Citation: Brian P. Leung, Kevin R. Doty, Terrence Town. Cerebral Innate Immunity in Drosophila Melanogaster[J]. AIMS Neuroscience, 2015, 2(1): 35-51. doi: 10.3934/Neuroscience.2015.1.35
[1] | O'Neill LAJ, Golenbock D, Bowie AG (2013) The history of Toll-like receptors—redefining innate immunity. Nat Rev Immunol 13: 453-460. doi: 10.1038/nri3446 |
[2] | Janeway CA Jr, Medzhitov R (2002) Innate Immune Recognition. Annu Rev Immunol 20:197-216. doi: 10.1146/annurev.immunol.20.083001.084359 |
[3] | Lemaitre B, Nicolas E, Michaut L, et al. (1996) The Dorsoventral Regulatory Gene Cassette spätzle/Toll/cactus Controls the Potent Antifungal Response in Drosophila Adults. Cell 86:973-983. doi: 10.1016/S0092-8674(00)80172-5 |
[4] | Williams MJ (2007) Drosophila Hemopoiesis and Cellular Immunity. J Immunol 178:4711-4716. doi: 10.4049/jimmunol.178.8.4711 |
[5] | Hoffmann JA, Reichhart J-M (2002) Drosophila innate immunity: an evolutionary perspective. Nat Immunol 3: 121-126. doi: 10.1038/ni0202-121 |
[6] | Petersen AJ, Katzenberger RJ, Wassarman DA (2013) The Innate Immune Response Transcription Factor Relish Is Necessary for Neurodegeneration in a Drosophila Model of Ataxia-Telangiectasia. Genetics 194: 133-142. doi: 10.1534/genetics.113.150854 |
[7] | 8. Petersen AJ, Rimkus SA, Wassarman DA (2012) ATM kinase inhibition in glial cells activates the innate immune response and causes neurodegeneration in Drosophila. Proc Natl Acad Sci U S A 109: E656-E664. doi: 10.1073/pnas.1110470109 |
[8] | 9. Cao Y, Chtarbanova S, Petersen AJ, et al. (2013) Dnr1 mutations cause neurodegeneration in Drosophila by activating the innate immune response in the brain. Proc Natl Acad Sci U S A 110: E1752-E1760. doi: 10.1073/pnas.1306220110 |
[9] | 10. Freeman MR, doherty J (2006) Glial cell biology in Drosophila and vertebrates. Trends Neurosci 2 82-90. doi: 10.1016/j.tins.2005.12.002 |
[10] | 11. Eroglu C, Barres BA (20 Regulation of synaptic connectivity by glia. Nature 468: 223-231. doi: 10.1038/nature09612 |
[11] | 12. Levashina EA, Moita LF, Blandin S, et al. (2001) Conserved Role of a Complement-like Protein in Phagocytosis Revealed by dsRNA Knockout in Cultured Cells of the Mosquito, Anopheles gambiae. Cell 104: 709-718. doi: 10.1016/S0092-8674(01)00267-7 |
[12] | 13. Poltorak A (1998) Defective LPS Signaling in C3H/HeJ and C57BL/10ScCr Mice: Mutations in Tlr4 Gene. Science 282: 2085-2088. |
[13] | 14. Hartenstein V (2011) Morphological diversity and development of glia in Drosophila. Glia 59:1237-1252. doi: 10.1002/glia.21162 |
[14] | 15. Awasaki T, Lai S-L, Ito K, et al. (2008) Organization and postembryonic development of glial cells in the adult central brain of Drosophila. J Neurosci 28: 13742-13753. doi: 10.1523/JNEUROSCI.4844-08.2008 |
[15] | 16. Jenett A, Rubin GM, Ngo T-TB, et al. (2012) A GAL4-Driver Line Resource for Drosophila Neurobiology. Cell Rep 2: 991-1001. doi: 10.1016/j.celrep.2012.09.011 |
[16] | 17. Ransohoff RM, Brown MA (2012) Innate immunity in the central nervous system. J Clin Invest122: 1-1171. |
[17] | 18. Kohl J, Jefferis GSXE (2011) Neuroanatomy: Decoding the Fly Brain. Curr Biol 21: R19-R20. doi: 10.1016/j.cub.2010.11.067 |
[18] | 19. Butler AB, Hodos W (2005) Frontmatter: Evolution and Adaptation, 1 Eds. New Jersey/ Canada: John Wiley and Sons. |
[19] | 20. Davis RL (2004) Olfactory learning. Neuron 44:31-48. doi: 10.1016/j.neuron.2004.09.008 |
[20] | 21. Sakano H (4) Neural Map Formation in the Mouse Olfactory System. Neuron 67: 530-542. |
[21] | 22. Yu H-H, Awasaki T, Schroeder MD, et al. (2013) Clonal Development and Organization of the Adult Drosophila Central Brain. Curr Biol 23: 633-643. doi: 10.1016/j.cub.2013.02.057 |
[22] | 23. Rowitch DH, Kriegstein AR (2010) Developmental genetics of vertebrate glial-cell specification. Nature 468: 214-. doi: 10.1038/nature09611 |
[23] | 24. Ou J, He Y, Xiao X, et al. (2014) Glial cells in neuronal development: recent advances and insights from Drosophila melanogaster. Neurosci Bull 30: 584-594. doi: 10.1007/s12264-014-1448-2 |
[24] | 25. Hakim Y, Yaniv SP, Schuldiner O (2014) Astrocytes Play a Key Role in Drosophila Mushroom Body Axon Pruning. PLoS ONE 9: e86178. doi: 10.1371/journal.pone.0086178 |
[25] | 26. Edwards TN, Meinertzhagen IA (2010) The functional organisation of glia in the adult brain of Drosophila and other insects. Prog Neurobiol 90: 471-497. doi: 10.1016/j.pneurobio.2010.01.001 |
[26] | 27. Mayer F, Mayer N, Chinn L, et al. (2009) Evolutionary Conservation of Vertebrate Blood-Brain Barrier Chemoprotective Mechanisms in Drosophila. Journal of Neuroscience 29: 3538-3550. doi: 10.1523/JNEUROSCI.5564-08.2009 |
[27] | 28. Ito K, Awano W, Suzuki K, et al. (1997) The Drosophila mushroom body is a quadruple structure of clonal units each of which contains a virtually identical set of neurones and glial cells. Development 124: 761-771. |
[28] | 29. Crittenden JR, Skoulakis EMC, Han K-A, et al. (1998) Tripartite Mushroom Body Architecture Revealed by Antigenic Markers. Learn Mem 5: 38-51. |
[29] | 30. Leiss F, Groh C, Butcher NJ, et al. (2009) Synaptic organization in the adult Drosophila mushroom body calyx. J Comp Neurol 517: 808-824. doi: 10.1002/cne.22184 |
[30] | 31. Lawson LJ, Perry VH, Dri P, et al. (1990) Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39: 151-170. doi: 10.1016/0306-4522(90)90229-W |
[31] | 32. Tremblay ME, Stevens B, Sierra A, et al. (2011) The Role of Microglia in the Healthy Brain. J Neurosci 16064-16069. doi: 10.1523/JNEUROSCI.4158-11.2011 |
[32] | 33. Jinno S, Fleischer F, Eckel S, et al. (2007) Spatial arrangement of microglia in the mouse hippocampus: A stereological study in comparison with astrocytes. Glia 55: 1334-1347. doi: 10.1002/glia.20552 |
[33] | 34. Jinno S, Kosaka T (2008) Reduction of Iba1-expressing microglial process density in the hippocampus following electroconvulsive shock. Exp Neurol 212: 440-447. doi: 10.1016/j.expneurol.2008.04.028 |
[34] | 35. Coutinho-Budd J, Freeman MR (2013) Probing the enigma: unraveling glial cell biology in invertebrates. Curr Opin Neurobiol 23: 1073-1079. doi: 10.1016/j.conb.2013.07.002 |
[35] | 36. Winkler EA, Bell RD, Zlokovic BV (2011) Central nervous system pericytes in health and disease. Nat Neurosci 14: 1398-1405. doi: 10.1038/nn.2946 |
[36] | 37. Stork T, Bernardos R, Freeman MR (2012) Analysis of Glial Cell Development and Function in Drosophila. Cold Spring Harb Protoc: 1-17. |
[37] | 38. Bell RD, Winkler EA, Sagare AP, et al. (2010) Pericytes Control Key Neurovascular Functions and Neuronal Phenotype in the Adult Brain and during Brain Aging. Neuron 68: 409-427. doi: 10.1016/j.neuron.2010.09.043 |
[38] | 39. Barres BA (2008) The Mystery and Magic of Glia: A Perspective on Their Roles in Health and Disease. Neuron 60:430-440. doi: 10.1016/j.neuron.2008.10.013 |
[39] | 40. Hall CN, Reynell C, Gesslein B, et al. (2014) Capillary pericytes regulate cerebral blood flow in health and disease. Nature 508:55-60. doi: 10.1038/nature13165 |
[40] | 41. Stephan AH, Madison DV, Mateos JM, et al. (2013) A Dramatic Increase of C1q Protein in the CNS during Normal Aging. J Neurosci 33: 13460-13474. doi: 10.1523/JNEUROSCI.1333-13.2013 |
[41] | 42. Tasdemir-Yilmaz OE, Freeman MR (2014) Astrocytes engage unique molecular programs to engulf pruned neuronal debris from distinct subsets of neurons. Genes Dev 28: 20-33. doi: 10.1101/gad.229518.113 |
[42] | 43. Liu Z, Chen Y, Wang D, et al. (2010) Distinct Presynaptic and Postsynaptic Dismantling Processes of Drosophila Neuromuscular Junctions during Metamorphosis. J Neurosci 30:11624-11634. doi: 10.1523/JNEUROSCI.0410-10.2010 |
[43] | 44. Palgi M, Lindström R, Peränen J, et al. (2009) Evidence that DmMANF is an invertebrate neurotrophic factor supporting dopaminergic neurons. Proc Natl Acad Sci U S A 106:2429-2. doi: 10.1073/pnas.0810996106 |
[44] | 45. Guillot-Sestier MV, Town T (2013) Innate Immunity in Alzheimer's Disease: A Complex Affair. CNS Neurol Disord Drug Targets 12: 1-14. doi: 10.2174/1871527311312010001 |
[45] | 46. Gate D, Rezai-Zadeh K, Jodry D, et al. (2010) Macrophages in Alzheimer's disease: the blood-borne identity. J Neural Transm 117: 961-970. doi: 10.1007/s00702-010-0422-7 |
[46] | 47. Doherty J, Logan MA, Tasdemir OE, et al. (2009) Ensheathing Glia Function as Phagocytes in the Adult Drosophila Brain. J Neurosci 29: 4768-781. doi: 10.1523/JNEUROSCI.5951-08.2009 |
[47] | 48. Town T, Nikolic V, Tan J (2005) The microglial “activation” continuum: from innate to adaptive responses. J Neuroinflammation 2: 24. doi: 10.1186/1742-2094-2-24 |
[48] | 49. Aguzzi A, Barres BA, Bennett ML (2013) Microglia: Scapegoat, Saboteur, or Something Else? Science 339: 156-161. doi: 10.1126/science.1227901 |
[49] | 50. Li Y, Du X-F, Liu C-S, et al. (2012) Reciprocal Regulation between Resting Microglial Dynamics and Neuronal Activity In Vivo. Dev Cell 23: 1189-1202. doi: 10.1016/j.devcel.2012.10.027 |
[50] | 51. Streit WJ (2006) Microglial senescence: does the brain's immune system have an expiration date? Trends Neurosc 29: -510. doi: 10.1016/j.tins.2006.07.001 |
[51] | 52. Eggen BJL, Raj D, Hanisch UK, et al. (2013) Microglial Phenotype and Adaptation. J Neuroimmune Pharmacol 8: 807-823. doi: 10.1007/s11481-013-9490-4 |
[52] | 53. Colton CA (2012) Immune Heterogeneity in Neuroinflammation: Dendritic Cells in the Brain. J Neuroimmune Pharmacol 8: 145-162. |
[53] | 54. Breunig JJ, Guillot-Sestier M-V, Town T (2013) Brain injury, neuroinflammation and Alzheimer's disease. Front Aging Neurosci 5: 26. |
[54] | 55. Doty KR, Guillot-Sestier M-V, Town T (2014) The role of the immune system in neurodegenerative disorders: Adaptive or maladaptive? Brain |
[55] | 56. Foley E, O'Farrell PH (2003) Nitric oxide contributes to induction of innate immune responses to gram-negative bacteria in Drosophila. Genes Dev 17: 115-125. doi: 10.1101/gad.1018503 |
[56] | 57. Novakova M, Dolezal T (2011) Expression of Drosophila Adenosine Deaminase in Immune Cells during Inflammatory Response. PLoS ONE 6: e17741. doi: 10.1371/journal.pone.0017741 |
[57] | 58. Brown S, Hu N, Hombría JC-G (2001) Identification of the first invertebrate interleukin JAK/STAT receptor, the Drosophila gene domeless. Curr Biol 11: 1700-1705. doi: 10.1016/S0960-9822(01)00524-3 |
[58] | 59. Johansson K, Metzendorf C, Soderhall K (2005) Microarray analysis of immune challenged hemocytes. Exp Cell Res 305: 145-155. doi: 10.1016/j.yexcr.2004.12.018 |
[59] | 60. Inamdar AA, Bennett JW (2014) A common fungal volatile organic compound induces a nitric oxide mediated inflammatory response in Drosophila melanogaster. Sci Rep |
[60] | 61. Kettenmann H, Hanisch U-K, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91: 461-553. doi: 10.1152/physrev.00011.2010 |
[61] | 62. Wood W, Jacinto A (2007) Drosophila melanogaster embryonic haemocytes: masters of multitasking. Nat Rev Mol Cell Biol 8: 542-551. doi: 10.1038/nrm2202 |
[62] | 63. Garay P, McAllister K (2010) Novel roles for immune molecules in neural development: implications for neurodevelopmental disorders. Front Syn Neurosci. 2: 1-16. |
[63] | 64. Kaneko M, Stellwagen D, Malenka RC, Stryker MP (2008) Tumor Necrosis Factor-α Mediates One Component of Competitive, Experience-Dependent Plasticity in Developing Visual Cortex. Neuron 58: 673-680. doi: 10.1016/j.neuron.2008.04.023 |
[64] | 65. Royet J, Reichhart J-M, Hoffmann JA (2005) Sensing and signaling during infection in Drosophila. Curr Opin Immunol 17: 11-17. doi: 10.1016/j.coi.2004.12.002 |
[65] | 66. Copf T, Goguel V, Lampin-Saint-Amaux A, et al. (2011) Cytokine signaling through the JAK/STAT pathway is required for long-term memory in Drosophila. Proc Natl Acad Sci U S A108: 8059-8064. |
[66] | 67. Zhang X, Zhang Y (2012) DBL-1, a TGF-β, is essential for Caenorhabditis elegans aversive olfactory learning. Proc Natl Acad Sci U S A 109: 17081-17086. doi: 10.1073/pnas.1205982109 |
[67] | 68. Zugasti O, Ewbank JJ (2009) Neuroimmune regulation of antimicrobial peptide expression by a noncanonical TGF-β signaling pathway in Caenorhabditis elegans epidermis. Nat Immunol 10:249-256. doi: 10.1038/ni.1700 |
[68] | 69. Town T, Laouar Y, Pittenger C, et al. (2008) Blocking TGF-beta-Smad2/3 innate immune signaling mitigates Alzheimer-like pathology. Nat Med 14: -687. |
[69] | 70. Mitchell K, Shah JP, Tsytsikova LV, et al. (2014) LPS antagonism of TGF-β signaling results in prolonged survival and activation of rat primary microglia. J Neurochem 129: 155-168. doi: 10.1111/jnc.12612 |
[70] | 71. Bialas AR, Stevens B (2013) TGF-β signaling regulates neuronal C1q expression and developmental synaptic refinement. Nat Neurosci 16: 1773-1782. doi: 10.1038/nn.3560 |
[71] | 72. Zhang Y, Shan B, Boyle M, et al. (2014) Brain Proteome Changes Induced by Olfactory Learning in Drosophila. J Proteome Res 13:3763–3770. |
[72] | 73. D'Ambrosio MV, Vale RD (2010) A whole genome RNAi screen of Drosophila S2 cell spreading performed using automated computational image analysis. J Cell Biol 191: 471-478. doi: 10.1083/jcb.201003135 |
[73] | 74. Williams DW, Truman JW (2005) Cellular mechanisms of dendrite pruning in Drosophila: insights from in vivo time-lapse of remodeling dendritic arborizing sensory neurons. Development 132: 3631-3642. doi: 10.1242/dev.01928 |
[74] | 75. Lesch C, Goto A, Lindgren M, et al. (2007) A role for Hemolectin in coagulation and immunity in Drosophila melanogaster. Dev Comp Immunol 31: 1255-1263. doi: 10.1016/j.dci.2007.03.012 |
[75] | 77. Barrangou R (2015) The roles of CRISPR–Cas systems in adaptive immunity and beyond. Curr Opin Immunol 32: 36-41. doi: 10.1016/j.coi.2014.12.008 |
[76] | 78. Um P (2015) Immunity, Innate: Definition and Examples. In: Highlander S, Rodriguez-Valera F, White B (eds) Encyclopedia of Metagenomics. Boston: Springer US. |
[77] | 79. Westra ER, Buckling A, Fineran PC (2014) CRISPR-Cas systems: beyond adaptive immunity. Nat Rev Micro 12: 317-326. doi: 10.1038/nrmicro3241 |
[78] | 80. Lange C, Hemmrich G, Klostermeier UC, et al. (2011) Defining the Origins of the NOD-Like Receptor System at the Base of Animal Evolution. Mol Biol Evol 28: 1687-1702. doi: 10.1093/molbev/msq349 |
[79] | 81. Sunyer JO (2013) Fishing for mammalian paradigms in the teleost immune system. Nat Immunol 14: 320-326. doi: 10.1038/ni.2549 |
[80] | 82. Uribe C, Folch H, Enriquez R, et al. (2011) Innate and adaptive immunity in teleost fish: a review. Vet Med 56: 486-503. |
[81] | 83. Ting JP-Y, Davis BK (2004) CATERPILLER: A Novel Gene Family Important in Immunity, Cell Death, and Diseases. Annu Rev Immunol 23: 387-414. |
[82] | 84. Pham LN, Dionne MS, Shirasu-Hiza M, et al. (2007) A Specific Primed Immune Response in Drosophila Is Dependent on Phagocytes. PLoS Pathog 3: e26. doi: 10.1371/journal.ppat.0030026 |
[83] | 85. Schneider DS (2007) How and Why Does a Fly Turn Its Immune System Off? PLoS Biol 5: e247. doi: 10.1371/journal.pbio.0050247 |
[84] | 86. Ayres JS, Schneider DS (2012) Tolerance of Infections. Annu Rev Immunol 30: 271-294. doi: 10.1146/annurev-immunol-020711-075030 |
[85] | 87. Chambers MC, Schneider DS (2012) Pioneering immunology: insect style. Curr Opin Immunol24: 10-14. |
[86] | 88. Dong Y, Cirimotich CM, Pike A, et al. (2012) Anopheles NF-κB-Regulated Splicing Factors Direct Pathogen-Specific Repertoires of the Hypervariable Pattern Recognition Receptor AgDscam. Cell Host Microbe 12: 521-530. doi: 10.1016/j.chom.2012.09.004 |
[87] | 89. Schmucker D, Chen B (2009) Dscam and DSCAM: complex genes in simple animals, complex animals yet simple genes. Genes Dev 23: 147-156. doi: 10.1101/gad.1752909 |
[88] | 90. Kounatidis I, Ligoxygakis P (2012) Drosophila as a model system to unravel the layers of innate immunity to infection. Open Biol 2: 120075. doi: 10.1098/rsob.120075 |
[89] | 91. Marsh EK, May RC (2012) Caenorhabditis elegans, a Model Organism for Investigating Immunity. Appl Environ Microbiol 78: 2075-2081. doi: 10.1128/AEM.07486-11 |
[90] | 92. Oikonomou G, Shaham S (2010) The Glia of Caenorhabditis elegans. Glia 59: 1253-1263. |
[91] | 93. Kraft-Terry SD, Buch SJ, Fox HS, Gendelman HE (2009) A coat of many colors: neuroimmune crosstalk in human immunodeficiency virus infection. Neuron 64: 133-145. doi: 10.1016/j.neuron.2009.09.042 |
[92] | 94. Bakkenist CJ, Kastan MB (2003) DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421: 499-506. doi: 10.1038/nature01368 |
[93] | 95. Derheimer FA, Kastan MB (2010) Multiple roles of ATM in monitoring and maintaining DNA integrity. FEBS Letters 584: 3675-3681. doi: 10.1016/j.febslet.2010.05.031 |
[94] | 96. Yang Y, Herrup K (2005) Loss of Neuronal Cell Cycle Control in Ataxia-Telangiectasia: A Unified Disease Mechanism. J Neurosci 25: 2522-2529. doi: 10.1523/JNEUROSCI.4946-04.2005 |
[95] | 97. Pandey UB, Nichols CD (2011) Human Disease Models in Drosophila melanogaster and the Role of the Fly in Therapeutic Drug Discovery. Pharmacol Rev 63: 411-436. doi: 10.1124/pr.110.003293 |
[96] | 98. Crotti A, Benner C, Kerman BE, et al. (2014) Mutant Huntingtin promotes autonomous microglia activation via myeloid lineage-determining factors. Nat Neurosci 17: 513-521. doi: 10.1038/nn.3668 |
[97] | 99. Holtzman DM, Mandelkow E, Selkoe DJ (2012) Alzheimer Disease in 2020. Cold Spring Harb Perspect Med 2: a011585-a011585. |
[98] | 100. Selkoe DJ (2012) Preventing Alzheimer's Disease. Science 337: 1488-1492. doi: 10.1126/science.1228541 |
[99] | 101. Iijima K, Liu H-P, Chiang A-S, et al. (2004) Dissecting the pathological effects of human Abeta40 and Abeta42 in Drosophila: a potential model for Alzheimer's disease. Proc Natl Acad Sci U S A 101: 6623-6628. doi: 10.1073/pnas.0400895101 |
[100] | 102.Mhatre SD, Paddock BE, Saunders AJ, et al. (2013) Invertebrate Models of Alzheimer's Disease. J Alzheimers Dis 33: 3-16. |
[101] | 103. Guo M, Hong EJ, Fernandes J, et al. (2003) A reporter for amyloid precursor protein γ-secretase activity in Drosophila. Hum Mol Genet 12: 2669-2678. doi: 10.1093/hmg/ddg292 |
[102] | 104. Shaw JL, Chang KT (2013) Nebula/DSCR1 Upregulation Delays Neurodegeneration and Protects against APP-Induced Axonal Transport Defects by Restoring Calcineurin and GSK-3β Signaling. PLoS Genet 9: e1003792. doi: 10.1371/journal.pgen.1003792 |
[103] | 105. Hickman SE, Kingery ND, Ohsumi TK, et al. (2013) The microglial sensome revealed by direct RNA sequencing. Nat Neurosci. 16: 1896-1905. doi: 10.1038/nn.3554 |