A pressure model of immune response to mycobacterium
tuberculosis infection in several space dimensions
-
1.
Istituto per le Applicazioni del Calcolo “M. Picone”, CNR, c/o Dip. di Matematica, Università di Roma “Tor Vergata”, Via della Ricerca Scientifica, 1; I-00133 Roma
-
Received:
01 January 2009
Accepted:
29 June 2018
Published:
01 April 2010
-
-
MSC :
Primary: 35K57, 92C17 ; Secondary: 65C20, 93A30.
-
-
Mycobacterium tuberculosis (Mtb) is a widely diffused infection. However, in general, the human immune system is able to contain it. In this work, we propose a mathematical model which describes the early immune response to the Mtb infection in the lungs, also including the possible evolution of the infection in the formation of a granuloma. The model is based on coupled reaction-diffusion-transport equations with chemotaxis, which take into account the interactions among bacteria, macrophages and chemoattractant. The novelty of this approach is in the modeling of the velocity field, proportional to the gradient of the pressure developed between the cells, which makes possible to deal with a full multidimensional description and efficient numerical simulations. We perform a linear stability analysis of the model and propose a robust implicit-explicit scheme to deal with long time simulations. Both in one and two-dimensions, we find that there are threshold values in the parameters space, between a contained infection and the uncontrolled bacteria growth, and the generation of granuloma-like patterns can be observed numerically.
Citation: Fabrizio Clarelli, Roberto Natalini. A pressure model of immune response to mycobacteriumtuberculosis infection in several space dimensions[J]. Mathematical Biosciences and Engineering, 2010, 7(2): 277-300. doi: 10.3934/mbe.2010.7.277
-
Abstract
Mycobacterium tuberculosis (Mtb) is a widely diffused infection. However, in general, the human immune system is able to contain it. In this work, we propose a mathematical model which describes the early immune response to the Mtb infection in the lungs, also including the possible evolution of the infection in the formation of a granuloma. The model is based on coupled reaction-diffusion-transport equations with chemotaxis, which take into account the interactions among bacteria, macrophages and chemoattractant. The novelty of this approach is in the modeling of the velocity field, proportional to the gradient of the pressure developed between the cells, which makes possible to deal with a full multidimensional description and efficient numerical simulations. We perform a linear stability analysis of the model and propose a robust implicit-explicit scheme to deal with long time simulations. Both in one and two-dimensions, we find that there are threshold values in the parameters space, between a contained infection and the uncontrolled bacteria growth, and the generation of granuloma-like patterns can be observed numerically.
-
-
-
-