Research article Special Issues

Serial-multiple mediation of enjoyment and intention on the relationship between creativity and physical activity

  • Received: 26 October 2020 Accepted: 06 January 2021 Published: 11 January 2021
  • The purpose of the present study was to examine a serial-multiple mediation of physical activity (PA) enjoyment and PA intention in the relationship between creativity and PA level (i.e., moderate-to-vigorous PA). A total of 298 undergraduate and graduate students completed a self-reported questionnaire evaluating creativity, PA enjoyment, PA intention, and PA level. Data analysis was conducted using descriptive statistics, Pearson correlation coefficient, ordinary least-squares regression analysis, and bootstrap methodology. Based on the research findings, both PA enjoyment (β = 0.06; 95% CI [0.003, 0.12]) and PA intention (β = 0.08; 95% CI [0.03, 0.13]) were found to be a mediator of the relationship between creativity and PA level, respectively. Moreover, the serial-multiple mediation of PA enjoyment and PA intention in the relationship between creativity and PA level was statistically significant (β = 0.02; 95% CI [0.01, 0.04]). These findings underscore the importance of shaping both cognitive and affective functions for PA promotion and provide additional support for a neurocognitive affect-related model in the PA domain. In order to guide best practices for PA promotion programs aimed at positively influencing cognition and affect, future PA interventions should develop evidence-based strategies that routinely evaluate cognitive as well as affective responses to PA.

    Citation: Myungjin Jung, Han Soo Kim, Paul D Loprinzi, Minsoo Kang. Serial-multiple mediation of enjoyment and intention on the relationship between creativity and physical activity[J]. AIMS Neuroscience, 2021, 8(1): 161-180. doi: 10.3934/Neuroscience.2021008

    Related Papers:

  • The purpose of the present study was to examine a serial-multiple mediation of physical activity (PA) enjoyment and PA intention in the relationship between creativity and PA level (i.e., moderate-to-vigorous PA). A total of 298 undergraduate and graduate students completed a self-reported questionnaire evaluating creativity, PA enjoyment, PA intention, and PA level. Data analysis was conducted using descriptive statistics, Pearson correlation coefficient, ordinary least-squares regression analysis, and bootstrap methodology. Based on the research findings, both PA enjoyment (β = 0.06; 95% CI [0.003, 0.12]) and PA intention (β = 0.08; 95% CI [0.03, 0.13]) were found to be a mediator of the relationship between creativity and PA level, respectively. Moreover, the serial-multiple mediation of PA enjoyment and PA intention in the relationship between creativity and PA level was statistically significant (β = 0.02; 95% CI [0.01, 0.04]). These findings underscore the importance of shaping both cognitive and affective functions for PA promotion and provide additional support for a neurocognitive affect-related model in the PA domain. In order to guide best practices for PA promotion programs aimed at positively influencing cognition and affect, future PA interventions should develop evidence-based strategies that routinely evaluate cognitive as well as affective responses to PA.


    Abbreviations

    PA

    Physical activity

    PFC

    Prefrontal cortex

    DLPFC

    Dorsolateral prefrontal cortex

    MPFC

    Medial prefrontal cortex

    MVPA

    Moderate-to-vigorous physical activity

    BMI

    Body mass index

    CR

    Composite reliability

    AVE

    Average variance extracted

    CFA

    Confirmatory factor analysis

    MLM

    Maximum likelihood method

    CFI

    Comparative Fit Index

    TLI

    Tucker-Lewis Index

    RMSEA

    Root Mean Square Error of Approximation

    SRMR

    Standardized Root Mean Square Residual

    GPA

    Grade point average

    SIC

    Squared inter-construct correlation

    VMPFC

    Ventromedial prefrontal cortex

    加载中

    Acknowledgments



    We have no conflicts of interest and no funding was used to prepare this manuscript.

    Conflict of interest



    The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

    [1] Kivimäki M, Singh-Manoux A, Pentti J, et al. (2019) Physical inactivity, cardiometabolic disease, and risk of dementia: an individual-participant meta-analysis. BMJ 365: 1495. doi: 10.1136/bmj.l1495
    [2] Ding D, Lawson KD, Kolbe-Alexander TL, et al. (2016) The economic burden of physical inactivity: a global analysis of major non-communicable diseases. Lancet 388: 1311-1324. doi: 10.1016/S0140-6736(16)30383-X
    [3] Booth JN, Tomporowski PD, Boyle JM, et al. (2013) Associations between executive attention and objectively measured physical activity in adolescence: findings from ALSPAC, a UK cohort. Ment Health Phys Act 6: 212-219. doi: 10.1016/j.mhpa.2013.09.002
    [4] Church TS, Earnest CP, Skinner JS, et al. (2007) Effects of different doses of physical activity on cardiorespiratory fitness among sedentary, overweight or obese postmenopausal women with elevated blood pressure: a randomized controlled trial. JAMA 297: 2081-2091. doi: 10.1001/jama.297.19.2081
    [5] Schrempft S, Jackowska M, Hamer M, et al. (2019) Associations between social isolation, loneliness, and objective physical activity in older men and women. BMC Public Health 19: 74. doi: 10.1186/s12889-019-6424-y
    [6] Dietrich A, Kanso R (2010) A review of EEG, ERP, and neuroimaging studies of creativity and insight. Psychol Bull 136: 822-848. doi: 10.1037/a0019749
    [7] Frith EM (2019)  Acute Exercise and Creativity: Embodied Cognition Approaches Mississippi, USA: Ph.D. Dissertation, The University of Mississippi.
    [8] Khalil R, Godde B, Karim AA (2019) The link between creativity, cognition, and creative drives and underlying neural mechanisms. Fron Neural Circuits 13: 18. doi: 10.3389/fncir.2019.00018
    [9] Frith C, Dolan R (1996) The role of the prefrontal cortex in higher cognitive functions. Cognit Brain Res 5: 175-181. doi: 10.1016/S0926-6410(96)00054-7
    [10] Dietrich A, Taylor JT, Passmore CE (2001) AVP (4–8) improves concept learning in PFC-damaged but not hippocampal-damaged rats. Brain Res 919: 41-47. doi: 10.1016/S0006-8993(01)02992-4
    [11] Konishi S, Nakajima K, Uchida I, et al. (1998) Transient activation of inferior prefrontal cortex during cognitive set shifting. Nat Neurosci 1: 80-84. doi: 10.1038/283
    [12] Bekhtereva NP, Dan'ko SG, Starchenko MG, et al. (2001) Study of the brain organization of creativity: III. Brain activation assessed by the local cerebral blood flow and EEG. Hum Physiol 27: 390-397. doi: 10.1023/A:1010946332369
    [13] Liu SY, Erkkinen MG, Healey ML, et al. (2015) Brain activity and connectivity during poetry composition: Toward a multidimensional model of the creative process. Hum Brain Mapp 36: 3351-3372. doi: 10.1002/hbm.22849
    [14] Lustenberger C, Boyle MR, Foulser AA, et al. (2015) Functional role of frontal alpha oscillations in creativity. Cortex 67: 74-82. doi: 10.1016/j.cortex.2015.03.012
    [15] Tachibana A, Noah JA, Ono Y, et al. (2019) Prefrontal activation related to spontaneous creativity with rock music improvisation: A functional near-infrared spectroscopy study. Sci Rep 9: 1-13. doi: 10.1038/s41598-018-37186-2
    [16] Limb CJ, Braun AR (2008) Neural substrates of spontaneous musical performance: An fMRI study of jazz improvisation. PLoS One 3: e1679. doi: 10.1371/journal.pone.0001679
    [17] Liu SY, Chow HM, Xu YS, et al. (2012) Neural correlates of lyrical improvisation: an fMRI study of freestyle rap. Sci Rep 2: 834. doi: 10.1038/srep00834
    [18] Dhakal K, Norgaard M, Adhikari BM, et al. (2019) Higher node activity with less functional connectivity during musical improvisation. Brain Connect 9: 296-309. doi: 10.1089/brain.2017.0566
    [19] Saggar M, Quintin EM, Kienitz E, et al. (2015) Pictionary-based fMRI paradigm to study the neural correlates of spontaneous improvisation and figural creativity. Sci Rep 5: 10894. doi: 10.1038/srep10894
    [20] Donnay GF, Rankin SK, Lopez-Gonzalez M, et al. (2014) Neural substrates of interactive musical improvisation: an FMRI study of ‘trading fours’ in jazz. PLoS One 9: e88665. doi: 10.1371/journal.pone.0088665
    [21] Ono Y, Nomoto Y, Tanaka S, et al. (2014) Frontotemporal oxyhemoglobin dynamics predict performance accuracy of dance simulation gameplay: temporal characteristics of top-down and bottom-up cortical activities. Neuroimage 85: 461-470. doi: 10.1016/j.neuroimage.2013.05.071
    [22] Burgess PW, Quayle A, Frith CD (2001) Brain regions involved in prospective memory as determined by positron emission tomography. Neuropsychologia 39: 545-555. doi: 10.1016/S0028-3932(00)00149-4
    [23] Collins A, Koechlin E (2012) Reasoning, learning, and creativity: frontal lobe function and human decision-making. PLoS Biol 10: e1001293. doi: 10.1371/journal.pbio.1001293
    [24] Jakovljević M (2013) Creativity, mental disorders and their treatment: recovery-oriented psychopharmacotherapy. Psychiatr Danub 25: 311-315.
    [25] Vellante F, Sarchione F, Ebisch SJ, et al. (2018) Creativity and psychiatric illness: A functional perspective beyond chaos. Prog Neuro-Psychopharmacol Biol Psychiatry 80: 91-100. doi: 10.1016/j.pnpbp.2017.06.038
    [26] Leckey J (2011) The therapeutic effectiveness of creative activities on mental well-being: a systematic review of the literature. J Psychiatr Ment Health Nurs 18: 501-509. doi: 10.1111/j.1365-2850.2011.01693.x
    [27] Ebisch SJ, Mantini D, Northoff G, et al. (2014) Altered brain long-range functional interactions underlying the link between aberrant self-experience and self-other relationship in first-episode schizophrenia. Schizophr Bull 40: 1072-1082. doi: 10.1093/schbul/sbt153
    [28] Salone A, Di Giacinto A, Lai C, et al. (2016) The interface between neuroscience and neuro-psychoanalysis: focus on brain connectivity. Front Hum Neurosci 10: 1-7. doi: 10.3389/fnhum.2016.00020
    [29] Fink A, Weber B, Koschutnig K, et al. (2014) Creativity and schizotypy from the neuroscience perspective. Cogn Affect Behav Neurosci 14: 378-387. doi: 10.3758/s13415-013-0210-6
    [30] Frith E, Ryu S, Kang M, et al. (2019) Systematic Review of the Proposed Associations between Physical Exercise and Creative Thinking. Eur J Psychol 15: 858-877. doi: 10.5964/ejop.v15i4.1773
    [31] Román PÁL, Vallejo AP, Aguayo BB (2018) Acute aerobic exercise enhances students' creativity. Creativity Res J 30: 310-315. doi: 10.1080/10400419.2018.1488198
    [32] Gralewski J (2019) Teachers' beliefs about creative students' characteristics: A qualitative study. Think Skills Creat 31: 138-155. doi: 10.1016/j.tsc.2018.11.008
    [33] Grohman MG, Ivcevic Z, Silvia P, et al. (2017) The role of passion and persistence in creativity. Psychol Aesthet Crea 11: 376-385. doi: 10.1037/aca0000121
    [34] James K, Brodersen M, Eisenberg J (2004) Workplace affect and workplace creativity: A review and preliminary model. Hum Perform 17: 169-194. doi: 10.1207/s15327043hup1702_3
    [35] Molteni R, Ying Z, Gómez-Pinilla F (2002) Differential effects of acute and chronic exercise on plasticity-related genes in the rat hippocampus revealed by microarray. Eur J Neurosci 16: 1107-1116. doi: 10.1046/j.1460-9568.2002.02158.x
    [36] Ratey JJ, Loehr JE (2011) The positive impact of physical activity on cognition during adulthood: a review of underlying mechanisms, evidence and recommendations. Rev Neurosci 22: 171-185. doi: 10.1515/rns.2011.017
    [37] Kim H, Heo HI, Kim DH, et al. (2011) Treadmill exercise and methylphenidate ameliorate symptoms of attention deficit/hyperactivity disorder through enhancing dopamine synthesis and brain-derived neurotrophic factor expression in spontaneous hypertensive rats. Neurosci Lett 504: 35-39. doi: 10.1016/j.neulet.2011.08.052
    [38] Talukdar T, Nikolaidis A, Zwilling CE, et al. (2018) Aerobic fitness explains individual differences in the functional brain connectome of healthy young adults. Cereb Cortex 28: 3600-3609. doi: 10.1093/cercor/bhx232
    [39] Chaddock L, Erickson KI, Prakash RS, et al. (2010) A neuroimaging investigation of the association between aerobic fitness, hippocampal volume, and memory performance in preadolescent children. Brain Res 1358: 172-183. doi: 10.1016/j.brainres.2010.08.049
    [40] Colcombe SJ, Erickson KI, Scalf PE, et al. (2006) Aerobic exercise training increases brain volume in aging humans. J Gerontol A Biol Sci Med Sci 61: 1166-1170. doi: 10.1093/gerona/61.11.1166
    [41] Erickson KI, Voss MW, Prakash RS, et al. (2011) Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci U S A 108: 3017-3022. doi: 10.1073/pnas.1015950108
    [42] Beaty RE, Benedek M, Wilkins RW, et al. (2014) Creativity and the default network: A functional connectivity analysis of the creative brain at rest. Neuropsychologia 64: 92-98. doi: 10.1016/j.neuropsychologia.2014.09.019
    [43] Colombo B, Bartesaghi N, Simonelli L, et al. (2015) The combined effects of neurostimulation and priming on creative thinking. A preliminary tDCS study on dorsolateral prefrontal cortex. Front Hum Neurosci 9: 403. doi: 10.3389/fnhum.2015.00403
    [44] Loprinzi PD, Crawford L, Moore D, et al. (2020) Motor behavior-induced prefrontal cortex activation and episodic memory function. Int J Neurosci 1-21. doi: 10.1080/00207454.2020.1803307
    [45] Edwards MK, Addoh O, Herod SM, et al. (2017) A Conceptual Neurocognitive Affect-Related Model for the Promotion of Exercise Among Obese Adults. Curr Obes Rep 6: 86-92. doi: 10.1007/s13679-017-0244-0
    [46] Russell JA (2003) Core affect and the psychological construction of emotion. Psychol Rev 110: 145-172. doi: 10.1037/0033-295X.110.1.145
    [47] Loprinzi PD, Herod SM, Cardinal BJ, et al. (2013) Physical activity and the brain: a review of this dynamic, bi-directional relationship. Brain Res 1539: 95-104. doi: 10.1016/j.brainres.2013.10.004
    [48] Takeuchi H, Taki Y, Sassa Y, et al. (2010) Regional gray matter volume of dopaminergic system associate with creativity: evidence from voxel-based morphometry. Neuroimage 51: 578-585. doi: 10.1016/j.neuroimage.2010.02.078
    [49] Hagger M, Chatzisarantis N, Biddle S (2002) A meta-analytic review of the theories of reasoned action and planned behavior in physical activity: Predictive validity and the contribution of additional variables. J Sport Exercise Psy 24: 3-32. doi: 10.1123/jsep.24.1.3
    [50] Gardner LA, Magee CA, Vella SA (2016) Social climate profiles in adolescent sports: Associations with enjoyment and intention to continue. J Adolesc 52: 112-123. doi: 10.1016/j.adolescence.2016.08.003
    [51] Ajzen I (1991) The theory of planned behavior. Organ Beha Hum Dec 50: 179-211. doi: 10.1016/0749-5978(91)90020-T
    [52] Smith RA, Biddle SJ (1999) Attitudes and exercise adherence: Test of the theories of reasoned action and planned behaviour. J Sports Sci 17: 269-281. doi: 10.1080/026404199365993
    [53] Monteiro D, Pelletier LG, Moutão J, et al. (2018) Examining the motivational determinants of enjoyment and the intention to continue of persistent competitive swimmers. Int J Sport Psychol 49: 484-504.
    [54] Rodrigues F, Teixeira DS, Neiva HP, et al. (2020) The bright and dark sides of motivation as predictors of enjoyment, intention, and exercise persistence. Scand J Medicine Sci Sports 30: 787-800. doi: 10.1111/sms.13617
    [55] Hall PA, Fong GT, Epp LJ, et al. (2008) Executive function moderates the intention-behavior link for physical activity and dietary behavior. Psychol Health 23: 309-326. doi: 10.1080/14768320701212099
    [56] Hair JF, Black WC, Babin BJ, et al. (2005)  Multivariate analysis of data Saddle River, NJ: Prentice-Hall.
    [57] Kaufman JC (2012) Counting the muses: development of the Kaufman domains of creativity scale (K-DOCS). Psychol Aesthet Crea 6: 298. doi: 10.1037/a0029751
    [58] Tan CS, Tan SA, Cheng SM, et al. (2019) Development and preliminary validation of the 20-item Kaufman domains of Creativity Scale for use with Malaysian populations. Curr Psychol 1-12.
    [59] Morera OF, Stokes SM (2016) Coefficient α as a measure of test score reliability: Review of 3 popular misconceptions. Am J Public Health 106: 458-461. doi: 10.2105/AJPH.2015.302993
    [60] Kendzierski D, DeCarlo KJ (1991) Physical activity enjoyment scale: Two validation studies. J Sport Exercise Psy 13: 50-64. doi: 10.1123/jsep.13.1.50
    [61] Graves LE, Ridgers ND, Williams K, et al. (2010) The physiological cost and enjoyment of Wii Fit in adolescents, young adults, and older adults. J Phys Act Health 7: 393-401. doi: 10.1123/jpah.7.3.393
    [62] McAuley E, Courneya KS (1993) Adherence to exercise and physical activity as health-promoting behaviors: Attitudinal and self-efficacy influences. Appl Prev Psychol 2: 65-77. doi: 10.1016/S0962-1849(05)80113-1
    [63] Kang S, Lee K, Kwon S (2020) Basic psychological needs, exercise intention and sport commitment as predictors of recreational sport participants' exercise adherence. Psychol Health 35: 916-932. doi: 10.1080/08870446.2019.1699089
    [64] Ball TJ, Joy EA, Gren LH, et al. (2016) Peer reviewed: concurrent validity of a self-reported physical activity “Vital Sign” questionnaire with adult primary care patients. Prev Chronic Dis 13: E16.
    [65] Ahmad S, Zulkurnain NNA, Khairushalimi FI (2016) Assessing the validity and reliability of a measurement model in Structural Equation Modeling (SEM). J Adv Math Comput Sci 15: 1-8.
    [66] Fornell C, Larcker DF (1981) Structural equation models with unobservable variables and measurement error: Algebra and statistics. J Mark Res 18: 382-388. doi: 10.1177/002224378101800313
    [67] Schreiber JB, Nora A, Stage FK, et al. (2006) Reporting structural equation modeling and confirmatory factor analysis results: A review. J Educ Res 99: 323-338. doi: 10.3200/JOER.99.6.323-338
    [68] Yuan KH, Bentler PM (2007) Robust procedures in structural equation modeling. Handbook of latent variable and related models Amsterdam: North-Holland, 367-397.
    [69] Gatignon H (2010)  Confirmatory factor analysis, In Statistical analysis of management data New York: Springer, 59-122.
    [70] Tucker LR, Lewis C (1973) A reliability coefficient for maximum likelihood factor analysis. Psychometrika 38: 1-10. doi: 10.1007/BF02291170
    [71] Hayes AF (2013)  Introduction to mediation, moderation, and conditional process analysis: a regression-based approach New York: Guilford Press.
    [72] Preacher KJ, Hayes AF (2004) SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behav Res Methods Instrum Comput 36: 717-731. doi: 10.3758/BF03206553
    [73] Kline RB (2005)  Structural equation modeling New York: Guilford Press.
    [74] Dietrich A (2004) The cognitive neuroscience of creativity. Psychon Bull Rev 11: 1011-1026. doi: 10.3758/BF03196731
    [75] Oppezzo M, Schwartz DL (2014) Give your ideas some legs: The positive effect of walking on creative thinking. J Exp Psychol Learn Mem Cogn 40: 1142-1152. doi: 10.1037/a0036577
    [76] Kim J (2015) Physical activity benefits creativity: squeezing a ball for enhancing creativity. Creativity Res J 27: 328-333. doi: 10.1080/10400419.2015.1087258
    [77] Frith E, Miller SE, Loprinzi PD (2020) Effects of Verbal Priming With Acute Exercise on Convergent Creativity. Psychol Rep 1-23.
    [78] Hallihan GM, Shu LHCreativity and long-term potentiation: Implications for design. (2011) .491-502.
    [79] Salamone JD, Correa M (2012) The mysterious motivational functions of mesolimbic dopamine. Neuron 76: 470-485. doi: 10.1016/j.neuron.2012.10.021
    [80] Beaty RE, Benedek M, Kaufman SB, et al. (2015) Default and executive network coupling supports creative idea production. Sci Rep 5: 1-14. doi: 10.1038/srep10964
    [81] De Dreu CK, Baas M, Nijstad BA (2008) Hedonic tone and activation level in the mood-creativity link: toward a dual pathway to creativity model. J Pers Soc Psycho 94: 739-756. doi: 10.1037/0022-3514.94.5.739
    [82] Yerkes RM, Dodson JD (1908) The relation of strength of stimulus to rapidity of habit-formation. J Comp Neurol Sychol 18: 459-482. doi: 10.1002/cne.920180503
    [83] McMorris T (2016) Developing the catecholamines hypothesis for the acute exercise-cognition interaction in humans: Lessons from animal studies. Physiol Behav 165: 291-299. doi: 10.1016/j.physbeh.2016.08.011
    [84] Rhodes RE, Kates A (2015) Can the affective response to exercise predict future motives and physical activity behavior? A systematic review of published evidence. Ann Behav Med 49: 715-731. doi: 10.1007/s12160-015-9704-5
    [85] Loprinzi PD, Pazirei S, Robinson G, et al. (2020) Evaluation of a cognitive affective model of physical activity behavior. Health Promot Perspect 10: 88-93. doi: 10.15171/hpp.2020.14
    [86] Fuster JM (2015)  The prefrontal cortex Academic Press.
    [87] Fuster JM (2002) Frontal lobe and cognitive development. J Neurocytol 31: 373-385. doi: 10.1023/A:1024190429920
    [88] Chandler DJ, Waterhouse BD, Gao WJ (2014) New perspectives on catecholaminergic regulation of executive circuits: evidence for independent modulation of prefrontal functions by midbrain dopaminergic and noradrenergic neurons. Front Neural Circuits 8: 53. doi: 10.3389/fncir.2014.00053
    [89] Pezze MA, Feldon J (2004) Mesolimbic dopaminergic pathways in fear conditioning. Prog Neurobiol 74: 301-320. doi: 10.1016/j.pneurobio.2004.09.004
    [90] Phillips AG, Ahn S, Floresco SB (2004) Magnitude of dopamine release in medial prefrontal cortex predicts accuracy of memory on a delayed response task. J Neurosci 24: 547-553. doi: 10.1523/JNEUROSCI.4653-03.2004
    [91] Goekint M, Bos I, Heyman E, et al. (2012) Acute running stimulates hippocampal dopaminergic neurotransmission in rats, but has no influence on brain-derived neurotrophic factor. J Appl Physiol 112: 535-541. doi: 10.1152/japplphysiol.00306.2011
    [92] Chang YK, Labban JD, Gapin JI, et al. (2012) The effects of acute exercise on cognitive performance: a meta-analysis. Brain Res 1453: 87-101. doi: 10.1016/j.brainres.2012.02.068
    [93] Stevens DJ, Arciuli J, Anderson DI (2015) Concurrent movement impairs incidental but not intentional statistical learning. Cogn Sci 39: 1081-1098. doi: 10.1111/cogs.12180
    [94] Daikoku T, Takahashi Y, Futagami H, et al. (2017) Physical fitness modulates incidental but not intentional statistical learning of simultaneous auditory sequences during concurrent physical exercise. Neurol Res 39: 107-116. doi: 10.1080/01616412.2016.1273571
    [95] Mayesky M (2011)  Creative activities for young children Cengage Learning.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2579) PDF downloads(192) Cited by(2)

Article outline

Figures and Tables

Figures(3)  /  Tables(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog