Citation: Dimitra Beroukas, Maurice Selhorst, Stuart M. Pitson, Dusan Matusica, Ian L. Gibbins, Michaela Kress, Rainer V. Haberberger. Sphingosine kinase 1 in murine dorsal root ganglia[J]. AIMS Molecular Science, 2015, 1(1): 22-33. doi: 10.3934/molsci.2015.1.22
[1] | Maceyka M, Harikumar KB, Milstien S, et al. (2012) Sphingosine-1-phosphate signaling and its role in disease. Trends Cell Biol 22: 50-60. doi: 10.1016/j.tcb.2011.09.003 |
[2] | Pitson SM (2011) Regulation of sphingosine kinase and sphingolipid signaling. Trends Biochem Sci 36: 97-107. doi: 10.1016/j.tibs.2010.08.001 |
[3] | Mizugishi K, Yamashita T, Olivera A, et al. (2005) Essential role for sphingosine kinases in neural and vascular development. Mol Cell Biol 25: 11113-11121. doi: 10.1128/MCB.25.24.11113-11121.2005 |
[4] | Chan H, Pitson SM (2013) Post-translational regulation of sphingosine kinases. Biochim Biophys Acta 1831: 147-156. doi: 10.1016/j.bbalip.2012.07.005 |
[5] | Baker DA, Barth J, Chang R, et al. (2010) Genetic sphingosine kinase 1 deficiency significantly decreases synovial inflammation and joint erosions in murine TNF-alpha-induced arthritis. J Immunol 185: 2570-2579. doi: 10.4049/jimmunol.1000644 |
[6] | Toman RE, Payne SG, Watterson KR, et al. (2004) Differential transactivation of sphingosine-1-phosphate receptors modulates NGF-induced neurite extension. J Cell Biol 166: 381-392. doi: 10.1083/jcb.200402016 |
[7] | Zhang YH, Vasko MR, Nicol GD (2006) Intracellular sphingosine 1-phosphate mediates the increased excitability produced by nerve growth factor in rat sensory neurons. J Physiol 575: 101-113. doi: 10.1113/jphysiol.2006.111575 |
[8] | Zhang YH, Fehrenbacher JC, Vasko MR, et al. (2006) Sphingosine-1-phosphate via activation of a G-protein-coupled receptor(s) enhances the excitability of rat sensory neurons. J Neurophysiol 96: 1042-1052. doi: 10.1152/jn.00120.2006 |
[9] | He XH, Zang Y, Chen X, et al. (2010) TNF-alpha contributes to up-regulation of Nav1.3 and Nav1.8 in DRG neurons following motor fiber injury. Pain 151: 266-279. |
[10] | Hokfelt T, Brumovsky P, Shi T, et al. (2007) NPY and pain as seen from the histochemical side. Peptides 28: 365-372. doi: 10.1016/j.peptides.2006.07.024 |
[11] | Mair N, Benetti C, Andratsch M, et al. (2011) Genetic evidence for involvement of neuronally expressed S1P(1) receptor in nociceptor sensitization and inflammatory pain. PLoS One 6: e17268. doi: 10.1371/journal.pone.0017268 |
[12] | Camprubi-Robles M, Mair N, Andratsch M, et al. (2013) Sphingosine-1-phosphate-induced nociceptor excitation and ongoing pain behavior in mice and humans is largely mediated by S1P3 receptor. J Neurosci 33: 2582-2592. doi: 10.1523/JNEUROSCI.4479-12.2013 |
[13] | Salvemini D, Doyle T, Kress M, et al. (2013) Therapeutic targeting of the ceramide-to-sphingosine 1-phosphate pathway in pain. Trends Pharmacol Sci 34: 110-118. doi: 10.1016/j.tips.2012.12.001 |
[14] | Allende ML, Sasaki T, Kawai H, et al. (2004) Mice deficient in sphingosine kinase 1 are rendered lymphopenic by FTY720. J Biol Chem 279: 52487-52492. doi: 10.1074/jbc.M406512200 |
[15] | Pitman MR, Pham DH, Pitson SM (2012) Isoform-selective assays for sphingosine kinase activity. Methods Mol Biol 874: 21-31. doi: 10.1007/978-1-61779-800-9_2 |
[16] | Hargreaves K, Dubner R, Brown F, et al. (1988) A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 32: 77-88. doi: 10.1016/0304-3959(88)90026-7 |
[17] | Xie W, Strong JA, Kays J, et al. (2012) Knockdown of the sphingosine-1-phosphate receptor S1PR1 reduces pain behaviors induced by local inflammation of the rat sensory ganglion. Neurosci Lett 515: 61-65. doi: 10.1016/j.neulet.2012.03.019 |
[18] | Coste O, Pierre S, Marian C, et al. (2008) Antinociceptive activity of the S1P-receptor agonist FTY720. J Cell Mol Med 12: 995-1004. doi: 10.1111/j.1582-4934.2008.00160.x |
[19] | Meng H, Yuan Y, Lee VM (2011) Loss of sphingosine kinase 1/S1P signaling impairs cell growth and survival of neurons and progenitor cells in the developing sensory ganglia. PLoS One 6: e27150. doi: 10.1371/journal.pone.0027150 |
[20] | Pollock J, McFarlane SM, Connell MC, et al. (2002) TNF-alpha receptors simultaneously activate Ca2+ mobilisation and stress kinases in cultured sensory neurones. Neuropharmacology 42: 93-106. doi: 10.1016/S0028-3908(01)00163-0 |
[21] | Nicol GD (2008) Nerve growth factor, sphingomyelins, and sensitization in sensory neurons. Sheng Li Xue Bao 60: 603-604. |
[22] | Blondeau N, Lai Y, Tyndall S, et al. (2007) Distribution of sphingosine kinase activity and mRNA in rodent brain. J Neurochem 103: 509-517. doi: 10.1111/j.1471-4159.2007.04755.x |
[23] | Li Y, Ji A, Weihe E, et al. (2004) Cell-specific expression and lipopolysaccharide-induced regulation of tumor necrosis factor alpha (TNFalpha) and TNF receptors in rat dorsal root ganglion. J Neurosci 24: 9623-9631. doi: 10.1523/JNEUROSCI.2392-04.2004 |
[24] | Ji RR, Zhang X, Wiesenfeld-Hallin Z, et al. (1994) Expression of neuropeptide Y and neuropeptide Y (Y1) receptor mRNA in rat spinal cord and dorsal root ganglia following peripheral tissue inflammation. J Neurosci 14: 6423-6434. |
[25] | Kubicek L, Kopacik R, Klusakova I, et al. (2010) Alterations in the vascular architecture of the dorsal root ganglia in a rat neuropathic pain model. Ann Anat 192: 101-106. doi: 10.1016/j.aanat.2010.01.005 |
[26] | Nayak D, Huo Y, Kwang WX, et al. (2010) Sphingosine kinase 1 regulates the expression of proinflammatory cytokines and nitric oxide in activated microglia. Neuroscience 166: 132-144. doi: 10.1016/j.neuroscience.2009.12.020 |
[27] | Grin'kina NM, Karnabi EE, Damania D, et al. (2012) Sphingosine kinase 1 deficiency exacerbates LPS-induced neuroinflammation. PLoS One 7: e36475. doi: 10.1371/journal.pone.0036475 |
[28] | Michaud J, Kohno M, Proia RL, et al. (2006) Normal acute and chronic inflammatory responses in sphingosine kinase 1 knockout mice. FEBS Lett 580: 4607-4612. doi: 10.1016/j.febslet.2006.07.035 |