Research article

Energy-to-peak control for switched systems with PDT switching

  • Received: 06 June 2023 Revised: 16 July 2023 Accepted: 17 July 2023 Published: 24 July 2023
  • This paper investigates the issue of energy-to-peak control for continuous-time switched systems. A generalized switching signal, known as persistent dwell-time switching, is considered. Two different strategies for state-feedback controller design are proposed, using distinct Lyapunov functions and a few decoupling techniques. The critical distinction between these two strategies lies in their temporal characteristics: one is time-independent, while the other is quasi-time-dependent. Compared to the former, the latter has the potential to be less conservative. The validity of the proposed design strategies is demonstrated through an example.

    Citation: Jingjing Dong, Xiaofeng Ma, Lanlan He, Xin Huang, Jianping Zhou. Energy-to-peak control for switched systems with PDT switching[J]. Electronic Research Archive, 2023, 31(9): 5267-5285. doi: 10.3934/era.2023268

    Related Papers:

  • This paper investigates the issue of energy-to-peak control for continuous-time switched systems. A generalized switching signal, known as persistent dwell-time switching, is considered. Two different strategies for state-feedback controller design are proposed, using distinct Lyapunov functions and a few decoupling techniques. The critical distinction between these two strategies lies in their temporal characteristics: one is time-independent, while the other is quasi-time-dependent. Compared to the former, the latter has the potential to be less conservative. The validity of the proposed design strategies is demonstrated through an example.



    加载中


    [1] D. Liberzon, A. S. Morse, Basic problems in stability and design of switched systems, IEEE Control Syst. Mag., 19 (1999), 59–70. https://doi.org/10.1109/37.793443 doi: 10.1109/37.793443
    [2] L. Zhang, X. Lou, Z. Wang, Output-based robust switching rule design for uncertain switched affine systems: Application to DC–DC converters, IEEE Trans. Circuits Syst. II, Exp. Briefs, 69 (2022), 4493–4497. https://doi.org/10.1109/TCSII.2022.3183192 doi: 10.1109/TCSII.2022.3183192
    [3] T. Sun, R. Wang, L. Zhang, X. Zhao, A fastly and slowly cyclic switching strategy for discrete-time cyclic switched systems and its application to inverter circuits, IEEE Trans. Circuits Syst. II, Exp. Briefs, 69 (2022), 1173–1177. https://doi.org/10.1109/TCSII.2021.3099160 doi: 10.1109/TCSII.2021.3099160
    [4] Z. Ye, D. Zhang, Z. G. Wu, H. Yan, A3C-based intelligent event-triggering control of networked nonlinear unmanned marine vehicles subject to hybrid attacks, IEEE Trans. Intell. Transp. Syst., 23 (2022), 12921–12934. https://doi.org/10.1109/TITS.2021.3118648 doi: 10.1109/TITS.2021.3118648
    [5] F. Zhu, F. Wang, L. Ye, Artificial switched chaotic system used as transmitter in chaos-based secure communication, J. Franklin Inst., 357 (2020), 10997–11020. https://doi.org/10.1016/j.jfranklin.2020.07.043 doi: 10.1016/j.jfranklin.2020.07.043
    [6] Y. Garbouj, T. N. Dinh, T. Raissi, T. Zouari, M. Ksouri, Optimal interval observer for switched Takagi–Sugeno systems: An application to interval fault estimation, IEEE Trans. Fuzzy Syst., 29 (2021), 2296–2309. https://doi.org/10.1109/TFUZZ.2020.2997333 doi: 10.1109/TFUZZ.2020.2997333
    [7] H. Wang, X. Yang, Z. Xiang, R. Tang, Q. Ning, Synchronization of switched neural networks via attacked mode-dependent event-triggered control and its application in image encryption, IEEE Trans. Cybern., 2022 (2022). https://doi.org/10.1109/TCYB.2022.3227021
    [8] L. Zhang, X. Zhang, Y. Xue, X. Zhang, New method to global exponential stability analysis for switched genetic regulatory networks with mixed delays, IEEE Trans. Nanobiosci., 19 (2020), 308–314. https://doi.org/10.1109/TNB.2020.2971548 doi: 10.1109/TNB.2020.2971548
    [9] M. Sathishkumar, Y. C. Liu, Resilient annular finite-time bounded and adaptive event-triggered control for networked switched systems with deception attacks, IEEE Access, 9 (2021), 92288–92299. https://doi.org/10.1109/ACCESS.2021.3092402 doi: 10.1109/ACCESS.2021.3092402
    [10] R. Vadivel, S. Sabarathinam, Y. Wu, K. Chaisena, N. Gunasekaran, New results on T-S fuzzy sampled-data stabilization for switched chaotic systems with its applications, Chaos, Solitons & Fractals, 164 (2022), 112741. https://doi.org/10.1016/j.chaos.2022.112741 doi: 10.1016/j.chaos.2022.112741
    [11] H. Ji, Y. Li, X. Ding, J. Lu, Stability analysis of Boolean networks with Markov jump disturbances and their application in apoptosis networks, Electron. Res. Arch., 30 (2022), 3422–3434. https://doi.org/10.3934/era.2022174 doi: 10.3934/era.2022174
    [12] N. Gunasekaran, M. S. Ali, S. Arik, H. A. Ghaffar, A. A. Z. Diab, Finite-time and sampled-data synchronization of complex dynamical networks subject to average dwell-time switching signal, Neural Networks, 149 (2022), 137–145. https://doi.org/10.1016/j.neunet.2022.02.013 doi: 10.1016/j.neunet.2022.02.013
    [13] W. Tai, X. Li, J. Zhou, S. Arik, Asynchronous dissipative stabilization for stochastic Markov-switching neural networks with completely-and incompletely-known transition rates, Neural Networks, 161 (2023), 55–64. https://doi.org/10.1016/j.neunet.2023.01.039 doi: 10.1016/j.neunet.2023.01.039
    [14] J. Zhou, D. Xu, W. Tai, C. K. Ahn, Switched event-triggered $\mathcal{H}_\infty$ security control for networked systems vulnerable to aperiodic DoS attacks, IEEE Trans. Network Sci. Eng., 10 (2023), 2109–2123. https://doi.org/10.1109/TNSE.2023.3243095 doi: 10.1109/TNSE.2023.3243095
    [15] R. Sakthivel, S. Harshavarthini, S. Mohanapriya, O. Kwon, Disturbance rejection based tracking control design for fuzzy switched systems with time-varying delays and disturbances, Int. J. Robust Nonlinear Control, 33 (2023), 1184–1202. https://doi.org/10.1002/rnc.6419 doi: 10.1002/rnc.6419
    [16] S. Cong, Mode-independent switching stabilizing control for continuous-time linear Markovian switching systems, IEEE Trans. Autom. Control, 2023 (2023). https://doi.org/10.1109/TAC.2023.3255139
    [17] H. Lin, P. J. Antsaklis, Stability and stabilizability of switched linear systems: A survey of recent results, IEEE Trans. Autom. Control, 54 (2009), 308–322. https://doi.org/10.1109/TAC.2008.2012009 doi: 10.1109/TAC.2008.2012009
    [18] A. S. Morse, Supervisory control of families of linear set-point controllers-Part I. exact matching, IEEE Trans. Autom. Control, 41 (1996), 413–1431. https://doi.org/10.1109/9.539424 doi: 10.1109/9.539424
    [19] J. P. Hespanha, A. S. Morse, Stability of switched systems with average dwell-time, in Proceedings of the 38th IEEE conference on decision and control (Cat. No. 99CH36304), 3 (1999), 2655–2660. https://doi.org/10.1109/CDC.1999.831330
    [20] J. P. Hespanha, Uniform stability of switched linear systems: Extensions of Lasalle's invariance principle, IEEE Trans. Autom. Control, 49 (2004), 470–482. https://doi.org/10.1109/TAC.2004.825641 doi: 10.1109/TAC.2004.825641
    [21] L. Zhang, S. Zhuang, P. Shi, Y. Zhu, Uniform tube based stabilization of switched linear systems with mode-dependent persistent dwell-time, IEEE Trans. Autom. Control, 60 (2015), 2994–2999. https://doi.org/10.1109/TAC.2015.2414813 doi: 10.1109/TAC.2015.2414813
    [22] H. Shen, M. Xing, Z. G. Wu, J. H. Park, Fault-tolerant control for fuzzy switched singular systems with persistent dwell-time subject to actuator fault, Fuzzy Sets Syst., 392 (2020), 60–76. https://doi.org/10.1016/j.fss.2019.08.011 doi: 10.1016/j.fss.2019.08.011
    [23] Y. Zhu, W. Zheng, D. Zhou, Quasi-synchronization of discrete-time Lur'e-type switched systems with parameter mismatches and relaxed PDT constraint, IEEE Trans. Cybern., 50 (2020), 2026–2037. https://doi.org/10.1109/TCYB.2019.2930945 doi: 10.1109/TCYB.2019.2930945
    [24] J. Wang, X. Liu, J. Xia, H. Shen, J. H. Park, Quantized interval type-2 fuzzy control for persistent dwell-time switched nonlinear systems with singular perturbations, IEEE Trans. Cybern., 52 (2022), 6638–6648. https://doi.org/10.1109/TCYB.2021.3049459 doi: 10.1109/TCYB.2021.3049459
    [25] N. Zhang, G. Chen, $\mathcal{L}_{1}$ finite-time control of discrete-time switched positive linear systems with mode-dependent persistent dwell-time switching, Optim. Control Appl. Methods, 43 (2022), 1778–1794. https://doi.org/10.1002/oca.2928 doi: 10.1002/oca.2928
    [26] X. Q. Zhao, S. Guo, Y. Long, G. X. Zhong, Simultaneous fault detection and control for discretetime switched systems under relaxed persistent dwell time switching, Appl. Math. Comput., 412 (2022), 126585. https://doi.org/10.1016/j.amc.2021.126585
    [27] T. Yu, Y. Zhao, J. Wang, J. Liu, Event-triggered sliding mode control for switched genetic regulatory networks with persistent dwell time, Nonlinear Anal. Hybrid Syst., 44 (2022), 101135. https://doi.org/10.1016/j.nahs.2021.101135
    [28] S. Zhuang, H. Gao, Y. Shi, Model predictive control of switched linear systems with persistent dwell-time constraints: Recursive feasibility and stability, IEEE Trans. Autom. Control, 2023 (2023). https://doi.org/10.1109/TAC.2023.3248279
    [29] H. Zhang, X. Zhang, J. Wang, Robust gain-scheduling energy-to-peak control of vehicle lateral dynamics stabilisation, Veh. Syst. Dyn., 52 (2014), 309–340. https://doi.org/10.1080/00423114.2013.879190 doi: 10.1080/00423114.2013.879190
    [30] L. Wu, Z. Wang, Robust $L_{2}-L_{\infty}$ control of uncertain differential linear repetitive processes, Syst. Control Lett., 57 (2008), 425–435. https://doi.org/10.1016/j.sysconle.2007.10.005 doi: 10.1016/j.sysconle.2007.10.005
    [31] Y. Li, M. Chen, T. Li, H. Wang, Robust resilient control based on multi-approximator for the uncertain turbofan system with unmeasured states and disturbances, IEEE Trans. Syst., Man Cybern.: Syst., 51 (2021), 6040–6049. https://doi.org/10.1109/TSMC.2019.2958861 doi: 10.1109/TSMC.2019.2958861
    [32] J. Zhou, J. Dong, S. Xu, Asynchronous dissipative control of discrete-time fuzzy Markov jump systems with dynamic state and input quantization, IEEE Trans. Fuzzy Syst., 2023 (2023). https://doi.org/10.1109/TFUZZ.2023.3271348
    [33] S. Shi, Z. Shi, Z. Fei, Asynchronous control for switched systems by using persistent dwell time modeling, Syst. Control Lett., 133 (2019), 104523. https://doi.org/10.1016/j.sysconle.2019.104523 doi: 10.1016/j.sysconle.2019.104523
    [34] Y. Tong, W. Sun, X. Li, Discretized quasi-time-dependent $\mathcal{H}_\infty$ control for continuous-time switched linear systems with persistent dwell-time, Int. J. Robust Nonlinear Control, 31 (2021), 3195–3211. https://doi.org/10.1002/rnc.5444 doi: 10.1002/rnc.5444
    [35] X. H. Chang, J. H. Park, P. Shi, Fuzzy resilient energy-to-peak filtering for continuous-time nonlinear systems, IEEE Trans. Fuzzy Syst., 25 (2017), 1576–1588. https://doi.org/10.1109/TFUZZ.2016.2612302 doi: 10.1109/TFUZZ.2016.2612302
    [36] L. Zhang, S. Zhuang, P. Shi, Non-weighted quasi-time-dependent $\mathcal{H}_{\infty}$ filtering for switched linear systems with persistent dwell-time, Automatica, 54 (2015), 201–209. https://doi.org/10.1016/j.automatica.2015.02.010 doi: 10.1016/j.automatica.2015.02.010
    [37] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer, New York, USA, 2015. https://doi.org/10.1007/978-1-4684-0313-8
    [38] J. Zhou, J. H. Park, H. Shen, Non-fragile reduced-order dynamic output feedback $\mathcal{H}_{\infty}$ control for switched systems with average dwell-time switching, Int. J. Control, 89 (2016), 281–296. https://doi.org/10.1080/00207179.2015.1075175 doi: 10.1080/00207179.2015.1075175
    [39] S. Boyd, L. E. Ghaoui, E. Feron, V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia, USA, 1994. https://doi.org/10.1137/1.9781611970777
    [40] B. Kaviarasan, O. M. Kwon, M. J. Park, R. Sakthivel, Dissipative constraint-based control design for singular semi-Markovian jump systems using state decomposition approach, Nonlinear Anal. Hybrid Syst., 47 (2023), 101302. https://doi.org/10.1016/j.nahs.2022.101302 doi: 10.1016/j.nahs.2022.101302
    [41] X. Liu, K. Shi, Y. Tang, L. Tang, Y. Wei, Y. Han, A novel adaptive event-triggered reliable $\mathcal{H}_\infty$ control approach for networked control systems with actuator faults, Electron. Res. Arch., 31 (2023), 1840–1862. https://doi.org/10.3934/era.2023095 doi: 10.3934/era.2023095
    [42] V. B. Falchetto, M. Souza, A. R. Fioravanti, R. N. Shorten, $\mathcal{H}_{2}$ and $\mathcal{H}_{\infty}$ analysis and state feedback control design for discrete-time constrained switched linear systems, Int. J. Control, 94 (2021), 2834–2845. https://doi.org/10.1080/00207179.2020.1737331 doi: 10.1080/00207179.2020.1737331
    [43] Y. Guo, J. Li, X. Qi, Fault-tolerant $\mathcal{H}_{\infty}$ control for T–S fuzzy persistent dwell-time switched singularly perturbed systems with time-varying delays, Int. J. Fuzzy Syst., 24 (2022), 247–264. https://doi.org/10.1007/s40815-021-01133-7 doi: 10.1007/s40815-021-01133-7
    [44] H. Shen, Z. Huang, X. Yang, Z. Wang, Quantized energy-to-peak state estimation for persistent dwell-time switched neural networks with packet dropouts, Nonlinear Dyn., 93 (2018), 2249–2262. https://doi.org/10.1007/s11071-018-4322-y doi: 10.1007/s11071-018-4322-y
    [45] H. Shen, X. Liu, J. Xia, X. Chen, J. Wang, Finite-time energy-to-peak fuzzy filtering for persistent dwell-time switched nonlinear systems with unreliable links, Inf. Sci., 579 (2021), 293–309. https://doi.org/10.1016/j.ins.2021.07.081 doi: 10.1016/j.ins.2021.07.081
    [46] S. Dong, Z. G. Wu, P. Shi, Control and Filtering of Fuzzy Systems with Switched Parameters, Springer, New York, USA, 2020. https://doi.org/10.1007/978-3-030-35566-1
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1005) PDF downloads(44) Cited by(0)

Article outline

Figures and Tables

Figures(6)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog