Research article Special Issues

Bioenergetic valorization of Sargassum fluitans in the Mexican Caribbean: The determination of the calorific value and washing mechanism

  • Received: 04 November 2021 Revised: 18 January 2022 Accepted: 23 January 2022 Published: 08 February 2022
  • The advent of large volumes of Sargassum sp. on the Mexican Caribbean coast has become an emerging issue for the Mexican population. The most frequent action is harvesting, but a correct treatment or energy recovery strategy is still missing. This work aimed to evaluate the energy potential of Sargassum fluitans, through elemental calculations and direct measurements, considering the effect of its washing. The calorific value determined by the direct method was 9.24 ± 0.28 MJ/kg and 12.64 ± 0.18 MJ/kg for dirty and washed Sargassum, respectively. The washing effect increased the calorific values in Sargassum fluitans by 36.80%. The washing effect increased the calorific values determined by indirect methods, increasing 10.10% and 41.04%, each method, respectively. The content of toxic metals was lower in both materials than that established for non-woody biomass from energy use, concerning the ISO 17225:2014 standard. The unit energy cost of Sargassum fluitans is $0.007 and $0.011 per MJ for dirty and washed conditions, respectively. Finally, the results of this work indicate that the Sargassum wash provides better characteristics to be considered an alternative fuel option in combustion systems such as thermo-electric plants (based on carbon), sugar mills, and cement kilns with co-processing of solid waste. Attending from a bioenergetic approach, Sargassum's emerging seasonal problem affects the Mexican Caribbean coast.

    Citation: José A. Sosa Olivier, José R. Laines Canepa, David Guerrero Zarate, Anabel González Díaz, Donato A. Figueiras Jaramillo, Heidi K. Osorio García, Berenice Evia López. Bioenergetic valorization of Sargassum fluitans in the Mexican Caribbean: The determination of the calorific value and washing mechanism[J]. AIMS Energy, 2022, 10(1): 45-63. doi: 10.3934/energy.2022003

    Related Papers:

  • The advent of large volumes of Sargassum sp. on the Mexican Caribbean coast has become an emerging issue for the Mexican population. The most frequent action is harvesting, but a correct treatment or energy recovery strategy is still missing. This work aimed to evaluate the energy potential of Sargassum fluitans, through elemental calculations and direct measurements, considering the effect of its washing. The calorific value determined by the direct method was 9.24 ± 0.28 MJ/kg and 12.64 ± 0.18 MJ/kg for dirty and washed Sargassum, respectively. The washing effect increased the calorific values in Sargassum fluitans by 36.80%. The washing effect increased the calorific values determined by indirect methods, increasing 10.10% and 41.04%, each method, respectively. The content of toxic metals was lower in both materials than that established for non-woody biomass from energy use, concerning the ISO 17225:2014 standard. The unit energy cost of Sargassum fluitans is $0.007 and $0.011 per MJ for dirty and washed conditions, respectively. Finally, the results of this work indicate that the Sargassum wash provides better characteristics to be considered an alternative fuel option in combustion systems such as thermo-electric plants (based on carbon), sugar mills, and cement kilns with co-processing of solid waste. Attending from a bioenergetic approach, Sargassum's emerging seasonal problem affects the Mexican Caribbean coast.



    加载中


    [1] British Petroleum (2020) Statistical review of world energy 2020 | 69th edition, 2020. Available from: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2020-full-report.pdf.
    [2] Secretary of energy of Mexico (2018) Electric sector prospect 2018-2032, 2018. Available from: https://base.energia.gob.mx/Prospectivas18-32/PSE_18_32_F.pdf.
    [3] Secretary of energy of Mexico (2018) Renewable Energy Prospect 2018-2032, 2018. Available from: https://base.energia.gob.mx/Prospectivas18-32/PER_18_32_F.pdf.
    [4] Ross AB, Biller P, Kubacki ML, et al. (2010) Hydrothermal processing of microalgae using alkali and organic acids. Fuel 89: 2234-2243. https://doi.org/10.1016/j.fuel.2010.01.025 doi: 10.1016/j.fuel.2010.01.025
    [5] Biswas B, Fernandes AC, Kumar J, et al. (2018) Valorization of Sargassum tenerrimum: Value addition using hydrothermal liquefaction. Fuel 222: 394-401. https://doi.org/10.1016/j.fuel.2018.02.153 doi: 10.1016/j.fuel.2018.02.153
    [6] Beta San Miguel Group (2019) Environmental responsibility, environmental responsibility, 2019. Available from: http://www.bsm.com.mx/resp_ambiental.html.
    [7] Henkel C, Muley PD, Abdollahi KK, et al. (2016) Pyrolysis of energy cane bagasse and invasive Chinese tallow tree (Triadica sebifera L.) biomass in an inductively heated reactor. Energy Convers Manage 109: 175-183. https://doi.org/10.1016/j.enconman.2015.12.013 doi: 10.1016/j.enconman.2015.12.013
    [8] Smetacek V, Zingone A (2013) Green and golden seaweed tides on the rise. Nature 504: 84-88. https://doi.org/10.1038/nature12860 doi: 10.1038/nature12860
    [9] Vardon DR, Sharma BK, Blazina GV, et al. (2012) Thermochemical conversion of raw and defatted algal biomass via hydrothermal liquefaction and slow pyrolysis. Bioresour Technol 109: 178-187. https://doi.org/10.1016/j.biortech.2012.01.008 doi: 10.1016/j.biortech.2012.01.008
    [10] Moreira Á, Alfonso G (2013) Unusual arrival of Sargassum fluitans (Bø rgesen) in the center-south coast of Cuba. Rev Investig Mar 33: 17-20. Available from: http://hdl.handle.net/1834/5248.
    [11] Franks JS, Johnson DR, Ko DS (2016) Pelagic Sargassum in the Tropical North Atlantic. Gulf Caribb Res 27: 6-11. https://doi.org/10.18785/gcr.2701.08 doi: 10.18785/gcr.2701.08
    [12] Fernández F, Boluda C, Olivera J, et al. (2017) Prospective elemental analysis of the algal biomass accumulated on the coasts of the Dominican Republic during 2015. Cent Azucar 44: 11-22. Available from: http://scielo.sld.cu/pdf/caz/v44n1/caz02117.pdf.
    [13] Secretary of the navy of Mexico (2017) Arrival of sargassum on the coasts of Quintana Roo, 2017. Available from: https://digaohm.semar.gob.mx/oceanografia/SargazoSEMAR.html.
    [14] Secretary of ecology and environment of Quintana Roo (2018) Sargazo harvesting activities report, 2018. Available from: http://sargazo2018.semaqroo.gob.mx/.
    [15] Espinosa LA, Li Ng JJ (2020) BBVA research, The risk of Sargassum for the economy and tourism of Quintana Roo and Mexico, 2020. Available from: https://www.bbvaresearch.com/wp-content/uploads/2020/02/Riesgo_Sargazo_Big_Data.pdf.
    [16] Secretary of the environment and natural resources of Mexico (2021) Semarnat, technical and management guidelines for attention to the contingency caused by Sargasso in the Mexican Caribbean and the Gulf of Mexico, 2021. Available from: https://www.gob.mx/semarnat/acciones-y-programas/plan-sustentable-ante-arribazon-anormal-de-sargazo.
    [17] DrecKmann K, Sentíes A (2013) Seaweed 'arribazones' in the Mexican Caribbean: natural biological event or trash on the beaches. Biodiversitas 7-11. Available from: https://docplayer.es/9653723-Las-arribazones-de-evento-biologico-natural-o-basura-en-las-playas.html.
    [18] Webster R, Linton T (2013) Development and implementation of Sargassum Early Advisory System (SEAS). Shore & Beach 81: 1-6. Available from: http://www.sargassoseacommission.org/storage/Webster_et_linon_2013_1.pdf.
    [19] Gower J, Young E, King S (2013) Satellite images suggest a new Sargassum source region in 2011. Remote Sens Lett 4: 764-773. https://doi.org/10.1080/2150704X.2013.796433 doi: 10.1080/2150704X.2013.796433
    [20] Johnson DR, Ko DS, Franks JS, et al. (2012) The Sargassum invasion of the Caribbean and dynamics of the Equatorial North Atlantic. Proceedings of the 65th Gulf and Caribbean Fisheries Institute. Available from: https://nsgl.gso.uri.edu/flsgp/flsgpw12004/data/papers/65-17.pdf.
    [21] Weber SC, Carpenter EJ, Coles VJ, et al. (2017) Amazon River influence on nitrogen fixation and export production in the western tropical North Atlantic. Limnol Oceanogr 62: 618-631. https://doi.org/10.1002/lno.10448 doi: 10.1002/lno.10448
    [22] Brooks MT, Coles VJ, Hood RR, et al. (2018) Factors controlling the seasonal distribution of pelagic Sargassum. Mar Ecol Prog Ser 599: 1-18. https://doi.org/10.3354/meps12646 doi: 10.3354/meps12646
    [23] Lapointe BE, West LE, Sutton TT, et al. (2014) Ryther revisited: nutrient excretions by fishes enhance productivity of pelagic Sargassum in the western North Atlantic Ocean. J Exp Mar Bio Ecol 458: 46-56. http://dx.doi.org/10.1016/j.jembe.2014.05.002 doi: 10.1016/j.jembe.2014.05.002
    [24] Hernández-Zanuy AC (2018) Ecosystem-based adaptation: alternative for the sustainable management of Caribbean marine and coastal resources. CYTED Network 410RT0396. (E. Book). Editorial Institute of Oceanology, Havana. 171 pp. Available from: http://www.cyted.org/sites/default/files/adaptacion_basada_en_ecosistemas._2018.pdf.
    [25] Lamare MD, Wing SR (2001) Calorific content of New Zealand marine macrophytes. New Zeal J Mar Freshw Res 35: 335-341. https://doi.org/10.1080/00288330.2001.9517004 doi: 10.1080/00288330.2001.9517004
    [26] Yu LJ, Wang S, Jiang XM, et al. (2008) Thermal analysis studies on combustion characteristics of seaweed. J Therm Anal Calorim 93: 611-617. https://doi.org/10.1007/s10973-007-8274-6 doi: 10.1007/s10973-007-8274-6
    [27] Wang S, Jiang XM, Han XX, et al. (2009) Combustion characteristics of seaweed biomass. 1. Combustion Characteristics of Enteromorpha clathrata and Sargassum natans. Energy Fuels 23: 5173-5178. https://doi.org/10.1021/ef900414x doi: 10.1021/ef900414x
    [28] Bruhn A, Dahl J, Nielsen HB, et al. (2011) Bioenergy potential of Ulva lactuca: Biomass yield, methane production and combustion. Bioresour Technol 102: 2595-2604. https://doi.org/10.1016/j.biortech.2010.10.010 doi: 10.1016/j.biortech.2010.10.010
    [29] Sudhakar K, Premalatha M (2015) Characterization of micro algal biomass through FTIR/TGA/CHN analysis: Application to Scenedesmus sp. Energy Sources, Part A 37: 2330-2337. http://dx.doi.org/10.1080/15567036.2013.825661 doi: 10.1080/15567036.2013.825661
    [30] Ghadiryanfar M, Rosentrater KA, Keyhani A, et al. (2016) A review of macroalgae production, with potential applications in biofuels and bioenergy. Renewable Sustainable Energy Rev 54: 473-481. http://dx.doi.org/10.1016/j.rser.2015.10.022 doi: 10.1016/j.rser.2015.10.022
    [31] Li W, Tan S, Shi Y, et al. (2015) Utilization of sargassum based activated carbon as a potential waste derived catalyst for low temperature selective catalytic reduction of nitric oxides. Fuel 160: 35-42. http://dx.doi.org/10.1016/j.fuel.2015.07.045 doi: 10.1016/j.fuel.2015.07.045
    [32] Ali I, Bahadar A (2017) Red Sea seaweed (Sargassum spp.) pyrolysis and its devolatilization kinetics. Algal Res 21: 89-97. http://dx.doi.org/10.1016/j.algal.2016.11.011 doi: 10.1016/j.algal.2016.11.011
    [33] Li J, Qiao Y, Chen X, et al. (2019) Steam gasification of land, coastal zone and marine biomass by thermal gravimetric analyzer and a free-fall tubular gasifier: Biochars reactivity and hydrogen-rich syngas production. Bioresour Technol 289: 121495. https://doi.org/10.1016/j.biortech.2019.121495 doi: 10.1016/j.biortech.2019.121495
    [34] Sudhakar K, Mamat R, Samykano M, et al. (2018) An overview of marine macroalgae as bioresource. Renewable Sustainable Energy Rev 91: 165-179. https://doi.org/10.1016/j.rser.2018.03.100 doi: 10.1016/j.rser.2018.03.100
    [35] Gupta VK, Nayak A, Agarwal S (2015) Bioadsorbents for remediation of heavy metals: Current status and their future prospects. Environ Eng Res 20: 1-18. http://dx.doi.org/10.4491/eer.2015.018%0AReview doi: 10.4491/eer.2015.018%0AReview
    [36] Yan J, Karlsson A, Zou Z, et al. (2020) Contamination of heavy metals and metalloids in biomass and waste fuels: Comparative characterisation and trend estimation. Sci Total Environ 700: 134382. https://doi.org/10.1016/j.scitotenv.2019.134382 doi: 10.1016/j.scitotenv.2019.134382
    [37] Jagustyn B, Kmieć M, Smędowski Ł, et al. (2017) The content and emission factors of heavy metals in biomass used for energy purposes in the context of the requirements of international standards. J Energy Inst 90: 704-714. http://dx.doi.org/10.1016/j.joei.2016.07.007 doi: 10.1016/j.joei.2016.07.007
    [38] Amador-Castro F, García-Cayuela T, Alper HS, et al. (2021) Valorization of pelagic sargassum biomass into sustainable applications: Current trends and challenges. J Environ Manage 283: 112013. https://doi.org/10.1016/j.jenvman.2021.112013 doi: 10.1016/j.jenvman.2021.112013
    [39] Saldarriaga-Hernandez S, Hernandez-Vargas G, Iqbal HMN, et al. (2020) Bioremediation potential of Sargassum sp. biomass to tackle pollution in coastal ecosystems: Circular economy approach. Sci Total Environ 715: 136978. https://doi.org/10.1016/j.scitotenv.2020.136978 doi: 10.1016/j.scitotenv.2020.136978
    [40] Thompson TM, Young BR, Baroutian S (2020) Pelagic Sargassum for energy and fertiliser production in the Caribbean: A case study on Barbados. Renewable Sustainable Energy Rev 118: 109564. https://doi.org/10.1016/j.rser.2019.109564 doi: 10.1016/j.rser.2019.109564
    [41] American Society of Testing Methods (2002) ASTM D-2974, Standard test methods for moisture, ash, and organic matter of peat and organic soils, 2002. Available from: https://www.astm.org/d2974-14.html.
    [42] American Society of Testing Methods (2015) ASTM D-5468, standard test method for gross calorific and ash value of waste materials., 2015. Available from: https://www.astm.org/DATABASE.CART/HISTORICAL/D5468-02.htm.
    [43] Environmental Protection Agency USA (1996) EPA, METHOD 6010B, Inductively Coupled Plasma-Atomic Emission Spectrometry, 1996. Available from: https://www.epa.gov/sites/production/files/documents/6010b.pdf.
    [44] Channiwala SA, Parikh PP (2002) A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 81: 1051-1063. https://doi.org/10.1016/S0016-2361(01)00131-4 doi: 10.1016/S0016-2361(01)00131-4
    [45] Wang C, Deng X, Xiang W, et al. (2020) Calorific value variations in each component and biomass-based energy accumulation of red-heart Chinese fir plantations at different ages. Biomass Bioenergy 134: 105467. https://doi.org/10.1016/j.biombioe.2020.105467 doi: 10.1016/j.biombioe.2020.105467
    [46] Huang Y-F, Lo S-L (2020) Predicting heating value of lignocellulosic biomass based on elemental analysis. Energy 191: 116501. https://doi.org/10.1016/j.energy.2019.116501 doi: 10.1016/j.energy.2019.116501
    [47] Oyesiku O, Egunyomi A (2014) Identification and chemical studies of pelagic masses of Sargassum natans (Linnaeus) Gaillon and S. fluitans (Borgessen) Borgesen (brown algae), found offshore in Ondo State, Nigeria. African J Biotechnol 13: 1188-1193. https://doi.org/10.5897/AJB2013.12335 doi: 10.5897/AJB2013.12335
    [48] Milledge J, Nielsen B, Sadek M, et al. (2018) Effect of freshwater washing pretreatment on Sargassum muticum as a feedstock for biogas production. Energies 11: 1771. https://doi.org/10.3390/en11071771 doi: 10.3390/en11071771
    [49] International Organization for Standardization (2014) ISO 17225-1. Solid biofuels—Fuel specifications and classes. 56. Available from: https://www.iso.org/standard/59456.html.
    [50] Flórez-Fernández N, Domínguez H, Torres MD (2019) A green approach for alginate extraction from Sargassum muticum brown seaweed using ultrasound-assisted technique. Int J Biol Macromol 124: 451-459. https://doi.org/10.1016/j.ijbiomac.2018.11.232 doi: 10.1016/j.ijbiomac.2018.11.232
    [51] Liu H, Yang F, Zheng Y, et al. (2011) Improvement of metal adsorption onto chitosan/Sargassum sp. composite sorbent by an innovative ion-imprint technology. Water Res 45: 145-154. http://dx.doi.org/10.1016/j.watres.2010.08.017 doi: 10.1016/j.watres.2010.08.017
    [52] Wang Y, Li Y, Zhao FJ (2014) Bisorption of chromium(VI) from aqueous solutions by Sargassum thunbergii Kuntze. Biotechnol Biotechnol Equip 28: 259-265. http://dx.doi.org/10.1080/13102818.2014.907028 doi: 10.1080/13102818.2014.907028
    [53] Jesumani V, Du H, Pei P, et al. (2019) Unravelling property of polysaccharides from Sargassum sp. as an anti-wrinkle and skin whitening property. Int J Biol Macromol 140: 216-224. https://doi.org/10.1016/j.ijbiomac.2019.08.027 doi: 10.1016/j.ijbiomac.2019.08.027
    [54] Kannan S (2014) FT-IR and EDS analysis of the seaweeds Sargassum wightii and Gracilaria corticata (red algae). Int J Curr Microbiol Appl Sci 3: 341-351. Available from: https://www.ijcmas.com/vol-3-4/S.Kannan.pdf.
    [55] Chale-Dzul J, Pérez-Cabeza de Vaca R, Quintal-Novelo C, et al. (2020) Hepatoprotective effect of a fucoidan extract from Sargassum fluitans Borgesen against CCl4-induced toxicity in rats. Int J Biol Macromol 145: 500-509. https://doi.org/10.1016/j.ijbiomac.2019.12.183 doi: 10.1016/j.ijbiomac.2019.12.183
    [56] Barquilha CER, Cossich ES, Tavares CRG, et al. (2019) Biosorption of nickel(II) and copper(II) ions by Sargassum sp. in nature and alginate extraction products. Bioresour Technol Reports 5: 43-50. https://doi.org/10.1016/j.biteb.2018.11.011 doi: 10.1016/j.biteb.2018.11.011
    [57] Arunkumar K, Buvaneswari B, Murugan M (2014) Quantification of carbonate crystals using FTIR technique in some calcareous algae occurring along the southeast coasts of India. Indian J Geo-Marine Sci 43: 2289-2297. Available from: http://nopr.niscair.res.in/bitstream/123456789/34601/1/IJMS%2043%2812%29%202289-2297.pdf.
    [58] Samanta A, Chanda DK, Das PS, et al. (2016) Synthesis of nano calcium hydroxide in aqueous medium. J Am Ceram Soc 99: 787-795. https://doi.org/10.1111/jace.14023 doi: 10.1111/jace.14023
    [59] Choi JH, Kim S-S, Ly HV, et al. (2017) Thermogravimetric characteristics and pyrolysis kinetics of high-density-aquacultured Saccharina Japonica : Effects of water-washing. Fuel 193: 159-167. https://doi.org/10.1016/j.fuel.2016.12.041 doi: 10.1016/j.fuel.2016.12.041
    [60] Tauro R, García CA, Skutsch M, et al. (2018) The potential for sustainable biomass pellets in Mexico: An analysis of energy potential, logistic costs and market demand. Renewable Sustainable Energy Rev 82: 380-389. http://dx.doi.org/10.1016/j.rser.2017.09.036 doi: 10.1016/j.rser.2017.09.036
    [61] Park K, Shin D, Yoon ES (2011) The cost of energy analysis and energy planning for emerging, fossil fuel power plants based on the climate change scenarios. Energy 36: 3606-3612. http://dx.doi.org/10.1016/j.energy.2011.03.080 doi: 10.1016/j.energy.2011.03.080
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2312) PDF downloads(241) Cited by(1)

Article outline

Figures and Tables

Figures(5)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog