Citation: Ankita Juneja, Ganti S. Murthy. Evaluating the potential of renewable diesel production from algae cultured on wastewater: techno-economic analysis and life cycle assessment[J]. AIMS Energy, 2017, 5(2): 239-257. doi: 10.3934/energy.2017.2.239
[1] | Ndong R, Montrejaud VM, Saint GO, et al. (2009) Life cycle assessment of biofuels from Jatropha curcas in West Africa: a field study. GCB Bioenerg 1: 197–210. doi: 10.1111/j.1757-1707.2009.01014.x |
[2] | Chisti Y (2007) Biodiesel from microalgae. Biotechnol adv 25: 294–306. doi: 10.1016/j.biotechadv.2007.02.001 |
[3] | Becker EW (1994) Microalgae: biotechnology and microbiology, Cambridge University Press, 10: 165. |
[4] | Adam F, Abert VM, Peltier G, et al. (2012) "Solvent-free" ultrasound-assisted extraction of lipids from fresh microalgae cells: a green, clean and scalable process. Bioresource Technol 114: 457–465. doi: 10.1016/j.biortech.2012.02.096 |
[5] | Tanzi CD, Vian MA, Chemat F (2013) New procedure for extraction of algal lipids from wet biomass: a green clean and scalable process. Bioresource Technol 134: 271–275. doi: 10.1016/j.biortech.2013.01.168 |
[6] | Cheng J, Yu T, Li T, et al. (2013) Using wet microalgae for direct biodiesel production via microwave irradiation. Bioresource Technol 131: 531–535. doi: 10.1016/j.biortech.2013.01.045 |
[7] | Halim R, Gladman B, Danquah MK, et al. (2011) Oil extraction from microalgae for biodiesel production. Bioresource Technol 102: 178–185. doi: 10.1016/j.biortech.2010.06.136 |
[8] | Zhu Y, Biddy MJ, Jones SB, et al. (2014) Techno-economic analysis of liquid fuel production from woody biomass via hydrothermal liquefaction (HTL) and upgrading. Appl Energ 129: 384–394. doi: 10.1016/j.apenergy.2014.03.053 |
[9] | Akhtar J, Amin NAS (2011) A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass. Renew Sust Energ Rev 15: 1615–1624. doi: 10.1016/j.rser.2010.11.054 |
[10] | Brown TM, Duan P, Savage PE (2010) Hydrothermal liquefaction and gasification of Nannochloropsis sp. Energ Fuel 24: 3639–3646. |
[11] | Peterson AA, Vogel F, Lachance RP, et al. (2008) Thermochemical biofuel production in hydrothermal media: a review of sub-and supercritical water technologies. Energ Environ Sci 1: 32–65. doi: 10.1039/b810100k |
[12] | Delrue F, Li-Beisson Y, Setier PA, et al. (2013) Comparison of various microalgae liquid biofuel production pathways based on energetic, economic and environmental criteria. Bioresource Technol 136: 205–212. |
[13] | Thomas E, David WR, Timothy RG (2010) California renewable diesel multimedia evaluation, The University of California, Davis, Berkeley. |
[14] | Amer L, Adhikari B, Pellegrino J (2011) Technoeconomic analysis of five microalgae-to-biofuels processes of varying complexity. Bioresource Technol 2011: 9350–9359. |
[15] | Davis R, Aden A, Pienkos PT (2011) Techno-economic analysis of autotrophic microalgae for fuel production. Appl Energ 88: 3524–3531. doi: 10.1016/j.apenergy.2011.04.018 |
[16] | Ahmad F, Khan AU, Yasar A (2013) The potential of Chlorella vulgaris for wastewater treatment and biodiesel production. Pakistan J Bot 45: 461–465. |
[17] | Tebbani S, Filali R, Lopes F, et al. (2014) CO2 biofixation by Microalgae: automation process, John Wiley & Sons. |
[18] | Biller P, Ross A (2011) Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content. Bioresource Technol 102: 215–225. doi: 10.1016/j.biortech.2010.06.028 |
[19] | Wett B, Buchauer K, Fimml C (2007) In energy self-sufficiency as a feasible concept for wastewater treatment systems, IWA Leading Edge Technology Conference, Singapore, Asian Water, 21–24. |
[20] | Borowitzka M (2005) Culturing microalgae in outdoor ponds, In: algal culturing techniques, Andersen, Ed. Academic Press, NY, USA, 205–217. |
[21] | Jones S, Davis R, Zhu Y, et al. (2014) Process design and economics for the conversion of algal biomass to hydrocarbons: whole algae hydrothermal liquefaction and upgrading, Department of Energy Bioenergy Technologies Office, US. |
[22] | Lundquist TJ, Woertz IC, Quinn N, et al. (2011) A realistic technology and engineering assessment of algae biofuel production. Energ Biosci I, 1–153. |
[23] | Jonker J, Faaij A (2013) Techno-economic assessment of micro-algae as feedstock for renewable bio-energy production. Appl Energ 102: 461–475. |
[24] | Sheehan J, Dunahay T, Benemann J, et al. (1998) A look back at the US department of energy's aquatic species program: biodiesel from algae, National Renewable Energy Laboratory Golden, CO, 328. |
[25] | Ellis TG (2004) Chemistry of wastewater, Encyclopedia of Life Support System (EOLSS). |
[26] | Chen Y, Liu J, Ju YH (1998) Flotation removal of algae from water. Colloid Surface B 12: 49–55. doi: 10.1016/S0927-7765(98)00059-9 |
[27] | Hansel PA (2014) Efficient flocculation of microalgae for biomass production using cationic starch. Algal Res 5: 133–139. doi: 10.1016/j.algal.2014.07.002 |
[28] | Jazrawi C, Biller P, Ross AB (2013) Pilot plant testing of continuous hydrothermal liquefaction of microalgae. Algal Res 2: 268–277. doi: 10.1016/j.algal.2013.04.006 |
[29] | Jena U, Das K, Kastner J (2011) Effect of operating conditions of thermochemical liquefaction on biocrude production from Spirulina platensis. Bioresource Technol 102: 6221–6229. doi: 10.1016/j.biortech.2011.02.057 |
[30] | Berglin EJ, Enderlin CW, Schmidt AJ (2012) Review and assessment of commercial vendors/options for feeding and pumping biomass slurries for hydrothermal liquefaction, Pacific Northwest National Laboratory, Office of Scientific & Technical Information Technical Reports. |
[31] | Garcia AL, Vos MP, Torri C, et al. (2013) Recycling nutrients in algae biorefinery. Chem Sus Chem 6: 1330–1333. doi: 10.1002/cssc.201200988 |
[32] | Faeth JL, Valdez PJ, Savage PE (2013) Fast hydrothermal liquefaction of Nannochloropsis sp. to produce biocrude. Energ Fuel 27: 1391–1398. |
[33] | Holliday RL, King JW, List GR (1997) Hydrolysis of vegetable oils in sub-and supercritical water. Ind Eng Chem Res 36: 932–935. |
[34] | Jena U, Vaidyanathan N, Chinnasamy S (2011) Evaluation of microalgae cultivation using recovered aqueous co-product from thermochemical liquefaction of algal biomass. Bioresource Technol 102: 3380–3387. doi: 10.1016/j.biortech.2010.09.111 |
[35] | Elliott DC, Biller P, Ross AB (2014) Hydrothermal liquefaction of biomass: developments from batch to continuous process. Bioresource Technol 178: 147–156. |
[36] | Elliott DC, Neuenschwander GG, Hart TR (2009) Catalytic hydrothermal gasification of lignin-rich biorefinery residues and algae, Pacific Northwest National Laboratory Pnnl. |
[37] | Elliott DC (2008) Catalytic hydrothermal gasification of biomass. Biofuel Bioprod Bioref 2: 254–265. doi: 10.1002/bbb.74 |
[38] | Cruz FE, Oliveira JS (2008) Petroleum refinery hydrogen production unit: exergy and production cost evaluation. Int J Thermodyn 11: 187–193. |
[39] | Kim S, Dale BE (2002) Allocation procedure in ethanol production system from corn grain I system expansion. Int J Life Cy Assess 7: 237–243. doi: 10.1007/BF02978879 |
[40] | Juneja A, Kumar D, Murthy GS (2013) Economic feasibility and environmental life cycle assessment of ethanol production from lignocellulosic feedstock in Pacific Northwest US. J Renew Sust Energ 5: 023142. doi: 10.1063/1.4803747 |
[41] | Frank ED, Elgowainy A, Han J, et al. (2013) Life cycle comparison of hydrothermal liquefaction and lipid extraction pathways to renewable diesel from algae. Mitig Adapt Strat Gl 18: 137–158. doi: 10.1007/s11027-012-9395-1 |
[42] | King J, Holliday R, List G (1999) Hydrolysis of soybean oil. in a subcritical water flow reactor. Green Chem 1: 261–264. |
[43] | Juneja A, Ceballos RM, Murthy GS (2013) Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review. Energies 6: 4607–4638. |
[44] | Sun A, Davis R, Starbuck M, et al. (2011) Comparative cost analysis of algal oil production for biofuels. Energy 36: 5169–5179. doi: 10.1016/j.energy.2011.06.020 |
[45] | Benemann JR, Oswald WJ (1996) Systems and economic analysis of microalgae ponds for conversion of CO2 to biomass, Final report, California Univ., Berkeley, CA, Dept. of Civil Engineering. |
[46] | Xiang X (2013) Techno-economic analysis of algal lipid fuels, Dissertation, Oregon State University. |
[47] | Richardson JW, Johnson MD, Outlaw JL (2012) Economic comparison of open pond raceways to photo bio-reactors for profitable production of algae for transportation fuels in the Southwest. Algal Res 1: 93–100. doi: 10.1016/j.algal.2012.04.001 |
[48] | Palou RI, Wang MQ (2010) Updated estimation of energy efficiencies of US petroleum refineries, Argonne National Laboratory, US. |
[49] | Frank E, Han J, Palou RI, et al. (2011) Life-cycle analysis of algal lipid fuels with the greet model, Center for Transportation Research, Energy Systems Division, Argonne National Laboratory, Oak Ridge. |
[50] | Jorquera O, Kiperstok A, Sales EA (2010) Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresource Technol 101: 1406–1413. |
[51] | Weissman JC, Goebel R (1987) Design and analysis of microalgal open pond systems for the purpose of producing fuels: a subcontract report, Solar Energy Research Inst., Golden, CO., USA. |
[52] | Xu X, Song C, Wincek R, et al. (2003) Separation of CO2 from power plant flue gas using a novel CO2 "molecular basket" adsorbent. Fuel Chem Div Prepr 48: 162–163. |