Citation: Shaoli Wang, Jianhong Wu, Libin Rong. A note on the global properties of an age-structured viral dynamic model with multiple target cell populations[J]. Mathematical Biosciences and Engineering, 2017, 14(3): 805-820. doi: 10.3934/mbe.2017044
[1] | [ A. Alshorman,C. Samarasinghe,W. Lu,L. Rong, An HIV model with age-structured latently infected cells, J. Biol. Dyn., null (2015): 1-24. |
[2] | [ R. P. Beasley, Hepatocellular carcinoma and hepatitis B virus, Lancet, 2 (1981): 1129-1133. |
[3] | [ F. Brauer,Z. Shuai,P. van den Driessche, Dynamics of an age-of-infection choleramodel, Math. Biosci. Eng., 10 (2013): 1335-1349. |
[4] | [ C. J. Browne, A multi-strain virus model with infected cell age structure: Application to HIV, Nonlinear Anal. Real World Appl., 22 (2015): 354-372. |
[5] | [ C. J. Browne,S. S. Pilyugin, Global analysis of age-structured within-host virus model, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013): 1999-2017. |
[6] | [ C. A. Carter,L. S. Ehrlich, Cell biology of HIV-1 infection of macrophages, Annu. Rev. Microbiol., 62 (2008): 425-443. |
[7] | [ I. Castillo, Hepatitis C virus replicates in peripheral blood mononuclear cells of patients with occult hepatitis C virus infection, Gut., 54 (2005): 682-685. |
[8] | [ C. Ferrari, Cellular immune response to hepatitis B virus encoded antigens in a cute and chronic hepatitis B virus infection, J. Immunol., 145 (1990): 3442-3449. |
[9] | [ M. A. Gilchrist,D. Coombs,A. S. Perelson, Optimizing within-host viral fitness: Infected cell lifespan and virion production rate, J. Theoret. Biol., 229 (2004): 281-288. |
[10] | [ J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Mono-graphs, American Mathematical Society, Providence, RI, 1988. |
[11] | [ E. A. Hernandez-Vargas,R. H. Middleton, Modeling the three stages in HIV infection, J. Theor. Biol., 320 (2013): 33-40. |
[12] | [ G. Huang,X. Liu,Y. Takeuchi, Lyapunov functions and global stability for age-structured HIV infection model, SIAM J. Appl. Math., 72 (2012): 25-38. |
[13] | [ S. Koenig, Detection of AIDS virus in macrophages in brain tissue from AIDS patients with encephalopathy, Science, 233 (1986): 1089-1093. |
[14] | [ A. Kumar and G. Herbein, The macrophage: A therapeutic target in HIV-1 infection Mol. Cell. Therapies, 2 (2014), 10pp. |
[15] | [ M. J. Kuroda, Macrophages: Do they impact AIDS progression more than CD4 T cells?, J. Leukoc. Biol., 87 (2010): 569-573. |
[16] | [ X. Lai,X. Zou, Dynamics of evolutionary competition between budding and lytic viral release strategies, Math. Biosci. Eng., 11 (2014): 1091-1113. |
[17] | [ X. Lai,X. Zou, Modeling HIV-1 virus dynamics with both virus-to-cell Infection and cell-to-cell transmission, Math. Biosci. Eng., 11 (2014): 1091-1113. |
[18] | [ M. Y. Li,H. Shu, Global dynamics of an in-host viral model with intracellular delay, Bull. Math. Biol., 72 (2010): 1492-1505. |
[19] | [ P. Magal, Compact attractors for time periodic age-structured population models, Electron J. Differ. Equ., 65 (2001): 1-35. |
[20] | [ P. Magal,C. C. McCluskey, Two-group infection age model including an application to nosocomial infection, SIAM J. Appl. Math., 73 (2013): 1058-1095. |
[21] | [ P. Magal,H. R. Thieme, Eventual compactness for semi ows generated by nonlinear age-structured models, Commun. Pure Appl. Anal., 3 (2004): 695-727. |
[22] | [ P. W. Nelson,M. A. Gilchrist,D. Coombs,J. M. Hyman,A. S. Perelson, An agestructured model of HIV infection that allows for variations in the production rate of viral particles and the death rate of productively infected cells, Math. Biosci. Eng., 1 (2004): 267-288. |
[23] | [ M. A. Nowak,C. R. M. Bangham, Population dynamics of immune response to persistent viruses, Science, 272 (1996): 74-79. |
[24] | [ M. A. Nowak, Viral dynamics in hepatitis B virus infection, Proc. Natl. Acad. Sci. USA, 93 (1996): 4398-4402. |
[25] | [ M. Pope, Conjugates of dendritic cells and memory T lymphocytes from skin facilitate productive infection with HIV-1, Cell, 78 (1994): 389-398. |
[26] | [ F. Regenstein, New approaches to the treatment of chronic viral-hepatitis-B and viral-hepatitis C, Am. J. Med., 96 (1994): 47-51. |
[27] | [ L. Rong, H. Dahari, R. M. Ribeiro and A. S. Perelson, Rapid emergence of protease inhibitor resistance in hepatitis C virus Sci. Transl. Med., 2 (2010), 30ra32. |
[28] | [ L. Rong,Z. Feng,A. S. Perelson, Mathematical analysis of age-structured HIV-1 dynamics with combination antiviral theraphy, SIAM J. Appl. Math., 67 (2007): 731-756. |
[29] | [ L. Rong, J. Guedj, H. Dahari, D. Coffield, M. Levi, P. Smith and A. S. Perelson, Analysis of hepatitis C virus decline during treatment with the protease inhibitor danoprevir using a multiscale model PLoS Comput. Biol., 9 (2013), e1002959, 12pp. |
[30] | [ M. Shen,Y. Xiao,L. Rong, Global stability of an infection-age structured HIV-1 model linking within-host and between-host dynamics, Math. Biosci., 263 (2015): 37-50. |
[31] | [ X. Song,A. U. Neumann, Global stability and periodic solution of the viral dynamics, J. Math. Anal. Appl., 329 (2007): 281-297. |
[32] | [ H. R. Thieme, Semiflows generated by Lipschitz perturbations of non-densely defined operators, Differ. Integral Equ., 3 (1990): 1035-1066. |
[33] | [ S. Wang,X. Feng,Y. He, Global asymptotical properties for a diffused HBV infection model with CTL immune response and nonlinear incidence, Acta Math. Sci. Ser. B Engl. Ed., 31 (2011): 1959-1967. |
[34] | [ K. Wang,W. Wang, Propagation of HBV with spatial dependence, Math. Biosci., 210 (2007): 78-95. |
[35] | [ K. Wang,W. Wang,S. Song, Dynamics of an HBV model with diffusion and delay, J. Theor. Biol., 253 (2008): 36-44. |
[36] | [ J. Wang,R. Zhang,T. Kuniya, Mathematical analysis for an age-structured HIV infection model with saturation infection rate, Electron J. Differ. Equ., 33 (2015): 1-19. |
[37] | [ J. Wang,R. Zhang,T. Kuniya, The dynamics of an SVIR epidemiological model with infection age, IMA J. Appl. Math., 81 (2016): 321-343. |
[38] | [ J. Wang,J. Lang,F. Li, Constructing Lyapunov functionals for a delayed viral infection model with multitarget cells, nonlinear incidence rate, state-dependent removal rate, J. Nonlinear Sci. Appl., 9 (2016): 524-536. |
[39] | [ J. Wang,J. Lang,X. Zou, Analysis of an age structured HIV infection model with virus-to-cell infection and cell-to-cell transmission, Nonlinear Anal. Real World Appl., 34 (2017): 75-96. |
[40] | [ J. Wang,R. Zhang,T. Kuniya, Global dynamics for a class of age-infection HIV models with nonlinear infection rate, J. Math. Anal. Appl., 432 (2015): 289-313. |
[41] | [ J. Wang,R. Zhang, A note on dynamics of an age-of-infection cholera model, Math. Biosci. Eng., 13 (2016): 227-247. |
[42] | [ J. I. Weissberg, Survival in chronic hepatitis B: An analysis of 379 patients, Ann. Intern. Med., 101 (1984): 613-616. |
[43] | [ R. Xu,Z. Ma, An HBV model with diffusion and time delay, J. Theor. Biol., 257 (2009): 499-509. |
[44] | [ R. Xu, Global stability of an HIV-1 infection model with saturation infection and intracellular delay, J. Math. Anal. Appl., 375 (2011): 75-81. |
[45] | [ Y. Yang,S. Ruan,D. Xiao, Global stability of an age-structured virus dynamics model with Beddington-Deangelis infection function, Math. Biosci. Eng., 12 (2015): 859-877. |
[46] | [ H. Zhu,X. Zou, Impact of delays in cell infection and virus production on HIV-1 dynamics, Math. Med. Biol., 25 (2008): 99-112. |