Coalgebraic Structure of Genetic Inheritance

  • Received: 01 December 2003 Accepted: 29 June 2018 Published: 01 July 2004
  • MSC : 16W99.

  • Although in the broadly defined genetic algebra, multiplication suggests a forward direction of from parents to progeny, when looking from the reverse direction, it also suggests to us a new algebraic structure --- coalgebraic structure, which we call genetic coalgebras. It is not the dual coalgebraic structure and can be used in the construction of phylogenetic trees. Mathematically, to construct phylogenetic trees means we need to solve equations x[n] =a , or x(n)=b. It is generally impossible to solve these equations in algebras. However, we can solve them in coalgebras in the sense of tracing back for their ancestors. A thorough exploration of coalgebraic structure in genetics is apparently necessary. Here, we develop a theoretical framework of the coalgebraic structure of genetics. From biological viewpoint, we defined various fundamental concepts and examined their elementary properties that contain genetic significance. Mathematically, by genetic coalgebra, we mean any coalgebra that occurs in genetics. They are generally noncoassociative and without counit; and in the case of non-sex-linked inheritance, they are cocommutative. Each coalgebra with genetic realization has a baric property. We have also discussed the methods to construct new genetic coalgebras, including cocommutative duplication, the tensor product, linear combinations and the skew linear map, which allow us to describe complex genetic traits. We also put forward certain theorems that state the relationship between gametic coalgebra and gametic algebra. By Brower's theorem in topology, we prove the existence of equilibrium state for the in-evolution operator.

    Citation: Jianjun Tian, Bai-Lian Li. Coalgebraic Structure of Genetic Inheritance[J]. Mathematical Biosciences and Engineering, 2004, 1(2): 243-266. doi: 10.3934/mbe.2004.1.243

    Related Papers:

  • Although in the broadly defined genetic algebra, multiplication suggests a forward direction of from parents to progeny, when looking from the reverse direction, it also suggests to us a new algebraic structure --- coalgebraic structure, which we call genetic coalgebras. It is not the dual coalgebraic structure and can be used in the construction of phylogenetic trees. Mathematically, to construct phylogenetic trees means we need to solve equations x[n] =a , or x(n)=b. It is generally impossible to solve these equations in algebras. However, we can solve them in coalgebras in the sense of tracing back for their ancestors. A thorough exploration of coalgebraic structure in genetics is apparently necessary. Here, we develop a theoretical framework of the coalgebraic structure of genetics. From biological viewpoint, we defined various fundamental concepts and examined their elementary properties that contain genetic significance. Mathematically, by genetic coalgebra, we mean any coalgebra that occurs in genetics. They are generally noncoassociative and without counit; and in the case of non-sex-linked inheritance, they are cocommutative. Each coalgebra with genetic realization has a baric property. We have also discussed the methods to construct new genetic coalgebras, including cocommutative duplication, the tensor product, linear combinations and the skew linear map, which allow us to describe complex genetic traits. We also put forward certain theorems that state the relationship between gametic coalgebra and gametic algebra. By Brower's theorem in topology, we prove the existence of equilibrium state for the in-evolution operator.


    加载中
  • Reader Comments
  • © 2004 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2889) PDF downloads(670) Cited by(24)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog