[1]
|
Gomez-Zavaglia A, Prieto Lage MA, Jimenez-Lopez C, et al. (2019) The potential of seaweeds as a source of functional ingredients of prebiotic and antioxidant value. Antioxidants 8: 406.
|
[2]
|
Kadam SU, Álvarez C, Tiwari BK, et al. (2015) Extraction of biomolecules from seaweeds. In: Brijesh KT, Declan JT. (Eds), Seaweed sustainability, Food and Non-Food Applications. London: Academic Press, 243-269.
|
[3]
|
Ha TTH, Huong LM, Cuong LH, et al. (2019) Evaluation of biological activities of some seaweed and seagrass species in the coastal area of Vietnam. Vietnam J Mar Sci Technol 19: 405-414.
|
[4]
|
Kim JK, Kottuparambil S, Moh SH, et al. (2015) Potential applications of nuisance microalgae blooms. J Appl Phycol 27: 1223-1234.
|
[5]
|
Milledge JJ, Nielsen BV, Bailey D (2016) High-value products from macroalgae: the potential uses of the invasive brown seaweed. Sargassum muticum. Rev Environ Sci Biotechnol 15: 67-88.
|
[6]
|
Uysal O, Uysal FO, Ekinci K (2015) Evaluation of microalgae as microbial fertilizer. Eur J Sustainable Dev 4: 77-82.
|
[7]
|
Thiyagarasaiyar K, Goh BH, Jeon YJ, et al. (2020) Algae metabolites in cosmeceutical: an overview of current applications and challenges. Mar Drugs18: 323.
|
[8]
|
Bwapwa JK, Jaiyeola AT, Chetty R (2017) Bioremediation of acid mine drainage using algae strains: A review. S Afr J Chem Eng 24: 62-70.
|
[9]
|
Jun JY, Jung MJ, Jeong IH, et al. (2018) Antimicrobial and antibiofilm activities of sulfated polysaccharides from marine algae against dental plaque bacteria. Mar Drugs 16: 301.
|
[10]
|
Gandhi AD, Vizhi DK, Lavanya K, et al. (2017) In vitro anti-biofilm and anti-bacterial activity of Sesbania grandiflora extract against Staphylococcus aureus. Biochem Biophys Rep 12: 193-197.
|
[11]
|
Zeraatkar AK, Ahmadzadeh H, Talebi AF, et al. (2016) Potential use of algae for heavy metal bioremediation, a critical review. J Environ Manage 181: 817-831.
|
[12]
|
Omar H, Al-Judaibiand A, El-Gendy A (2018) Antimicrobial, antioxidant, anticancer activity and phytochemical analysis of the red alga, Laurencia papillosa. Int J Pharmacol 14: 572-583.
|
[13]
|
Haq SH, Al-Ruwaished G, Al-Mutlaq MA, et al. (2019) Antioxidant, anticancer activity and phytochemical analysis of green algae, Chaetomorpha collected from the Arabian Gulf. Sci Rep 9: 18906.
|
[14]
|
Chingizova EA, Skriptsova AV, Anisimov MM, et al. (2017) Antimicrobial activity of marine algal extracts. Int J Phytomedicine 9: 113-122.
|
[15]
|
Martínez Andrade KA, Lauritano C, Romano G, et al. (2018) Marine microalgae with anti-cancer properties. Mar Drugs 16: 165.
|
[16]
|
Liu X, Wang S, Cao S, et al. (2018) Structural characteristics and anticoagulant property in vitro and in vivo of a seaweed sulfated Rhamnan. Mar Drugs 16: 243.
|
[17]
|
Delgado NG, Vázquez AIF, Sánchez CH, et al. (2013) Anti-inflammatory and antinociceptive activities of methanolic extract from red seaweed Dichotomaria obtusata. Braz J Pharm Sci 49: 65-74.
|
[18]
|
Cotas J, Leandro A, Pacheco D, et al. (2020) A comprehensive review of the nutraceutical and therapeutic applications of red seaweeds (Rhodophyta). Life 10: 19.
|
[19]
|
Nguyen TH, Nguyen TLP, Tran TVA, et al. (2019) Antidiabetic and antioxidant activities of red seaweed Laurencia dendroidea. Asian Pac J Trop Biomed 9: 501-509.
|
[20]
|
Trung DV, Truc NTT, Duy CNH, et al. (2019) Halogenated sesquiterpenes from the red alga Laurencia intermedia Yamada. Vietnam J Chem 57: 723-727.
|
[21]
|
Irie T, Suzuki M, Kurosawa E, et al. (1970) Laurinterol, debromolaurinterol and isolaurinterol, constituents of Laurencia intermedia Yamada. Tetrahedron 26: 3271-3277.
|
[22]
|
Makkar F, Chakraborty K (2017) Antidiabetic and anti-inflammatory potential of sulphated polygalactans from red seaweeds Kappaphycus alvarezii and Gracilaria opuntia. Int J Food Prop 20: 1326-1337.
|
[23]
|
Chemat F, Rombaut N, Sicaire AG, et al. (2017) Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason Sonochem 34: 540-560.
|
[24]
|
Pacheco‐Fernández I, González‐Hernández P, Rocío‐Bautista P (2015) Main uses of microwaves and ultrasounds in analytical extraction schemes: An overview. In: Anderson JL, Pino V, Stalcup AM. (Eds), Analytical Separation Science. Hoboken, New Jersey, USA: John Wiley & Sons, 5: 1469-1502.
|
[25]
|
Box GE, Wilson KB (1951) On the experimental attainment of optimum conditions. J R Stat Soc Series B Stat Methodol 13: 1-38.
|
[26]
|
Montgomery DC, Runger GC (2010) Applied statistics and probability for engineers. 5th ed. New York: John Wiley & Sons, 784.
|
[27]
|
Kadam SU, Tiwari BK, Smyth TJ, et al. (2015) Optimization of ultrasound assisted extraction of bioactive components from brown seaweed Ascophyllum nodosum using response surface methodology. Ultrason Sonochem 23: 308-316.
|
[28]
|
Topuz OK, Gokoglu N, Yerlikaya P, et al. (2016) Optimization of antioxidant activity and phenolic compound extraction conditions from red seaweed (Laurencia obtuse). J Aquat Food Prod Technol 25: 414-422.
|
[29]
|
Dang TT, Vuong VQ, Schreider MJ, et al. (2017) Optimisation of ultrasound-assisted extraction conditions for phenolic content and antioxidant activities of the alga Hormosira banksii using response surface methodology. J Appl Phycol 29: 3161-3173.
|
[30]
|
Pham HNT, Nguyen VT, Vuong QV, et al. (2015) Effect of extraction solvents and drying methods on the physicochemical and antioxidant properties of Helicteres hirsuta Lour. Leaves. Technologies 3: 285-301.
|
[31]
|
Pham HNT, Tang NV, Vuong QV, et al. (2017) Bioactive compound yield and antioxidant capacity of Helicteres hirsuta Lour. Stem as affected by various solvents and drying methods. J Food Process Preserv 41: e12879.
|
[32]
|
Wang L, Wang Z, Li X (2013) Optimization of ultrasonic-assisted extraction of phenolic antioxidants from Malus baccata (Linn.) Borkh using response surface methodology: Sample preparation. J Sep Sci 36: 1652-1658.
|
[33]
|
Ahmed MI, Xu X, Sulieman AA, et al. (2020) Effect of extraction conditions on phenolic compounds and antioxidant properties of koreeb (Dactyloctenium aegyptium) seeds flour. J Food Meas Charact 14: 799-808.
|
[34]
|
Bamba BSB, Shi J, Tranchant CC, et al. (2018) Influence of extraction conditions on ultrasound-assisted recovery of bioactive phenolics from blueberry pomace and their antioxidant activity. Molecules 23: 1685.
|
[35]
|
Topuz OK, Gokoglu N, Yerlikaya P, et al. (2016) Optimization of antioxidant activity and phenolic compound extraction conditions from red seaweed (Laurencia obtuse). J Aquat Food Prod Technol 25: 414-422.
|
[36]
|
Mokrani A, Madani K (2016) Effect of solvent, time and temperature on the extraction of phenolic compounds and antioxidant capacity of peach (Prunus persica L.) fruit. Sep Purif Technol 162: 68-76.
|
[37]
|
Hacke ACM, Marques JA, Vellosa JCR, et al. (2018) Ethyl acetate fraction of Cymbopogon citratus as a potential source of antioxidant compounds. New J Chem 42: 3642-3652.
|
[38]
|
Belhaoues S, Amri S, Bensouilah M (2020) Major phenolic compounds, antioxidant and antibacterial activities of Anthemis praecox Link aerial parts. S Afr J Bot 131: 200-205.
|
[39]
|
Mariem S, Hanen F, Inès J (2014) Phenolic profile, biological activities and fraction analysis of the medicinal halophyte Retama raetam. S Afr J Bot 94: 114-121.
|
[40]
|
Zubia M, Fabre MS, Kerjean V, et al. (2009) Antioxidant and antitumoural activities of some Phaeophyta from Brittany coasts. Food Chem 116: 693-701.
|
[41]
|
Rahiman S, Tantry BA, Kumar A (2012) Variation of antioxidant activity and phenolic content of some common home remedies with storage time. Afr J Tradit Complement Altern Med 10: 124-127.
|
[42]
|
Terpinc P, Čeh B, Ulrih NP, et al. (2012) Studies of the correlation between antioxidant properties and the total phenolic content of different oil cake extracts. Ind Crops Prod 39: 210-217.
|
[43]
|
Ulewicz-Magulska B, Wesolowski M (2019) Total phenolic contents and antioxidant potential of herbs used for medical and culinary purposes. Plant Foods Hum Nutr 74: 61-67.
|