Citation: Bilal Akbar, Khuram Pervez Amber, Anila Kousar, Muhammad Waqar Aslam, Muhammad Anser Bashir, Muhammad Sajid Khan. Data-driven predictive models for daily electricity consumption of academic buildings[J]. AIMS Energy, 2020, 8(5): 783-801. doi: 10.3934/energy.2020.5.783
[1] | Gul MS, Patidar S (2015) Understanding the energy consumption and occupancy of a multi-purpose academic building. Energy Build 87: 155-165. doi: 10.1016/j.enbuild.2014.11.027 |
[2] | Amber KP, Aslam MW, Mahmood A, et al. (2017) Energy consumption forecasting for university sector buildings. Energies 10: 1579. doi: 10.3390/en10101579 |
[3] | Amasyali K, El-Gohary NM (2018) A review of data-driven building energy consumption prediction studies. Renewable Sustainable Energy Rev 81: 1192-1205. doi: 10.1016/j.rser.2017.04.095 |
[4] | Ghedamsi R, Settou N, Gouareh A, et al. (2016) Modeling and forecasting energy consumption for residential buildings in Algeria using bottom-up approach. Energy Build 121: 309-317. doi: 10.1016/j.enbuild.2015.12.030 |
[5] | Kaytez F, Taplamacioglu MC, Cam E, et al. (2015) Forecasting electricity consumption: A comparison of regression analysis, neural networks and least squares support vector machines. Int J Electr Power Energy Syst 67: 431-438. doi: 10.1016/j.ijepes.2014.12.036 |
[6] | Li C, Ding Z, Zhao D, et al. (2017) Building energy consumption prediction: An extreme deep learning approach. Energies 10: 1525. doi: 10.3390/en10101525 |
[7] | Lü X, Lu T, Kibert CJ, et al. (2015) Modeling and forecasting energy consumption for heterogeneous buildings using a physical-statistical approach. Appl Energy 144: 261-275. doi: 10.1016/j.apenergy.2014.12.019 |
[8] | Zeyu W, Ravi SS (2017) A review of artificial intelligence based building energy use prediction: Contrasting the capabilities of single and ensemble prediction models. Renewable Sustainable Energy Rev 75: 796-808. doi: 10.1016/j.rser.2016.10.079 |
[9] | Zhao HX, Magoulès F (2012) A review on the prediction of building energy consumption. Renewable Sustainable Energy Rev 16: 3586-3592. doi: 10.1016/j.rser.2012.02.049 |
[10] | Tardioli G, Kerrigan R, Oates M, et al. (2015) Data driven approaches for prediction of building energy consumption at urban level. Energy Procedia 78: 3378-3383. doi: 10.1016/j.egypro.2015.11.754 |
[11] | Jin H, Zhang L, Ma HZ, et al. (2017) Machine learning for complex EMI prediction, optimization. 2017 IEEE Electrical Design of Advanced Packaging and Systems Symposium (EDAPS), Haining, 1-3. |
[12] | Yedra RM, Díaz FR, Del-Mar-Castilla-Nieto M, et al. (2014). A neural network model for energy consumption prediction of CIESOL bioclimatic building. In: International Joint Conference SOCO'13-CISIS'13-ICEUTE'13. Advances in Intelligent Systems and Computing, 239. Springer, Cham. |
[13] | Biswas MR, Robinson MD, Fumo N (2016) Prediction of residential building energy consumption: a neural network approach. Energy 117: 84-92. doi: 10.1016/j.energy.2016.10.066 |
[14] | Ahmad T, Chen H, Guo Y, et al. (2018) A comprehensive overview on the data driven and large scale based approaches for forecasting of building energy demand: A review. Energy Build 165: 301-320. doi: 10.1016/j.enbuild.2018.01.017 |
[15] | Amber KP, Aslam MW, Hussain SK (2015) Electricity consumption forecasting models for administration buildings of the UK higher education sector. Energy Build 90: 127-136. doi: 10.1016/j.enbuild.2015.01.008 |
[16] | Martellotta F, Ayr U, Stefanizzi P, et al. (2017) On the use of artificial neural networks to model household energy consumptions. Energy Procedia 126: 250-257. doi: 10.1016/j.egypro.2017.08.149 |
[17] | Deb C, Lee SE, Santamouris M (2018) Using artificial neural networks to assess HVAC related energy saving in retrofitted office buildings. Sol Energy 163: 32-44. doi: 10.1016/j.solener.2018.01.075 |
[18] | Ekici BB, Aksoy UT (2009) Prediction of building energy consumption by using artificial neural networks. Adv Eng Software 40: 356-362. doi: 10.1016/j.advengsoft.2008.05.003 |
[19] | Deb C, Eang LS, Yang J, et al. (2016) Forecasting diurnal cooling energy load for institutional buildings using Artificial Neural Networks. Energy Build 121: 284-297. doi: 10.1016/j.enbuild.2015.12.050 |
[20] | Park SK, Moon HJ, Min KC, et al. (2018) Application of a multiple linear regression and an artificial neural network model for the heating performance analysis and hourly prediction of a large-scale ground source heat pump system. Energy Build 165: 206-215. doi: 10.1016/j.enbuild.2018.01.029 |
[21] | Aranda A, Ferreira G, Mainar-Toledo MD, et al. (2012) Multiple regression models to predict the annual energy consumption in the Spanish banking sector. Energy Build 49: 380-387. doi: 10.1016/j.enbuild.2012.02.040 |
[22] | Bianco V, Oronzio M, Sergio N (2009) Electricity consumption forecasting in Italy using linear regression models. Energy 34: 1413-1421. doi: 10.1016/j.energy.2009.06.034 |
[23] | Bingchun L, Chuanchuan F, Arlene B, et al. (2017) Forecasting of chinese primary energy consumption in 2021 with GRU artificial neural network. Energies 10: 1453-1467. doi: 10.3390/en10101453 |
[24] | Joseph CL, Kevin KWW, Dalong L, et al. (2010) Multiple regression models for energy use in air-conditioned office buildings in different climates. Energy Convers Manage 51: 2692-2697. doi: 10.1016/j.enconman.2010.06.004 |
[25] | Mohammad M, Atefeh M, Shideh SA, et al. (2015) Multi-linear regression models to predict the annual energy consumption of an office building with different shapes. Procedia Eng 118: 622-629. doi: 10.1016/j.proeng.2015.08.495 |
[26] | Amber KP, Ahmad R, Aslam MW, et al. (2018) Intelligent techniques for forecasting electricity consumption of buildings. Energy 157: 886-893. doi: 10.1016/j.energy.2018.05.155 |
[27] | Alireza K, Reza AR, Dominic M (1998) ANNSTLF-Artificial neural network short-term load forecaster-generation three. IEEE Trans Power Syst 13: 1413-1422. doi: 10.1109/59.736285 |
[28] | Ferlito S, Atrigna M, Graditi G, et al. (2015) Predictive models for building's energy consumption: an Artificial Neural Network (ANN) approach. In XVIII AISEM Annual Conference. |
[29] | Gamze O, Omer FD, Selim Z (2012) Forecasting electricity consumption with neural networks and support vector regression. Procedia-Soc Behav Sci 58: 1576-1585. doi: 10.1016/j.sbspro.2012.09.1144 |
[30] | Hawkins D, Hong SM, Raslan R, et al. (2012) Determinants of energy use in UK higher education buildings using statistical and artificial neural network methods. Int J Sustainable Built Environ 1: 50-63. doi: 10.1016/j.ijsbe.2012.05.002 |
[31] | Samani BH, Jafari HH, Zareiforoush H (2017) Artificial neural networks, genetic algorithm and response surface methods: The energy consumption of food and beverage industries in Iran. J AI Data Min 5: 79-88. |
[32] | Erba S, Causone F, Armani R (2017) The effect of weather datasets on building energy simulation outputs. Energy Procedia 134: 545-554. doi: 10.1016/j.egypro.2017.09.561 |
[33] | Fikru MG, Gautier L (2015) The impact of weather variation on energy consumption in residential houses. Appl Energy 144: 19-30. doi: 10.1016/j.apenergy.2015.01.040 |
[34] | Kaufmann RK, Gopal S, Tang X, et al. (2013) Revisiting the weather effect on energy consumption: Implications for the impact of climate change. Energy Policy 62: 1377-1384. doi: 10.1016/j.enpol.2013.07.056 |
[35] | Kim YS, Srebric J (2017) Impact of occupancy rates on the building electricity consumption in commercial buildings. Energy Build 138: 591-600. doi: 10.1016/j.enbuild.2016.12.056 |
[36] | Ioannidis D, Tropios P, Krinidis S, et al. (2016) Occupancy driven building performance assessment. J Innovation Digital Ecosyst 3: 57-69. doi: 10.1016/j.jides.2016.10.008 |