Citation: Delores J. Grant, Leighcraft A. Shakes, Hope M. Wolf, Derek C. Norford, Pradeep K. Chatterjee. Exploring function of conserved non-coding DNA in its chromosomal context[J]. AIMS Biophysics, 2015, 2(4): 773-793. doi: 10.3934/biophy.2015.4.773
[1] | The Mouse Genome Sequencing Consortium (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420: 520-562. doi: 10.1038/nature01262 |
[2] | Woolfe A, Goodson M, Goode DK, et al. (2005) Highly conserved non-coding sequences are associated with vertebrate development. PLoS Biol 3: e7. |
[3] | Venkatesh B, Yap WH (2005) Comparative genomics using fugu: a tool for the identification of conserved vertebrate cis-regulatory elements. Bioessays 27: 100-107. doi: 10.1002/bies.20134 |
[4] | Ahituv N, Prabhakar S, Poulin F, et al. (2005) Mapping cis-regulatory domains in the human genome using multi-species conservation of synteny. Hum Mol Genet 14: 3057-3063. |
[5] | Shin JT, Priest JR, Ovcharenko I, et al. (2005) Human-zebrafish non-coding conserved elements act in vivo to regulate transcription. Nucleic Acids Res 33: 5437-5445. |
[6] | Pennacchio LA, Ahituv N, Moses AM, et al. (2006) In vivo enhancer analysis of human conserved non-coding sequences. Nature 444: 499-502. |
[7] | Allende ML, Manzanares M, Tena JJ, et al. (2006) Cracking the genome's second code: enhancer detection by combined phylogenetic foot-printing and transgenic fish and frog embryos. Methods 39: 212-219. |
[8] | Berg JM, Tymoczko JL, Stryer L, et al. (2012) Biochemistry, 7th ed. WH Freeman & Company, New York. |
[9] | Lodish H, Berk A, Kaiser C, et al. (2004) Molecular Cell Biology, 5th edition, WH Freeman and Company. |
[10] | Cherstvy GA, Teif VB (2013) Structure-driven homology pairing of chromatin fibers: the role of electrostatics and protein-induced bridging. J Biol Phys 39: 363-385. |
[11] | Beshnova DA, Cherstvy AG, Vainshtein Y, et al. (2014) Regulation of the nucleosome repeat length in vivo by the DNA sequence, protein concentrations and long-range interactions. PLoS Comput Biol 10: e1003698. doi: 10.1371/journal.pcbi.1003698 |
[12] | Sexton T, Cavalli G (2015) The Role of Chromosome Domains in Shaping the Functional Genome Cell 160: 1049-1059. |
[13] | Rao SS, Huntley MH, Durand NC, et al. (2014) A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159: 1665-1680. |
[14] | Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genetics 33: 245-254. |
[15] | Kooistra SM, Helin K (2012) Molecular mechanisms and potential functions of histone demethylases. Nat Rev Mol Cell Biol 13: 297-311. |
[16] | Kouzarides T (2007) Chromatin Modifications and Their Function. Cell 128: 693-705. |
[17] | Barski A, Cuddapah S, Cui K, et al. (2007) High-resolution profiling of histone methylations in the human genome. Cell 129: 823-837. |
[18] | Wu L, Wary KK, Revskoy S, et al. (2015) Histone Demethylases KDM4A and KDM4C Regulate Differentiation of Embryonic Stem Cells to Endothelial Cells. Stem Cell Reports Jun 24. pii: S2213-6711(15)00159-9. doi: 10.1016/j.stemcr.2015.05.016 [Epub ahead of print]. |
[19] | Kurdistani SK, Tavazoie S, Grunstein M (2004) Mapping global histone acetylation patterns to gene expression. Cell 117: 721-733. doi: 10.1016/j.cell.2004.05.023 |
[20] | Ganapathi M, Singh GP, Sandhu KS, et al. (2007) A whole genome analysis of 5' regulatory regions of human genes for putative cis-acting modulators of nucleosome positioning. Gene 391: 242-251. doi: 10.1016/j.gene.2007.01.008 |
[21] | Hebbar PB, Archer TK (2007) Chromatin-dependent cooperativity between site-specific transcription factors in vivo. J Biol Chem 282: 8284-8291. doi: 10.1074/jbc.M610554200 |
[22] | Gartenberg MR, Ampe C, Steitz TA, et al. (1990) Molecular characterization of the GCN4-DNA complex. Proc Natl Acad Sci U S A 87: 6034-6038. doi: 10.1073/pnas.87.16.6034 |
[23] | Dalma-Weiszhausz DD, Gartenberg MR, Crothers DM (1991) Sequence-dependent contribution of distal binding domains to CAP protein-DNA binding affinity. Nucleic Acids Res 19: 611-616. doi: 10.1093/nar/19.3.611 |
[24] | Ulanovsky L, Bodner M, Trifonov EN, et al. (1986) Curved DNA: design, synthesis, and circularization. Proc Natl Acad Sci U S A 83: 862-866. |
[25] | Shakes LA, Du H, Wolf HM, et al. (2012) Using BAC Transgenesis in Zebrafish to Identify Regulatory sequences of the Amyloid Precursor Protein gene in Humans. BMC Genomics 13: 451. |
[26] | Kawakami K, Takeda H, Kawakami N, et al. (2004) A transposon-mediated gene trap approach identifies developmentally regulated genes in zebrafish. Developmental Cell 7: 133-144. |
[27] | Ellingsen S, Laplante MA, Konig M, et al. (2005) Large-scale enhancer detection in the zebrafish genome. Development 132: 3799-3811. |
[28] | Kokubu C, Horie K, Abe K, et al. (2009) A transposon-based chromosomal engineering method to survey a large cis-regulatory landscape in mice. Nat Genet 41: 946-952. doi: 10.1038/ng.397 |
[29] | Ruf S, Symmons O, Uslu VV, et al. (2011) Large-scale analysis of the regulatory architecture of the mouse genome with a transposon-associated sensor. Nat Genet 43: 379-386. |
[30] | Symmons O, Spitz F (2013) From remote enhancers to gene regulation: charting the genome's regulatory landscapes. Philos Trans R Soc Lond B Biol Sci 368: 20120358. doi: 10.1098/rstb.2012.0358 |
[31] | Bessa J, Tena JJ, de la Calle-Mustienes E, et al (2009) Zebrafish enhancer detection (ZED) vector: a new tool to facilitate transgenesis and the functional analysis of cis-regulatory regions in zebrafish. Dev Dyn 238: 2409-2417. |
[32] | Chatterjee S, Lufkin T (2012) Regulatory genomics: Insights from the zebrafish. Curr Top Genet 5: 1-10. |
[33] | Simon MI (1997) Dysfunctional genomics: BACs to the rescue. Nat Biotechnol 15: 839. |
[34] | Gilmore RC, Baker Jr J, Dempsey S, et al. (2001) Using PAC nested-deletions to order contigs and microsatellite markers at the high repetitive sequence containing Npr3 gene locus. Gene 275: 65-72. doi: 10.1016/S0378-1119(01)00654-0 |
[35] | Shizuya H, Birren B, Kim UJ, et al. (1992) Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc Natl Acad Sci U S A 89: 8794-8797. |
[36] | Osoegawa K, Woon PY, Zhao B, et al. (1998) An improved approach for construction of bacterial artificial chromosome libraries. Genomics 52:1-8. |
[37] | Frengen E, Weichenhan D, Zhao B, et al. (1999) A modular, positive selection bacterial artificial chromosome vector with multiple cloning sites. Genomics 58: 250-253. |
[38] | Yang XW, Model P, Heintz N (1997) Homologous recombination based modification in Escherichia coli and germline transmission in transgenic mice of a bacterial artificial chromosome. Nat Biotechnol 9: 859-865 |
[39] | Gong S, Yang XW, Li C, et al. (2002) Highly efficient modification of bacterial artificial chromosomes (BACs) using novel shuttle vectors containing the R6Kgamma origin of replication. Genome Res 12: 1992-1998. doi: 10.1101/gr.476202 |
[40] | Yang Z, Jiang H, Chachainasakul T, et al. (2006) Modified bacterial artificial chromosomes for zebrafish transgenesis. Methods 39:183-188. |
[41] | Shakes LA, Wolf HM, Norford DC, et al. (2014) Harnessing Mobile Genetic Elements to Explore Gene Regulation. Mobile Genetic Elements 4: e29759. |
[42] | Zhang Y, Buchholz F, Muyrers JP, et al. (1998) A new logic for DNA engineering using recombination in Escherichia coli. Nat Genet 20: 123-128. doi: 10.1038/2417 |
[43] | Muyrers JP, Zhang Y, Testa G, et al. (1999) Rapid modification of Bacterial Artificial Chromosomes by ET recombination. Nucleic Acids Res 27: 1555-1557. doi: 10.1093/nar/27.6.1555 |
[44] | Suster ML, Abe G, Schouw A, et al. (2011) Transposon-mediated BAC transgenesis in zebrafish. Nat Protoc 6: 1998-2021 doi: 10.1038/nprot.2011.416 |
[45] | Warming S, Costantino N, Court DL, et al. (2005) Simple and highly efficient BAC recombineering using galK selection. Nucleic Acids Res 33: e36. doi: 10.1093/nar/gni035 |
[46] | Fisher S, Grice EA, Vinton RM, et al. (2006) Conservation of RET regulatory function from human to zebrafish without sequence similarity. Science 14: 276-279. |
[47] | Blow MJ, McCulley DJ, Li Z, et al. (2010) ChIP-Seq identification of weakly conserved heart enhancers. Nat Genet 42: 806-810. |
[48] | Kague E, Bessling SL, Lee J, et al. (2010) Functionally conserved cis-regulatory elements of COL18A1 identified through zebrafish transgenesis. Dev Biol 337: 496-505. doi: 10.1016/j.ydbio.2009.10.028 |
[49] | Taher L, McGaughey DM, Maragh S, et al. (2011) Genome-wide identification of conserved regulatory function in diverged sequences. Genome Res 7: 1139-1149. |
[50] | Shakes LA, Malcolm TL, Allen KL, et al. (2008) Context dependent function of APPb Enhancer identified using Enhancer Trap-containing BACs as Transgenes in Zebrafish. Nucleic Acids Res 36: 6237-6248. doi: 10.1093/nar/gkn628 |
[51] | Chatterjee PK (2015) Directing Enhancer-traps and iTol2 End Sequences to Deleted BAC ends with loxP- and lox511-Tn10 transposons. “Bacterial Artificial Chromosomes” Methods in Molecular Biology series. Editor: K. Narayanan, Series editor: J. Walker. (2015) 2nd ed., Humana Press/ Springer, 99-122. |
[52] | Shakes LA, Garland DM, Srivastava DK, et al. (2005) Minimal Cross-recombination between wild type and loxP511 sites in vivo facilitates Truncating Both Ends of Large DNA Inserts in pBACe3.6 and Related Vectors. Nucleic Acids Res 33: e118. doi: 10.1093/nar/gni119 |
[53] | Shakes LA, Abe G, Eltayeb MA, et al. (2011) Generating libraries of iTol2-end insertions at BAC ends using loxP and lox511-Tn10 transposons. BMC Genomics 12: 351. doi: 10.1186/1471-2164-12-351 |
[54] | Chatterjee PK, Shakes LA, Wolf HM, et al. (2013) Identifying Distal cis-acting Gene-Regulatory Sequences by Expressing BACs Functionalized with loxP-Tn10 Transposons in Zebrafish. Royal Soc Chem Adv 3: 8604-8617. |
[55] | Mosimann C, Puller AC, Lawson KL, et al. (2013) Site-directed zebrafish transgenesis into single landing sites with the PhiC31 integrase system. Dev Dyn 242: 949-963. |
[56] | Kirchmaier S, Höckendorf B, Möller EK, et al. (2013) Efficient site-specific transgenesis and enhancer activity tests in medaka using PhiC31 integrase. Development 140: 4287-4295. |
[57] | Araki K, Araki M, Yamamura K (1997) Targeted integration of DNA using mutant lox sites in embryonic stem cells. Nucleic Acids Res 25: 868-872. |
[58] | Liu W, Wang Y, Qin Y, et al. (2007) Site-Directed Gene Integration in Transgenic Zebrafish Mediated by Cre Recombinase Using a Combination of Mutant Lox Sites. Marine Biotechnol 9: 420-428. |
[59] | Musa A, Lehrach H, Russo VA (2001) Distinct expression patterns of two zebrafish homologues of the human APP gene during embryonic development. Dev Genes Evol 211: 563-567. doi: 10.1007/s00427-001-0189-9 |
[60] | Salbaum JM, Weidemann A, Lemaire HG, et al. (1988) The promoter of Alzheimer's disease amyloid A4 precursor gene. EMBO J 7: 2807-2813. |
[61] | Yoshikai SI, Sasaki H, Dohura K, et al. (1990) Genomic organization of the human amyloid beta-protein precursor gene. Gene 87: 257-263. doi: 10.1016/0378-1119(90)90310-N |
[62] | Lahiri DK, Robakis NK (1991) The promoter activity of the gene encoding Alzheimer beta-amyloid precursor protein (APP) is regulated by two blocks of upstream sequences. Brain Res Mol Brain Res 9: 253-257. doi: 10.1016/0169-328X(91)90009-M |
[63] | Song W, Lahiri DK (1998) Functional identification of the promoter of the gene encoding the Rhesus monkey beta-amyloid precursor protein. Gene 217:165-176. doi: 10.1016/S0378-1119(98)00340-0 |
[64] | Lahiri DK, Song W, Ge YW (2000) Analysis of the 5'-flanking region of the beta-amyloid precursor protein gene that contributes to increased promoter activity in differentiated neuronal cells, Brain Res Mol Brain Res 77: 185-198. |
[65] | Lahiri DK, Ge YW, Maloney B (2005) Characterization of the APP proximal promoter and 5'-untranslated regions: Identification of cell-type specific domains and implications in APP gene expression and Alzheimer's disease. FASEB J 19: 653-665. |
[66] | Rogers JT, Randall JD, Cahill CM, et al. (2002) An iron-responsive element type II in the 5' untranslated region of the Alzheimer's amyloid precursor protein transcript. J Biol Chem 277: 518-528. |
[67] | Shaw KT, Utsuki T, Rogers J, et al. (2001) Phenserine regulates translation of beta-amyloid precursor protein mRNA by a putative interleukin-1 responsive element, a target for drug development. Proc Natl Acad Sci U S A 98: 7605-7610. doi: 10.1073/pnas.131152998 |
[68] | Theuns J, Brouwers N, Engelborghs S, et al. (2006) Promoter mutations that increase amyloid precursor-protein expression are associated with Alzheimer disease. Am J Hum Genet 78: 936-946. doi: 10.1086/504044 |
[69] | Chakraborty T, Perlot T, Subrahmanyam R, et al. (2009) A 220-nucleotide deletion of the intronic enhancer reveals an epigenetic hierarchy in immunoglobulin heavy chain locus activation. J Exp Med 206: 1019-1027. doi: 10.1084/jem.20081621 |
[70] | Wolf HM, Nyabera KO, De La Torre KK, et al. (2014) Long Range Gene-Regulatory Sequences Identified by Transgenic Expression of Bacterially-Engineered Enhancer-trap BACs in Zebrafish. Mol Biol Genetic Eng 2: 2. doi: 10.7243/2053-5767-2-2 |
[71] | Popović M, Caballero-Bleda M, Puelles L, et al. (1998) Importance of immunological and inflammatory processes in the pathogenesis and therapy of Alzheimer's disease. Int J Neurosci 95: 203-236. doi: 10.3109/00207459809003341 |
[72] | Kamizono S, Duncan GS, Seidel MG, et al. (2009) Nfil3/E4bp4 is required for the development and maturation of NK cells in vivo. J Exp Med 206: 2977-2986. doi: 10.1084/jem.20092176 |
[73] | Kobayashi T, Matsuoka K, Sheikh SZ, et al. (2011) NFIL3 is a regulator of IL-12 p40 in macrophages and mucosal immunity. J Immunol 186: 4649-4655. doi: 10.4049/jimmunol.1003888 |
[74] | The ENCODE Project Consortium (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447: 799-816. doi: 10.1038/nature05874 |
[75] | The International HapMap 3 Consortium (2010) Integrating common and rare genetic variation in diverse human populations. Nature 467: 52-58. doi: 10.1038/nature09298 |
[76] | The 1000 Genomes Project Consortium (2012) An integrated map of genetic variation from 1,092 human genomes. Nature 491: 56-65. doi: 10.1038/nature11632 |