galactose and D-fructose units. Spectrochim Acta A 68: 284–299. doi: 10.1016/j.saa.2006.11.032 |
[46] | Cael JJ, Gardner KH, Koenig JL, et al. (1975) Infrared and Raman spectroscopy of carbohydrates. Part V. Normal coordinate analysis of cellulose I. J Chem Phys 62: 1145–1153. |
[47] | Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14: 33–38. doi: 10.1016/0263-7855(96)00018-5 |