Research article

Pricing and hedging bond options and sinking-fund bonds under the CIR model

  • Received: 27 November 2021 Revised: 13 December 2021 Accepted: 04 January 2022 Published: 10 January 2022
  • JEL Codes: G12, G13

  • This article derives simple closed-form solutions for computing Greeks of zero-coupon and coupon-bearing bond options under the CIR interest rate model, which are shown to be accurate, easy to implement, and computationally highly efficient. These novel analytical solutions allow us to extend the literature in two other directions. First, the static hedging portfolio approach is used for pricing and hedging American-style plain-vanilla zero-coupon bond options under the CIR model. Second, we derive analytically the comparative static properties of sinking-fund bonds under the same interest rate modeling setup.

    Citation: Manuela Larguinho, José Carlos Dias, Carlos A. Braumann. Pricing and hedging bond options and sinking-fund bonds under the CIR model[J]. Quantitative Finance and Economics, 2022, 6(1): 1-34. doi: 10.3934/QFE.2022001

    Related Papers:

  • This article derives simple closed-form solutions for computing Greeks of zero-coupon and coupon-bearing bond options under the CIR interest rate model, which are shown to be accurate, easy to implement, and computationally highly efficient. These novel analytical solutions allow us to extend the literature in two other directions. First, the static hedging portfolio approach is used for pricing and hedging American-style plain-vanilla zero-coupon bond options under the CIR model. Second, we derive analytically the comparative static properties of sinking-fund bonds under the same interest rate modeling setup.



    加载中


    [1] Abramowitz M, Stegun IA (1972) Handbook of Mathematical Functions, (Dover, New York).
    [2] Allegretto W, Lin Y, Yang H (2003) Numerical Pricing of American Put Options on Zero-Coupon Bonds. Appl Numer Math 46: 113–134. https://doi.org/10.1016/S0168-9274(03)00034-5 doi: 10.1016/S0168-9274(03)00034-5
    [3] Alvarez LHR (2001) On the Form and Risk-Sensitivity of Zero Coupon Bonds for a Class of Interest Rate Models. Insur Math Econ 28: 83–90. https://doi.org/10.1016/S0167-6687(00)00068-8 doi: 10.1016/S0167-6687(00)00068-8
    [4] Bacinello AR, Ortu F, Stucchi P (1996) Valuation of Sinking-Fund Bonds in the Vasicek and CIR Frameworks. Appl Math Financ 3: 269–294. https://doi.org/10.1080/13504869600000013 doi: 10.1080/13504869600000013
    [5] Benton D, Krishnamoorthy K (2003) Computing Discrete Mixtures of Continuous Distributions: Noncentral Chisquare, Noncentral t and the Distribution of the Square of the Sample Multiple Correlation Coefficient. Comput Stat Data Anal 43: 249–267. https://doi.org/10.1016/S0167-9473(02)00283-9 doi: 10.1016/S0167-9473(02)00283-9
    [6] Brigo D, Mercurio F (2001) A Deterministic-Shift Extension of Analytically-Tractable and Time-Homogeneous Short-Rate Models. Financ Stoch 5: 369–387.
    [7] Carr P (2001) Deriving Derivatives of Derivative Securities. J Comput Financ 4: 5–29. https://10.1109/CIFER.2000.844609 doi: 10.1109/CIFER.2000.844609
    [8] Chan KC, Karolyi GA, Longstaff FA, et al. (1992) An Empirical Comparison of Alternative Models of the Short-Term Interest Rate. J Financ 47: 1209–1227. https://doi.org/10.1111/j.1540-6261.1992.tb04011.x doi: 10.1111/j.1540-6261.1992.tb04011.x
    [9] Chesney M, Elliott RJ, Gibson R (1993) Analytical Solutions for the Pricing of American Bond and Yield Options. Math Financ 3: 277–294. https://doi.org/10.1111/j.1467-9965.1993.tb00045.x doi: 10.1111/j.1467-9965.1993.tb00045.x
    [10] Chung SL, Shackleton M (2002) The Binomial Black-Scholes Model and the Greeks. J Futures Mark 22: 143–153. https://doi.org/10.1002/fut.2211 doi: 10.1002/fut.2211
    [11] Chung SL, Shackleton M (2005) On the Errors and Comparison of Vega Estimation Methods. J Futures Mark 25: 21–38. https://doi.org/10.1002/fut.20127 doi: 10.1002/fut.20127
    [12] Chung SL, Shih PT (2009) Static Hedging and Pricing American Options. J Bank Financ 33: 2140–2149. https://doi.org/10.1016/j.jbankfin.2009.05.016 doi: 10.1016/j.jbankfin.2009.05.016
    [13] Chung SL, Shih PT, Tsai WC (2010) A Modified Static Hedging Method for Continuous Barrier Options. J Futures Mark 30: 1150–1166. https://doi.org/10.1002/fut.20451 doi: 10.1002/fut.20451
    [14] Chung SL, Shih PT, Tsai WC (2013) Static Hedging and Pricing American Knock-In Put Options. J Bank Financ 37: 191–205. https://doi.org/10.1016/j.jbankfin.2012.08.019 doi: 10.1016/j.jbankfin.2012.08.019
    [15] Chung SL, Hung W, Lee HH, et al. (2011) On the Rate of Convergence of Binomial Greeks. J Futures Mark 31: 562–597. https://doi.org/10.1002/fut.20484 doi: 10.1002/fut.20484
    [16] Cohen JD (1988) Noncentral Chi-Square: Some Observations on Recurrence. Ame Stat 42: 120–122. https://10.1080/00031305.1988.10475540 doi: 10.1080/00031305.1988.10475540
    [17] Cox JC, Ingersoll Jr JE, Ross SA (1979) Duration and the Measurement of Basis Risk. J Bus 52: 51–61. http://www.jstor.org/stable/2352663
    [18] Cox JC, Ingersoll Jr JE, Ross SA (1985) A Theory of the Term Structure of Interest Rates. Econometrica 53: 385–408. https://doi.org/10.1142/9789812701022_0005 doi: 10.1142/9789812701022_0005
    [19] Cruz A, Dias JC (2017) The Binomial CEV Model and the Greeks. J Futures Mark 37: 90–104. https://doi.org/10.1002/fut.21791 doi: 10.1002/fut.21791
    [20] Cruz A, Dias JC (2020) Valuing American-Style Options under the CEV Model: An Integral Representation Based Method. Rev Deri Res 23: 63–83. https://doi.org/10.1007/s11147-019-09157-w doi: 10.1007/s11147-019-09157-w
    [21] Deng G (2015) Pricing American Put Option on Zero-Coupon Bond in a Jump-Extended CIR Model. Commun Nonlinear Sci 22: 186–196. https://doi.org/10.1016/j.cnsns.2014.10.003 doi: 10.1016/j.cnsns.2014.10.003
    [22] Dias JC, Nunes JPV, Cruz A (2020) A Note on Options and Bubbles under the CEV Model: Implications for Pricing and Hedging. Rev Deriv Res 23: 249–272. https://doi.org/10.1007/s11147-019-09164-x doi: 10.1007/s11147-019-09164-x
    [23] Dias JC, Nunes JPV, Ruas JP (2015) Pricing and Static Hedging of European-Style Double Barrier Options under the Jump to Default Extended CEV Model. Quant Financ 15: 1995–2010. https://doi.org/10.1080/14697688.2014.971049 doi: 10.1080/14697688.2014.971049
    [24] Feller W (1951) Two Singular Diffusion Problems. Annal Math 54: 173–182. https://doi.org/10.2307/1969318 doi: 10.2307/1969318
    [25] Guo JH, Chang LF (2020) Repeated Richardson Extrapolation and Static Hedging of Barrier Options under the CEV Model. J Futures Mark 40: 974–988. https://doi.org/10.1002/fut.22100 doi: 10.1002/fut.22100
    [26] Hull J, White A (1990) Valuing Derivative Securities Using the Explicit Finite Difference Method. J Financ Quant Anal 25: 87–100. https://doi.org/10.2307/2330889 doi: 10.2307/2330889
    [27] Jamshidian F (1989) An Exact Bond Option Formula. J Financ 44: 205–209. https://doi.org/10.1111/j.1540-6261.1989.tb02413.x doi: 10.1111/j.1540-6261.1989.tb02413.x
    [28] Jamshidian F (1995) A Simple Class of Square-Root Interest-Rate Models. Appl Math Financ 2: 61–72. https://doi.org/10.1080/13504869500000004 doi: 10.1080/13504869500000004
    [29] Johnson NL, Kotz S, Balakrishnan N (1995) Continuous Univariate Distributions, Vol. 2, 2nd ed. (John Wiley & Sons, New York).
    [30] Larguinho M, Dias JC, Braumann CA (2013) On the Computation of Option Prices and Greeks under the CEV Model. Quant Financ 13: 907–917. https://doi.org/10.1080/14697688.2013.765958 doi: 10.1080/14697688.2013.765958
    [31] Longstaff FA (1993) The Valuation of Options on Coupon Bonds. J Bank Financ 17: 27–42. https://doi.org/10.1016/0378-4266(93)90078-R doi: 10.1016/0378-4266(93)90078-R
    [32] Longstaff FA, Schwartz ES (2001) Valuing American Options by Simulation: A Simple Least-Squares Approach. Rev Financ Stud 14: 113–147. https://doi.org/10.1093/rfs/14.1.113 doi: 10.1093/rfs/14.1.113
    [33] Maghsoodi Y (1996) Solution of the Extended CIR Term Structure and Bond Option Valuation. Math Financ 6: 89–109. https://doi.org/10.1111/j.1467-9965.1996.tb00113.x doi: 10.1111/j.1467-9965.1996.tb00113.x
    [34] McKean Jr HP (1965) Appendix: A Free Boundary Problem for the Heat Equation Arising from a Problem of Mathematical Economics. Ind Manage Rev 6: 32–39.
    [35] Najafi AR, Mehrdoust F, Shirinpour S (2018) Pricing American Put Option On Zero-Coupon Bond Under Fractional CIR Model With Transaction Cost. Commun Stat Simulation Comput 47: 864–870. https://doi.org/10.1080/03610918.2017.1295153 doi: 10.1080/03610918.2017.1295153
    [36] Nawalkha SK, Beliaeva NA (2007) Efficient Trees for CIR and CEV Short Rate Models. J Altern Invest 10: 71–90. https://doi.org/10.3905/jai.2007.688995 doi: 10.3905/jai.2007.688995
    [37] Nelson DB, Ramaswamy K (1990) Simple Binomial Processes as Diffusion Approximations in Financial Models. Rev Financ Stud 3: 393–430. https://doi.org/10.1093/rfs/3.3.393 doi: 10.1093/rfs/3.3.393
    [38] Nunes JPV, Ruas JP, Dias JC (2015) Pricing and Static Hedging of American-Style Knock-in Options on Defaultable Stocks. J Bank Financ 58: 343–360. https://doi.org/10.1016/j.jbankfin.2015.05.003 doi: 10.1016/j.jbankfin.2015.05.003
    [39] Nunes JPV, Ruas JP, Dias JC (2020) Early Exercise Boundaries for American-Style Knock-Out Options, Eur J Oper Res 285: 753–766. https://doi.org/10.1016/j.ejor.2020.02.006 doi: 10.1016/j.ejor.2020.02.006
    [40] Pelsser A, Vorst TC (1994) The Binomial Model and the Greeks. J Deriv 1: 45–49. https://doi.org/10.3905/jod.1994.407888 doi: 10.3905/jod.1994.407888
    [41] Peng Q, Henry S (2018) On the Distribution of Extended CIR Model. Stat Pro Lett 142: 23–29. https://doi.org/10.1016/j.spl.2018.06.011 doi: 10.1016/j.spl.2018.06.011
    [42] Ruas JP, Dias JC, Nunes JPV (2013) Pricing and Static Hedging of American Options under the Jump to Default Extended CEV Model. J Bank Financ 37: 4059–4072. https://doi.org/10.1016/j.jbankfin.2013.07.019 doi: 10.1016/j.jbankfin.2013.07.019
    [43] Sankaran M (1963) Approximations to the Non-Central Chi-Square Distribution. Biometrika 50: 199–204. https://doi.org/10.2307/2333761 doi: 10.2307/2333761
    [44] Shaw W (1998) Modelling Financial Derivatives with Mathematica (Cambridge University Press, Cambridge, UK).
    [45] ShuJi L, ShengHong L (2006) Pricing American Interest Rate Option on Zero-Coupon Bond Numerically. Appl Math Comput 175: 834–850. https://doi.org/10.1016/J.AMC.2005.08.008 doi: 10.1016/J.AMC.2005.08.008
    [46] Thakoor N, Tangman Y, Bhuruth M (2012) Numerical Pricing of Financial Derivatives Using Jain's High-Order Compact Scheme. Math Sci 6: 1–16. https://doi.org/10.1186/2251-7456-6-72 doi: 10.1186/2251-7456-6-72
    [47] Tian Y (1992) A Simplified Binomial Approach to the Pricing of Interest-Rate Contingent Claims. J Financ Eng 1: 14–37.
    [48] Tian Y (1994) A Reexamination of Lattice Procedures for Interest Rate Contingent Claims. Adv Futures Options Res 7: 87–111. https://ssrn.com/abstract=5877
    [49] Vasicek O (1977) An Equilibrium Characterization of the Term Structure. J Financ Econ 5: 177–188. https://doi.org/10.1016/0304-405X(77)90016-2 doi: 10.1016/0304-405X(77)90016-2
    [50] Wei JZ (1997) A Simple Approach to Bond Option Pricing. J Futures Mark 17: 131–160.
    [51] Yang H (2004) American Put Options on Zero-Coupon Bonds and a Parabolic Free Boundary Problem. Int J Numer Anal Model 1: 203–215.
    [52] Zhou HJ, Yiu KFC, Li LK (2011) Evaluating American Put Options on Zero-Coupon Bonds by a Penalty Method. J Comput Appl Math 235: 3921–3931. https://doi.org/10.1016/j.cam.2011.01.038 doi: 10.1016/j.cam.2011.01.038
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2754) PDF downloads(340) Cited by(1)

Article outline

Figures and Tables

Figures(2)  /  Tables(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog