Citation: A. Swierniak, M. Krzeslak, D. Borys, M. Kimmel. The role of interventions in the cancer evolution–an evolutionary games approach[J]. Mathematical Biosciences and Engineering, 2019, 16(1): 265-291. doi: 10.3934/mbe.2019014
[1] | A. R. A. Anderson, K. A. Rejniak, P. Gerlee and V. Quaranta, Microenvironment driven invasion: a multiscale multimodel investigation, J. Math. Biol., 58 (2009), 579–624. |
[2] | L. A. Bach, D. J. T. Sumpter, J. Alsner and V. Loeschcke, Spatial evolutionary games of interaction among generic cancer cells, J. Theor. Med., 5 (2003), 47–58. |
[3] | L. Bach, S. Bentzen, J. Alsner and F. Christiansen, An evolutionary-game model of tumour-cell interactions: possible relevance to gene therapy, Eur. J. Cancer., 37 (2001), 2116–2120. |
[4] | D. Basanta, H. Hatzikirou and A. Deutsch, Studying the emergence of invasiveness in tumours using game theory, Eur. Phys. J. B, 63 (2008), 393–397. |
[5] | D. Basanta, J. G. Scott, M. N. Fishman, G. Ayala, S. W. Hayward and A. R. A. Anderson, Investigating prostate cancer tumour-stroma interactions: clinical and biological insights from an evolutionary game, Br. J. Cancer., 106 (2012), 174–181. |
[6] | D. Basanta and A. R. A. Anderson, Exploiting ecological principles to better understand cancer progression and treatment, Interface focus, 3 (2013), 20130020. |
[7] | D. Basanta, R. A. Gatenby and A. R. A. Anderson, Exploiting evolution to treat drug resistance: combination therapy and the double bind, Mol. Pharm., 9 (2012), 914–921. |
[8] | D. Basanta, J. G. Scott, R. Rockne, K. R. Swanson and A. R. A. Anderson, The role of IDH1 mutated tumour cells in secondary glioblastomas: an evolutionary game theoretical view, Phys. Biol., 8 (2011), 015016. |
[9] | D. T. Bishop and C. Cannings, A generalized war of attrition, J. Theor. Biol., 70 (1978), 85–124. |
[10] | K. Bohl, S. Hummert, S. Werner, D. Basanta, A. Deutsch, S. Schuster, G. Theissen and A. Schroeter, Evolutionary game theory: molecules as players, Mol. Biosyst., 10 (2014), 3066–3074. |
[11] | D. Dingli, F. A. C. C. Chalub, F. C. Santos, S. Van Segbroeck and J. M. Pacheco, Cancer phenotype as the outcome of an evolutionary game between normal and malignant cells, Br. J. Cancer., 101 (2009), 1130–1136. |
[12] | M. Dolbniak, M. Kardynska and J. Smieja, Sensitivity of combined chemo-and antiangiogenic therapy results in different models describing cancer growth, Discrete Cont. Dyn. - B, 23 (2018), 145–160. |
[13] | J. C. Fisher, Multiple-mutation theory of carcinogenesis, Nature, 181 (1958), 651–652. |
[14] | R. A. Gatenby and T. L. Vincent, An evolutionary model of carcinogenesis, Cancer Res., 63 (2003), 6212–6220. |
[15] | M. Gerstung, N. Eriksson, J. Lin, B. Vogelstein and N. Beerenwinkel, The temporal order of genetic and pathway alterations in tumorigenesis, PloS one, 6 (2011), e27136. |
[16] | J. Hofbauer, P. Schuster and K. Sigmund, A note on evolutionary stable strategies and game dynamics, J. Theor. Biol., 81 (1979), 609–612. |
[17] | S. Hummert, K. Bohl, D. Basanta, A. Deutsch, S. Werner, G. Theissen, A. Schroeter and S. Schuster, Evolutionary game theory: cells as players, Mol. BioSyst., 10 (2014), 3044–3065. |
[18] | A. Kaznatcheev, R. Vander Velde, J. G. Scott and D. Basanta, Cancer treatment scheduling and dynamic heterogeneity in social dilemmas of tumour acidity and vasculature, Br. J. Cancer., 116 (2017), 785–792. |
[19] | M. Krzeslak, D. Borys and A. Swierniak, Angiogenic switch - mixed spatial evolutionary game approach, Intell. Inf. Database Syst., 9621 (2016), 420–429. |
[20] | M. Krzeslak and A. Swierniak, Multidimensional extended spatial evolutionary games, Comput. Biol. Med., 69 (2016), 315–327. |
[21] | M. Krzeslak and A. Swierniak, Spatial evolutionary games and radiation induced bystander effect, Arch. Control Sci., 21. |
[22] | J. M. Lasry and P. L. Lions, Mean field games, Jpn J. Math., 2 (2007), 229–260. |
[23] | L. A. Loeb, Mutator phenotype may be required for multistage carcinogenesis, Cancer Res., 51 (1991), 3075–3079. |
[24] | M. Mahner and M. Kary, What exactly are genomes, genotypes and phenotypes? And what about phenomes? J. Theor. Biol., 186 (1997), 55–63. |
[25] | Y. Mansury, M. Diggory and T. S. Deisboeck, Evolutionary game theory in an agent-based brain tumor model: exploring the 'genotype-phenotype' link, J. Theor. Biol., 238 (2006), 146–156. |
[26] | L. M. F. Merlo, J.W. Pepper, B. J. Reid and C. C. Maley, Cancer as an evolutionary and ecological process, Nat. Rev. Cancer, 6 (2006), 924–935. |
[27] | J. V. Neumann, Theory of Self-Reproducing Automata, University of Illinois Press, Champaign, IL, USA, 1966. |
[28] | K. Sigmund and M. A. Nowak, Evolutionary game theory, Curr. Biol., 9 (1999), R503–R505. |
[29] | J. M. Smith and G. R. Price, The logic of animal conflict, Nature, 246 (1973), 15–18. |
[30] | J. M. Smith, Evolution and the theory of games. |
[31] | A. Swierniak, M. Kimmel, J. Smieja, K. Puszynski and K. Psiuk-Maksymowicz, System Engineering Approach to Planning Anticancer Therapies, Springer International Publishing, 2016. |
[32] | A. Swierniak and M. Krzeslak, Application of evolutionary games to modeling carcinogenesis, Math. Biosci. Eng., 10 (2013), 873–911. |
[33] | A. Swierniak and M. Krzeslak, Cancer heterogeneity and multilayer spatial evolutionary games., Biol. Direct, 11 (2016), 53. |
[34] | A. Swierniak, M. Krzeslak, S. Student and J. Rzeszowska-Wolny, Development of a population of cancer cells: Observation and modeling by a mixed spatial evolutionary games approach, J. Theor. Biol., 405 (2016), 94–103. |
[35] | I. P. Tomlinson and W. F. Bodmer, Failure of programmed cell death and differentiation as causes of tumors: some simple mathematical models., Proceedings of the National Academy of Sciences of the United States of America, 92 (1995), 11130–11134. |
[36] | I. Tomlinson, Game-theory models of interactions between tumour cells, Eur. J. Cancer., 33 (1997), 1495–1500. |
[37] | I. Tomlinson and W. Bodmer, Modelling the consequences of interactions between tumour cells, Br. J. Cancer., 75 (1997), 157–160. |