Citation: Daphiny Pottmaier, Marcello Baricco. Materials for hydrogen storage and the Na-Mg-B-H system[J]. AIMS Energy, 2015, 3(1): 75-100. doi: 10.3934/energy.2015.1.75
[1] | Crabtree GW, Dresselhaus MS, Buchanan MV (2004) The Hydrogen Economy. Phys Today 57: 39-44. doi: 10.1063/1.1878333 |
[2] | Zuttel A, Borgschulte A, Schlapbach L (2008) Hydrogen as a Future Energy Carrier. Winheim: Wiley-VCH Verlag GmbH & Co. |
[3] | Riis T, Hagen EF, Vie PJS, et al. (2006) Hydrogen Production R&D. Paris: IEA. |
[4] | Turner JA (2004) Sustainable Hydrogen Production. Science 305: 972-974. doi: 10.1126/science.1103197 |
[5] | Merle G, Wessling M, Nijmeijer K (2011) Anion exchange membranes for alkaline fuel cells: A review. J Membrane Sci 377: 1-35. doi: 10.1016/j.memsci.2011.04.043 |
[6] | Giddey S, Badwal SPS, Kulkarni A, et al. (2012) A comprehensive review of direct carbon fuel cell technology. Prog Energy Combust 38: 360-399. doi: 10.1016/j.pecs.2012.01.003 |
[7] | Antolini E, Perez J (2011) The use of rare earth-based materials in low-temperature fuel cells. Int J Hydrogen Energy 36: 15752-15765. doi: 10.1016/j.ijhydene.2011.08.104 |
[8] | Stambouli AB, Traversa E (2002) Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy. Renew Sust Energy Rev 6: 433-455. doi: 10.1016/S1364-0321(02)00014-X |
[9] | Riis T, Sandrock G, Ulleberg O, et al. (2006) Hydrogen Storage R&D. Paris: IEA. |
[10] | Elam CC, Padró CEG, Sandrock G, et al. (2003) Realizing the hydrogen future: the International Energy Agency's efforts to advance hydrogen energy technologies. Int J Hydrogen Energy 28: 601-607. doi: 10.1016/S0360-3199(02)00147-7 |
[11] | MHCoE For a description of the Metal Hydride Center of Excellence. Available from: http://www.sandia.gov/MHCoE. |
[12] | CHCoE For a description of the Chemical Hydride Center of Excellence. Available from: http://www.hydrogen.energy.gov/annual_progress10_storage.html. |
[13] | HSCoE For a description of the Hydrogen Sorption Center of Excellence. Available from: http://www.nrel.gov/basic_sciences/carbon_based_hydrogen_center.cfm#hsce. |
[14] | Klebanoff L (2013) Hydrogen Storage Technology: Materials and Applications. United States of America: CRC press. |
[15] | US-DOE (2010) Hydrogen and Fuel Cells: Current Technology of Hydrogen Storage. Available from: http://www1.eere.energy.gov/hydrogenandfuelcells/storage/current_technology.html. |
[16] | Felderhoff M, Weidenthaler C, von Helmolt R, et al. (2007) Hydrogen storage: the remaining scientific and technological challenges. Phys Chem Chem Phys 9: 2643-2653. doi: 10.1039/b701563c |
[17] | Graetz J (2009) New approaches to hydrogen storage. Chem Soc Rev 38: 73-82. doi: 10.1039/B718842K |
[18] | van den Berg AWC, Arean CO (2008) Materials for hydrogen storage: current research trends and perspectives. Chem Commun 14: 668-681. |
[19] | Klebanoff LE, Keller JO (2013) 5 Years of hydrogen storage research in the U.S. DOE Metal Hydride Center of Excellence (MHCoE). Int J Hydrogen Energ 38: 4533-4576. |
[20] | Lu Z-H, Xu Q (2012) Recent Progress in Boron and Nitrogen based Chemical Hydrogen Storage. Functional Materials Letters 05. |
[21] | Michel KJ, Ozoliņš V (2013) Recent advances in the theory of hydrogen storage in complex metal hydrides. MRS Bulletin 38: 462-472. doi: 10.1557/mrs.2013.130 |
[22] | Varin RA, Czujiko T, Wronski ZS (2009) Nanomaterials for solid state hydrogen storage. Cleveland: Springer. |
[23] | Grochala W, Edwards PP (2004) Thermal Decomposition of the Non-Interstitial Hydrides for the Storage and Production of Hydrogen. Chem Rev 104: 1283-1316. doi: 10.1021/cr030691s |
[24] | Eremets MI, Trojan IA, Medvedev SA, et al. (2008) Superconductivity in Hydrogen Dominant Materials: Silane. Science 319: 1506-1509. doi: 10.1126/science.1153282 |
[25] | Scheler T, Degtyareva O, Marqués M, et al. (2011) Synthesis and properties of platinum hydride. Phys Rev B 83: 214106. doi: 10.1103/PhysRevB.83.214106 |
[26] | Gao G, Wang H, Zhu L, et al. (2011) Pressure-Induced Formation of Noble Metal Hydrides. J Phys Chem C 116: 1995-2000. |
[27] | Driessen A, Sanger P, Hemmes H, et al. (1990) Metal hydride formation at pressures up to 1 Mbar. J Physics: Condensed Matter 2: 9797. doi: 10.1088/0953-8984/2/49/007 |
[28] | Sandrock G (1999) A panoramic overview of hydrogen storage alloys from a gas reaction point of view. J Alloys Compounds 293-295: 877-888. |
[29] | Bogdanovi B, Schwickardi M (1997) Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials. J Alloy Compd 253-254: 1-9. |
[30] | Bogdanović B, Brand RA, Marjanović A, et al. (2000) Metal-doped sodium aluminium hydrides as potential new hydrogen storage materials. J Alloy Compd 302: 36-58. doi: 10.1016/S0925-8388(99)00663-5 |
[31] | Eberle U, Arnold G, von Helmolt R (2006) Hydrogen storage in metal-hydrogen systems and their derivatives. J Power Sources 154: 456-460. doi: 10.1016/j.jpowsour.2005.10.050 |
[32] | Sandrock G, Gross K, Thomas G (2002) Effect of Ti-catalyst content on the reversible hydrogen storage properties of the sodium alanates. J Alloy Compd 339: 299-308. doi: 10.1016/S0925-8388(01)02014-X |
[33] | Zaluska A, Zaluski L, Ström-Olsen JO (2000) Sodium alanates for reversible hydrogen storage. J Allos Compd 298: 125-134. doi: 10.1016/S0925-8388(99)00666-0 |
[34] | Gross KJ, Sandrock G, Thomas GJ (2002) Dynamic in situ X-ray diffraction of catalyzed alanates. J Alloy Compd 330-332: 691-695. |
[35] | Bellosta von Colbe JM, Felderhoff M, Bogdanovic B, et al. (2005) One-step direct synthesis of a Ti-doped sodium alanate hydrogen storage material. Chem Commun 4732-4734. |
[36] | Li L, Xu C, Chen C, et al. (2013) Sodium alanate system for efficient hydrogen storage. Int J Hydrogen Energy 38: 8798-8812. doi: 10.1016/j.ijhydene.2013.04.109 |
[37] | NIST. Availabe from: http://webbook.nist.gov ed. |
[38] | Zaluska A, Zaluski L, Srom-Olsen JO, et al. (1999) Method for inducing hydrogen desorption from a metal hydride. In: 5882623, Patent. United States of America. |
[39] | Zaluska A, Zaluski L, Strm-Olsen JO (1999) Nanocrystalline magnesium for hydrogen storage. J Alloy Compd 288: 217-225. doi: 10.1016/S0925-8388(99)00073-0 |
[40] | Varin RA, Czujko T, Wronski ZS, et al. (2009) Nanomaterials for hydrogen storage produced by ball milling. Can Metall Quart 48: 11-26. doi: 10.1179/cmq.2009.48.1.11 |
[41] | Fichtner M (2009) Properties of nanoscale metal hydrides. Nanotechnology 20: 204009. doi: 10.1088/0957-4484/20/20/204009 |
[42] | Bérubé V, Radtke G, Dresselhaus M, et al. (2007) Size effects on the hydrogen storage properties of nanostructured metal hydrides: A review. Int J Energy Res 31: 637-663. doi: 10.1002/er.1284 |
[43] | Chen PX, Z.; Luo, J.; Lin, J.; Tan, K. L. (2002) Interaction of hydrogen with metal nitrides and imides. Nature 420: 302-304. doi: 10.1038/nature01210 |
[44] | Hu YH, Ruckenstein E (2003) Ultrafast Reaction between LiH and NH3 during H2 Storage in Li3N. J Phys Chem A 107: 9737-9739. doi: 10.1021/jp036257b |
[45] | Ichikawa T, Hanada N, Isobe S, et al. (2004) Mechanism of Novel Reaction from LiNH2 and LiH to Li2NH and H2 as a Promising Hydrogen Storage System. J Phys Chem B 108: 7887-7892. doi: 10.1021/jp049968y |
[46] | Lohstroh W, Fichtner M (2007) Reaction steps in the Li-Mg-N-H hydrogen storage system. J Alloy Compd 446-447: 332-335. |
[47] | Hu YH, Ruckenstein E (2004) Highly Effective Li2O/Li3N with Ultrafast Kinetics for H2 Storage. Ind Eng Chem Res 43: 2464-2467. doi: 10.1021/ie049947q |
[48] | Zuttel A, Wenger P, Rentsch S, et al. (2003) LiBH4 a new hydrogen storage material. J Power Sources 118: 1-7. doi: 10.1016/S0378-7753(03)00054-5 |
[49] | Mosegaard L, Moller B, Jorgensen J-E, et al. (2008) Reactivity of LiBH4: In Situ Synchrotron Radiation Powder X-ray Diffraction Study. J Phys Chem C 112: 1299-1303. |
[50] | Yu XB, Grant DM, Walker GS (2009) Dehydrogenation of LiBH4 Destabilized with Various Oxides. J Phys Chem C 113: 17945-17949. doi: 10.1021/jp906519p |
[51] | Maekawa H, Matsuo M, Takamura H, et al. (2009) Halide-Stabilized LiBH4, a Room-Temperature Lithium Fast-Ion Conductor. J Am Chem Soc 131: 894-895. doi: 10.1021/ja807392k |
[52] | Luo C, Wang H, Sun T, et al. (2012) Enhanced dehydrogenation properties of LiBH4 compositing with hydrogenated magnesium-rare earth compounds. Int J Hydrogen Energy 37: 13446-13451. doi: 10.1016/j.ijhydene.2012.06.114 |
[53] | Pendolino F (2011) “Boron Effect” on the Thermal Decomposition of Light Metal Borohydrides MBH4 (M = Li, Na, Ca). J Phys Chem C 116: 1390-1394. |
[54] | Pendolino F (2013) Thermal study on decomposition of LiBH4 at non-isothermal and non-equilibrium conditions. J Thermal Analysis Calorimetry 112: 1207-1211. doi: 10.1007/s10973-012-2662-2 |
[55] | Gross AF, Vajo JJ, Van Atta SL, et al. (2008) Enhanced Hydrogen Storage Kinetics of LiBH4 in Nanoporous Carbon Scaffolds. J Phys Chem C 112: 5651-5657. doi: 10.1021/jp711066t |
[56] | Xu J, Yu X, Ni J, et al. (2009) Enhanced catalytic dehydrogenation of LiBH4 by carbon-supported Pd nanoparticles. Dalton Transactions: 8386-8391. |
[57] | Xu J, Yu X, Zou Z, et al. (2008) Enhanced dehydrogenation of LiBH4 catalyzed by carbon-supported Pt nanoparticles. Chem Commun 5740-5742. |
[58] | Xu J, Qi Z, Cao J, et al. (2013) Reversible hydrogen desorption from LiBH4 catalyzed by graphene supported Pt nanoparticles. Dalton Transactions 42: 12926-12933 |
[59] | Luo W (2004) (LiNH2-MgH2): a viable hydrogen storage system. J Alloy Compd 381: 284-287. doi: 10.1016/j.jallcom.2004.03.119 |
[60] | Xiong Z, Wu G, Hu J, et al. (2004) Ternary Imides for Hydrogen Storage. Adv Mater 16: 1522-1525. doi: 10.1002/adma.200400571 |
[61] | Leng HY, Ichikawa T, Hino S, et al. (2004) New Metal-N-H System Composed of Mg(NH2)2 and LiH for Hydrogen Storage. J Phy Chem B 108: 8763-8765. doi: 10.1021/jp048002j |
[62] | Nakamori Y, Kitahara G, Orimo S (2004) Synthesis and dehydriding studies of Mg-N-H systems. J Power Sources 138: 309-312. doi: 10.1016/j.jpowsour.2004.06.026 |
[63] | Nakamori Y, Kitahara G, Miwa K, et al. (2005) Reversible hydrogen-storage functions for mixtures of Li3N and Mg3N2. Appl Phys A 80: 1-3. |
[64] | Dolci F, Weidner E, Hoelzel M, et al. (2010) In-situ neutron diffraction study of magnesium amide/lithium hydride stoichiometric mixtures with lithium hydride excess. Int J Hydrogen Energy 35: 5448-5453. doi: 10.1016/j.ijhydene.2010.03.030 |
[65] | Barison S, Agresti F, Lo Russo S, et al. (2008) A study of the LiNH2-MgH2 system for solid state hydrogen storage. J Alloy Compd 459: 343-347. doi: 10.1016/j.jallcom.2007.04.278 |
[66] | Shahi RR, Yadav TP, Shaz MA, et al. (2008) Effects of mechanical milling on desorption kinetics and phase transformation of LiNH2/MgH2 mixture. Int J Hydrogen Energy 33: 6188-6194. doi: 10.1016/j.ijhydene.2008.07.029 |
[67] | Liang C, Liu Y, Luo K, et al. (2010) Reaction Pathways Determined by Mechanical Milling Process for Dehydrogenation/Hydrogenation of the LiNH2/MgH2 System. Chemistry A European Journal 16: 693-702. doi: 10.1002/chem.200901967 |
[68] | Liu Y, Li B, Tu F, et al. (2011) Correlation between composition and hydrogen storage behaviors of the Li2NH-MgNH combination system. Dalton Transactions 40: 8179-8186. doi: 10.1039/c1dt10108k |
[69] | Lu J, Choi YJ, Fang ZZ, et al. (2010) Effect of milling intensity on the formation of LiMgN from the dehydrogenation of LiNH2-MgH2 (1:1) mixture. J Power Sources 195: 1992-1997. doi: 10.1016/j.jpowsour.2009.10.032 |
[70] | Pottmaier D, Dolci F, Orlova M, et al. (2011) Hydrogen release and structural transformations in LiNH2-MgH2 systems. J Alloy Compd 509, Supplement 2: S719-S723. |
[71] | Vajo JJ, Skeith SL, Mertens F (2005) Reversible Storage of Hydrogen in Destabilized LiBH4. J Phys Chem B 109: 3719-3722. doi: 10.1021/jp040769o |
[72] | Bosenberg U, Doppiu S, Mosegaard L, et al. (2007) Hydrogen sorption properties of MgH2-LiBH4 composites. Acta Materialia 55: 3951-3958. doi: 10.1016/j.actamat.2007.03.010 |
[73] | Bosenberg U, Ravnsbk DB, Hagemann H, et al. (2010) Pressure and Temperature Influence on the Desorption Pathway of the LiBH4-MgH2 Composite System. J Phys Chem C 114: 15212-15217. |
[74] | Nakagawa T, Ichikawa T, Hanada N, et al. (2007) Thermal analysis on the Li-Mg-B-H systems. J Alloy Compd 446-447: 306-309. |
[75] | Shim J-H, Lim J-H, Rather S-u, et al. (2009) Effect of Hydrogen Back Pressure on Dehydrogenation Behavior of LiBH4-Based Reactive Hydride Composites. J Phys Chem Lett 1: 59-63. |
[76] | Yang J, Sudik A, Wolverton C (2007) Destabilizing LiBH 4 with a Metal ( M ) Mg , Al , Ti , V , Cr , or Sc ) or Metal Hydride ( MH 2 ). J Phys Chem C 111: 19134-19140. doi: 10.1021/jp076434z |
[77] | Pinkerton FE, Meyer MS, Meisner GP, et al. (2007) Phase Boundaries and Reversibility of LiBH 4 / MgH 2 Hydrogen Storage Material. J Phys Chem Lett C 111: 12881-12885. doi: 10.1021/jp0742867 |
[78] | Price TEC, Grant DM, Legrand V, et al. (2010) Enhanced kinetics for the LiBH4:MgH2 multi-component hydrogen storage system—The effects of stoichiometry and decomposition environment on cycling behaviour. Int J Hydrogen Energy 35: 4154-4161. doi: 10.1016/j.ijhydene.2010.02.082 |
[79] | Wan X, Markmaitree T, Osborn W, et al. (2008) Nanoengineering-Enabled Solid-State Hydrogen Uptake and Release in the LiBH4 Plus MgH2 System. J Phys Chem C 112: 18232-18243. doi: 10.1021/jp8033159 |
[80] | Price TEC, Grant DM, Telepeni I, et al. (2009) The decomposition pathways for LiBD4-MgD2 multicomponent systems investigated by in situ neutron diffraction. J Alloy Compd 472: 559-564. doi: 10.1016/j.jallcom.2008.05.030 |
[81] | Walker GS, Grant DM, Price TC, et al. (2009) High capacity multicomponent hydrogen storage materials: Investigation of the effect of stoichiometry and decomposition conditions on the cycling behaviour of LiBH4,ÄìMgH2. J Power Sources 194: 1128-1134. doi: 10.1016/j.jpowsour.2009.06.075 |
[82] | Yu XB, Grant DM, Walker GS (2006) A new dehydrogenation mechanism for reversible multicomponent borohydride systems--The role of Li-Mg alloys. Chem commun (Cambridge, England) 1: 3906-3908. |
[83] | Dobbins T, NaraseGowda S, Butler LG (2012) Study of Morphological Changes in MgH2 Destabilized LiBH4 Systems Using Computed X-ray Microtomography. Materials 5: 1740-1751. doi: 10.3390/ma5101740 |
[84] | Barkhordarian G, Klassen T, Dornheim M, et al. (2007) Unexpected kinetic effect of MgB2 in reactive hydride composites containing complex borohydrides. J Alloy Compd 440: L18-L21. doi: 10.1016/j.jallcom.2006.09.048 |
[85] | COSY-network Complex Solid State Reaction for Energy Efficient Hydrogen Storage. Available from: www.cosy-net.eu. |
[86] | Santos DMF, Sequeira CAC (2011) Sodium borohydride as a fuel for the future. Renew Sust Energy Rev 15: 3980-4001. doi: 10.1016/j.rser.2011.07.018 |
[87] | Dinsdale AT (1991) SGTE Data for Pure Elements. CALPHAD 15: 317-425. doi: 10.1016/0364-5916(91)90030-N |
[88] | Manchester FD (2000) Phase Diagrams of Binary Hydrogen Alloys. United State of America: ASM International. |
[89] | George L, Saxena SK (2010) Structural stability of metal hydrides, alanates and borohydrides of alkali and alkali- earth elements: A review. Int J Hydrogen Energy 35: 5454-5470. doi: 10.1016/j.ijhydene.2010.03.078 |
[90] | Pottmaier D, Pinatel ER, Vitillo JG, et al. (2011) Structure and Thermodynamic Properties of the NaMgH3 Perovskite: A Comprehensive Study. Chem Mater 23: 2317-2326. doi: 10.1021/cm103204p |
[91] | Barrico M, Paulmbo M, Pinatel E, et al. (2010) Thermodynamic Database for Hydrogen Storage Materials. Adv Sci Tech 72: 213-218. doi: 10.4028/www.scientific.net/AST.72.213 |
[92] | Stasinevich G, Egorenko A (1969) J Inorg Chem 13: 341-343. |
[93] | Martelli P, Caputo R, Remhof A, et al. (2010) Stability and Decomposition of NaBH 4. The J Phys Chem C 114: 7173-7177. |
[94] | Urgnani J, Torres F, Palumbo M, et al. (2008) Hydrogen release from solid state NaBH4. Int J Hydrogen Energy 33: 3111-3115. doi: 10.1016/j.ijhydene.2008.03.031 |
[95] | Mao JF, Yu XB, Guo ZP, et al. (2009) Enhanced hydrogen storage performances of NaBH4-MgH2 system. J Alloy Compd 479: 619-623. doi: 10.1016/j.jallcom.2009.01.012 |
[96] | Humphries TD, Kalantzopoulos GN, Llamas-Jansa I, et al. (2013) Reversible Hydrogenation Studies of NaBH4 Milled with Ni-Containing Additives. J Phys Chem C 117: 6060-6065. doi: 10.1021/jp312105w |
[97] | Pendolino F, Mauron P, Borgschulte A, et al. (2009) Effect of Boron on the Activation Energy of the Decomposition of LiBH4. J Phys Chem C 113: 17231-17234. doi: 10.1021/jp902384v |
[98] | Caputo R, Garroni S, Olid D, et al. (2010) Can Na2[B12H12] be a decomposition product of NaBH4? Phys Chem Chem Phys 12: 15093-15100.99. Her J-H, Zhou W, Stavila V, et al. (2009) Role of Cation Size on the Structural Behavior of the Alkali-Metal Dodecahydro-closo-Dodecaborates. J Phys Chem Lett C 113: 11187-11189. doi: 10.1021/jp904980m |
[99] | 100. Friedrichs O, Remhof A, Hwang K-J, et al. (2010) Role of Li2B12H12 for the formation and decomposition of LiBH4. Chem Mater 22: 3265-3268. doi: 10.1021/cm100536a |
[100] | 101. Her JH, Yousufuddin M, Zhou W, et al. (2008) Crystal structure of Li2B12H12: a possible intermediate species in the decomposition of LiBH4. Inorg Chem 47: 9757-9759. doi: 10.1021/ic801345h |
[101] | 102. Hwang SJ, Bowman RC, Reiter JW, et al. (2008) NMR Confirmation for Formation of [B12H12]2- Complexes during Hydrogen Desorption from Metal Borohydrides. J Phys Chem C 112: 3164-3169. |
[102] | 103. Minella CB, Pistidda C, Garroni S, et al. (2013) Ca(BH4)2 + MgH2: Desorption Reaction and Role of Mg on Its Reversibility. J Phys Chem C 117: 3846-3852. doi: 10.1021/jp312271s |
[103] | 104. Yan Y, Remhof A, Rentsch D, et al. (2013) Is Y2(B12H12)3 the main intermediate in the decomposition process of Y(BH4)3? Chem Commun 49: 5234-5236. doi: 10.1039/c3cc41184b |
[104] | 105. Mao J, Guo Z, Yu X, et al. (2013) Combined effects of hydrogen back-pressure and NbF5 addition on the dehydrogenation and rehydrogenation kinetics of the LiBH4-MgH2 composite system. Int J Hydrogen Energy 38: 3650-3660. doi: 10.1016/j.ijhydene.2012.12.106 |
[105] | 106. Yan Y, Li H-W, Maekawa H, et al. (2011) Formation of Intermediate Compound Li2B12H12 during the Dehydrogenation Process of the LiBH4-MgH2 System. J Phys Chem C 115: 19419-19423. doi: 10.1021/jp205450c |
[106] | 107. Garroni S, Milanese C, Pottmaier D, et al. (2011) Experimental Evidence of Na2[B12H12] and Na Formation in the Desorption Pathway of the 2NaBH4 + MgH2 System. J Phys Chem C 115: 16664-16671. doi: 10.1021/jp202341j |
[107] | 108. Pottmaier D, Pistidda C, Groppo E, et al. (2011) Dehydrogenation reactions of 2NaBH4 + MgH2 system. Int J Hydrogen Energy 36: 7891-7896. doi: 10.1016/j.ijhydene.2011.01.059 |
[108] | 109. Pistidda C, Garroni S, Minella CB, et al. (2010) Pressure Effect on the 2NaH + MgB2 Hydrogen Absorption Reaction. J Phys Chem C 114: 21816-21823. doi: 10.1021/jp107363q |
[109] | 110. Garroni S, Milanese C, Girella A, et al. (2010) Sorption properties of NaBH4/MH2 (M = Mg, Ti) powder systems. Int J Hydrogen Energy 35: 5434-5441. doi: 10.1016/j.ijhydene.2010.03.004 |
[110] | 111. Shi L, Gi Y, Qian T, et al. (2004) Synthesis of ultrafine superconducting MgB2 by a convenient solid-state reaction route. Physica C 405: 271-274. doi: 10.1016/j.physc.2004.02.013 |
[111] | 112. Varin RA, Chiu C, Wronski ZS (2008) Mechano-chemical activation synthesis (MCAS) of disordered Mg(BH4)2 using NaBH 4. J Alloy Compd 462: 201-208. doi: 10.1016/j.jallcom.2007.07.110 |
[112] | 113. Varin Ra, Czujko T, Chiu C, et al. (2009) Synthesis of nanocomposite hydrides for solid-state hydrogen storage by controlled mechanical milling techniques. J Alloy Compd 483: 252-255. doi: 10.1016/j.jallcom.2008.07.207 |
[113] | 114. Czujko T, Varin R, Wronski Z, et al. (2007) Synthesis and hydrogen desorption properties of nanocomposite magnesium hydride with sodium borohydride (MgH2+NaBH4). J Alloy Compd 427: 291-299. doi: 10.1016/j.jallcom.2006.03.020 |
[114] | 115. Czujiko T, Varin R, Zaranski Z, et al. (2010) The dehydrogenation process of destabilized NaBH4-MgH2 solid state hydride composites. Arch Metall Mater 55: 539-552. |
[115] | 116. Garroni S, Pistidda C, Brunelli M, et al. (2009) Hydrogen desorption mechanism of 2NaBH4+MgH2 composite prepared by high-energy ball milling. Scripta Materialia 60: 1129-1132. doi: 10.1016/j.scriptamat.2009.02.059 |
[116] | 117. Caputo R, Garroni S, Olid D, et al. (2010) Can Na2[B12H12] be a decomposition product of NaBH4? Phys Chem Chem Phys 12: 15093-15100. doi: 10.1039/c0cp00877j |
[117] | 118. Garroni S, Milanese C, Girella A, et al. (2010) Sorption properties of NaBH4/MH2 (M=Mg, Ti) powder systems. Int J Hydrogen Energy 35: 5434-5441. doi: 10.1016/j.ijhydene.2010.03.004 |
[118] | 119. Pottmaier D, Garroni S, Barò MD, et al. (2010) Hydrogen Desorption Reactions of the Na-Mg-B-H System. Adv Sci Tech72: 164-169. doi: 10.4028/www.scientific.net/AST.72.164 |
[119] | 120.Pottmaier D, Garroni S, Brunelli M, et al. (2010) NaBX4-MgX2 Composites (X= D,H) Investigated by In situ Neutron Diffraction. Mater Res Soc Symp Proc 1262: W03-04. |
[120] | 121. Nwakwuo CC, Pistidda C, Dornheim M, et al. (2012) Microstructural study of hydrogen desorption in 2NaBH4 + MgH2 reactive hydride composite. Int J Hydrogen Energy 37: 2382-2387. doi: 10.1016/j.ijhydene.2011.10.070 |
[121] | 122. Mao J, Guo Z, Yu X, et al. (2011) Improved Hydrogen Storage Properties of NaBH4 Destabilized by CaH2 and Ca(BH4)2. J Phys Chem C 115: 9283-9290. doi: 10.1021/jp2020319 |
[122] | 123. Franco F, Baricco M, Chierotti MR, et al. (2013) Coupling Solid-State NMR with GIPAW ab Initio Calculations in Metal Hydrides and Borohydrides. J Phys Chem C 117: 9991-9998. doi: 10.1021/jp3126895 |
[123] | 124. Shane DT, Corey RL, Bowman Jr RC, et al. (2009) NMR studies of the hydrogen storage compound NaMgH3. J Phys Chem C 113: 18414-18419. doi: 10.1021/jp906414q |
[124] | 125. Huang Z, Eagles M, Porter S, et al. (2013) Thermolysis and solid state NMR studies of NaB3H8, NH3B3H7, and NH4B3H8. Dalton Transactions 42: 701-708. doi: 10.1039/C2DT31365K |
[125] | 126. Çakır D, de Wijs GA, Brocks G (2011) Native Defects and the Dehydrogenation of NaBH4. J Phys Chem C 115: 24429-24434. doi: 10.1021/jp208642g |
[126] | 127. Pistidda C, Barkhordarian G, Rzeszutek A, et al. (2011) Activation of the reactive hydride composite 2NaBH4+MgH2. Scripta Materialia 64: 1035-1038. doi: 10.1016/j.scriptamat.2011.02.017 |
[127] | 128. Kato S, Borgschulte A, Bielmann M, et al. (2012) Interface reactions and stability of a hydride composite (NaBH4 + MgH2). Phys Chem Chem Phys 14: 8360-8368. doi: 10.1039/c2cp23491b |
[128] | 129. Pistidda C, Napolitano E, Pottmaier D, et al. (2013) Structural study of a new B-rich phase obtained by partial hydrogenation of 2NaH + MgB2. Int J Hydrogen Energy 38: 10479-10484. doi: 10.1016/j.ijhydene.2013.06.025 |
[129] | 130. Milanese C, Garroni S, Girella A, et al. (2011) Thermodynamic and Kinetic Investigations on Pure and Doped NaBH4-MgH2 System. J Phys Chem C 115: 3151-3162. doi: 10.1021/jp109392e |
[130] | 131. Saldan I, Gosalawit-Utke R, Pistidda C, et al. (2012) Influence of Stoichiometry on the Hydrogen Sorption Behavior in the LiF-MgB2 System. J Phys Chem C 116: 7010-7015. doi: 10.1021/jp212322u |
[131] | 132. Christian M, Aguey-Zinsou K-F (2013) Synthesis of core-shell NaBH4@M (M = Co, Cu, Fe, Ni, Sn) nanoparticles leading to various morphologies and hydrogen storage properties. Chem Commun 49: 6794-6796. doi: 10.1039/c3cc42815j |
[132] | 133. Mulas G, Campesi R, Garroni S, et al. (2012) Hydrogen storage in 2NaBH4+MgH2 mixtures: Destabilization by additives and nanoconfinement. J Alloy Compd 536, Supplement 1: S236-S240. |
[133] | 134. Peru F, Garroni S, Campesi R, et al. (2013) Ammonia-free infiltration of NaBH4 into highly-ordered mesoporous silica and carbon matrices for hydrogen storage. J Alloy Compd 580, Supplement 1: S309-S312. |
[134] | 135. Bardhan R, Hedges LO, Pint CL, et al. (2013) Uncovering the intrinsic size dependence of hydriding phase transformations in nanocrystals. Nat Mater advance online publication. |
[135] | 136. Schlesinger HI, Sanderson RT, Burg AB (1940) Metallo Borohydrides. I. Aluminum Borohydride. J Am Chem Soc 62: 3421-3425. |
[136] | 137. Schlesinger HI, Brown HC (1940) Metallo Borohydrides. III. Lithium Borohydride. J Am Chem Soc 62: 3429-3435. doi: 10.1021/ja01869a039 |
[137] | 138. Schlesinger HI, Brown HC, Hoekstra HR, et al. (1953) Reactions of Diborane with Alkali Metal Hydrides and Their Addition Compounds. New Syntheses of Borohydrides. Sodium and Potassium Borohydrides1. J Am Chem Soc 75: 199-204. |
[138] | 139. Schlesinger HI, Brown HC, Abraham B, et al. (1953) New Developments in the Chemistry of Diborane and the Borohydrides. I. General Summary1. J Am Chem Soc 75: 186-190. |
[139] | 140. Miwa K, Aoki M, Noritake T, et al. (2006) Correlation between thermodynamic staibilties of metal borohydrides and cation electronegavities: First principles calculations and experiments. Phys Rev B 74: 075110. doi: 10.1103/PhysRevB.74.075110 |
[140] | 141. Nakamori Y, Li H, Kikuchi K, et al. (2007) Thermodynamical stabilities of metal-borohydrides. J Alloy Compd 447: 296-300. |
[141] | 142. Hu J, Kwak JH, Zhenguo Y, et al. (2009) Direct observation of ion exchange in mechanism activated LiH+MgB2 system using ultrahigh field nuclear magnetic resonance spectroscopy. Appl Phys Lett 94: 05. doi: 10.1063/1.3110966 |
[142] | 143. Li H-W, Matsunaga T, Yan Y, et al. (2010) Nanostructure-induced hydrogenation of layered compound MgB2. J Alloy Compd 505: 654-656. doi: 10.1016/j.jallcom.2010.06.101 |
[143] | 144. Pistidda C, Garroni S, Dolci F, et al. (2010) Synthesis of amorphous Mg(BH4)2 from MgB2 and H2 at room temperature. J Alloy Compd 508: 212-215. doi: 10.1016/j.jallcom.2010.07.226 |
[144] | 145. Barkhordarian G, Jensen TR, Doppiu S, et al. (2008) Formation of Ca(BH4)2 from Hydrogenation of CaH2+MgB2 Composite. J Phys Chem C 112: 2743-2749. |
[145] | 146. Nwakwuo CC, Pistidda C, Dornheim M, et al. (2011) Microstructural analysis of hydrogen absorption in 2NaH+MgB2. Scripta Materialia 64: 351-354. doi: 10.1016/j.scriptamat.2010.10.034 |
[146] | 147. Garroni S, Minella CB, Pottmaier D, et al. (2013) Mechanochemical synthesis of NaBH4 starting from NaH-MgB2 reactive hydride composite system. Int J Hydrogen Energy 38: 2363-2369. doi: 10.1016/j.ijhydene.2012.11.136 |
[147] | 148. Nwakwuo CC, Hutchison JL, Sykes JM (2012) Hydrogen sorption in 3NaH+MgB2/2NaBH4+NaMgH3 composite. Scripta Materialia 66: 175-177. doi: 10.1016/j.scriptamat.2011.10.035 |
[148] | 149. Wang H, Zhang J, Liu JW, et al. (2013) Catalysis and hydrolysis properties of perovskite hydride NaMgH3. J Alloy Compd 580, Supplement 1: S197-S201. |
[149] | 150. Rafi ud d, Xuanhui Q, Zahid GH, et al. (2014) Improved hydrogen storage performances of MgH2-NaAlH4 system catalyzed by TiO2 nanoparticles. J Alloy Compd 604: 317-324. doi: 10.1016/j.jallcom.2014.03.150 |
[150] | 151. Milošević S, Milanović I, Mamula BP, et al. (2013) Hydrogen desorption properties of MgH2 catalysed with NaNH2. Int J Hydrogen Energy 38: 12223-12229. doi: 10.1016/j.ijhydene.2013.06.083 |
[151] | 152. Li Y, Fang F, Song Y, et al. (2013) Hydrogen storage of a novel combined system of LiNH2-NaMgH3: synergistic effects of in situ formed alkali and alkaline-earth metal hydrides. Dalton Transactions 42: 1810-1819. doi: 10.1039/C2DT31923C |