Citation: Christophe A. Monnier, David C. Thévenaz, Sandor Balog, Gina L. Fiore, Dimitri Vanhecke, Barbara Rothen-Rutishauser, Alke Petri-Fink. A guide to investigating colloidal nanoparticles by cryogenic transmission electron microscopy: pitfalls and benefits[J]. AIMS Biophysics, 2015, 2(3): 245-258. doi: 10.3934/biophy.2015.3.245
[1] | Nanotechnologies—Terminology and Definitions for Nano-objects—Nanoparticle, Nanofibre and Nanoplate (2008) International Organization for Standardization Geneva, Switzerland. |
[2] | Wagner V, Dullaart A, Bock A-K, et al. (2006) The emerging nanomedicine landscape. Nat Biotechnol 24: 1211-1217. doi: 10.1038/nbt1006-1211 |
[3] | Cao Q, Rogers JA (2009) Ultrathin Films of Single-Walled Carbon Nanotubes for Electronics and Sensors: A Review of Fundamental and Applied Aspects. Adv Mater 21: 29-53. doi: 10.1002/adma.200801995 |
[4] | Rao C, Cheetham A (2001) Science and technology of nanomaterials: current status and future prospects. J Mater Chem 11: 2887-2894. doi: 10.1039/b105058n |
[5] | Brinkhuis RP, Rutjes FP, van Hest JC (2011) Polymeric vesicles in biomedical applications. Pol Chem 2: 1449-1462. doi: 10.1039/c1py00061f |
[6] | Du Z-X, Xu J-T, Fan Z-Q (2007) Micellar morphologies of poly (ε-caprolactone)-b-poly (ethylene oxide) block copolymers in water with a crystalline core. Macromolecules 40: 7633-7637. doi: 10.1021/ma070977p |
[7] | Du ZX, Xu JT, Fan ZQ (2008) Regulation of Micellar Morphology of PCL-b-PEO Block Copolymers by Crystallization Temperature. Macromol Rapid Comm 29: 467-471. doi: 10.1002/marc.200700795 |
[8] | Giacomelli C, Borsali R (2006) Morphology of Poly (ethylene oxide)-block-Polycaprolatone Block Copolymer Micelles Controlled via the Preparation Method. Wiley Online Library 147-153. |
[9] | Ghoroghchian PP, Li G, Levine DH, et al. (2006) Bioresorbable vesicles formed through spontaneous self-assembly of amphiphilic poly (ethylene oxide)-block-polycaprolactone. Macromolecules 39: 1673-1675. doi: 10.1021/ma0519009 |
[10] | Blanazs A, Armes SP, Ryan AJ (2009) Self-assembled block copolymer aggregates: from micelles to vesicles and their biological applications. Macromol Rapid Comm 30: 267-277. doi: 10.1002/marc.200800713 |
[11] | Renggli K, Baumann P, Langowska K, et al. (2011) Selective and responsive nanoreactors. Adv Funct Mater 21: 1241-1259. doi: 10.1002/adfm.201001563 |
[12] | Graff A, Winterhalter M, Meier W (2001) Nanoreactors from polymer-stabilized liposomes. Langmuir 17: 919-923. doi: 10.1021/la001306m |
[13] | Nardin C, Widmer J, Winterhalter M, et al. (2001) Amphiphilic block copolymer nanocontainers as bioreactors. Eur Phys J E 4: 403-410. doi: 10.1007/s101890170095 |
[14] | Israelachvili JN, Mitchell DJ, Ninham BW (1976) Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J Chem Soc, Faraday Transactions 2: Molecular Chem Phys 72: 1525-1568. |
[15] | Brinker CJ, Lu Y, Sellinger A, et al. (1999) Evaporation-induced self-assembly: nanostructures made easy. Adv Mater 11: 579-585. |
[16] | He WN, Xu JT, Du BY, et al. (2010) Inorganic-Salt-Induced Morphological Transformation of Semicrystalline Micelles of PCL-b-PEO Block Copolymer in Aqueous Solution. Macromol Chem Phys 211: 1909-1916. doi: 10.1002/macp.201000184 |
[17] | He WN, Xu JT, Du BY, et al. (2012) Effect of pH on the Micellar Morphology of Semicrystalline PCL-b-PEO Block Copolymers in Aqueous Solution. Macromol Chem Phys 213: 952-964. doi: 10.1002/macp.201100615 |
[18] | Egelhaaf S, Müller M, Schurtenberger P (1998) Size determination of polymer-like micelles using cryo-electron microscopy. Langmuir 14: 4345-4349. doi: 10.1021/la971370c |
[19] | Hao X, Kuang C, Gu Z, et al. (2013) From microscopy to nanoscopy via visible light. Light: Science Applications 2: e108. doi: 10.1038/lsa.2013.64 |
[20] | Shtengel G, Galbraith JA, Galbraith CG, et al. (2009) Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure. P Natl Acad Sci U S A 106: 3125-3130. doi: 10.1073/pnas.0813131106 |
[21] | Fernández-Suárez M, Ting AY (2008) Fluorescent probes for super-resolution imaging in living cells. Nat Rev Mol Cell Bio 9: 929-943. doi: 10.1038/nrm2531 |
[22] | McMullan G, Faruqi A (2008) Electron microscope imaging of single particles using the Medipix2 detector. Nucl Instrum Methods Phys Res A 591: 129-133. doi: 10.1016/j.nima.2008.03.041 |
[23] | Massover WH (2008) On the experimental use of light metal salts for negative staining. Microsc Microanal 14: 126-137. |
[24] | He Y, Li Z, Simone P, et al. (2006) Self-assembly of block copolymer micelles in an ionic liquid. J Am Chem Soc 128: 2745-2750. doi: 10.1021/ja058091t |
[25] | Oguchi K, Sanui K, Ogata N, et al. (1990) Relationship between electron sensitivity and chemical structures of polymers as electron beam resist. VII: Electron sensitivity of vinyl polymers containing pendant 1, 3-dioxolan groups. Pol Eng Sci30: 449-452. |
[26] | Dubochet J, Adrian M, Chang J-J, et al. (1988) Cryo-electron microscopy of vitrified specimens. Q Rev Biophys 21: 129-228. doi: 10.1017/S0033583500004297 |
[27] | Thévenaz DC, Monnier CA, Balog S, et al. (2014) Luminescent Nanoparticles with Lanthanide-Containing Poly (ethylene glycol)-Poly (ε-caprolactone) Block Copolymers. Biomacromolecules 15: 3994-4001. doi: 10.1021/bm501058n |
[28] | Eliseeva SV, Bünzli J-CG (2010) Lanthanide luminescence for functional materials and bio-sciences. Chem Soc Rev 39: 189-227. doi: 10.1039/B905604C |
[29] | Wang W, Lin J, Cai C, et al. (2015) Optical properties of amphiphilic copolymer-based self-assemblies. Eur Polym J. |
[30] | Turkevich J, Cooper SP, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11: 55-75. doi: 10.1039/df9511100055 |
[31] | Haran G, Cohen R, Bar LK, et al. (1993) Transmembrane ammonium sulfate gradients in liposomes produce efficient and stable entrapment of amphipathic weak bases. BBA-Biomembranes 1151: 201-215. doi: 10.1016/0005-2736(93)90105-9 |
[32] | Michen B, Geers C, Vanhecke D, et al. (2015) Avoiding drying-artifacts in transmission electron microscopy: Characterizing the size and colloidal state of nanoparticles. Sci Rep 5. |
[33] | Hirsch V, Kinnear C, Rodriguez-Lorenzo L, et al. (2014) In vitro dosimetry of agglomerates. Nanoscale 6: 7325-7331. doi: 10.1039/c4nr00460d |
[34] | Dinu MV, Spulber M, Renggli K, et al. (2015) Macromol. Rapid Commun. 6/2015. Macromol Rapid Comm 36: 576-576. doi: 10.1002/marc.201570025 |
[35] | Egelhaaf S, Wehrli E, Adrian M, et al. (1996) Determination of the size distribution of lecithin liposomes: a comparative study using freeze fracture, cryoelectron microscopy and dynamic light scattering. J Microsc 184: 214-228. doi: 10.1046/j.1365-2818.1996.1280687.x |
[36] | Adrian M, Dubochet J, Fuller SD, et al. (1998) Cryo-negative staining. Micron 29: 145-160. doi: 10.1016/S0968-4328(97)00068-1 |
[37] | Bonnaud C, Monnier CA, Demurtas D, et al. (2014) Insertion of nanoparticle clusters into vesicle bilayers. ACS nano 8: 3451-3460. doi: 10.1021/nn406349z |