Citation: Mariya Aleksandrova. Spray deposition of piezoelectric polymer on plastic substrate for vibrational harvesting and force sensing applications[J]. AIMS Materials Science, 2018, 5(6): 1214-1222. doi: 10.3934/matersci.2018.6.1214
[1] | Chen J, Oh SK, Zou H, et al. (2018) High-output lead-free flexible piezoelectric generator using single-crystalline GaN thin film. ACS Appl Mater Inter 18: 12839–12846. |
[2] | Walubita LF, Djebou DCS, Faruk ANM, et al. (2018) Prospective of societal and environmental benefits of piezoelectric technology in road energy harvesting. Sustainability 10: 383–396. doi: 10.3390/su10020383 |
[3] | Rocha JG, Goncalves LM, Rocha PF, et al. (2010) Energy harvesting from piezoelectric materials fully integrated in footwear. IEEE T Ind Electron 57: 813–819. doi: 10.1109/TIE.2009.2028360 |
[4] | Johar AM, Hassan MA, Waseem A, et al. (2018) Stable and high piezoelectric output of GaN nanowire-based lead-free piezoelectric nanogenerator by suppression of internal screening. Nanomaterials 8: 437–449. doi: 10.3390/nano8060437 |
[5] | Yan J, Jeong YG (2017) Roles of carbon nanotube and BaTiO3 nanofiber in the electrical, dielectric and piezoelectric properties of flexible nanocomposite generators. Compos Sci Technol 144: 1–10. doi: 10.1016/j.compscitech.2017.03.015 |
[6] | Jung I, Shin YH, Kim S, et al. (2017) Flexible piezoelectric polymer-based energy harvesting system for roadway applications. Appl Energ 197: 222–229. doi: 10.1016/j.apenergy.2017.04.020 |
[7] | Ghafari E, Jiang XD, Lu N (2018) Surface morphology and beta-phase formation of single polyvinylidene fluoride (PVDF) composite nanofibers. Adv Compos Hybrid Mater 1: 332–340. doi: 10.1007/s42114-017-0016-z |
[8] | Ghafari E, Lu N (2019) Self-polarized electrospun polyvinylidene fluoride (PVDF) nanofiber for sensing applications. Compos Part B-Eng 160: 1–9. doi: 10.1016/j.compositesb.2018.10.011 |
[9] | Su YF, Kotian RR, Lu N (2018) Energy harvesting potential of bendable concrete using polymer based piezoelectric generator. Compos Part B-Eng 153: 124–129. doi: 10.1016/j.compositesb.2018.07.018 |
[10] | Zhu Z, Lowes J, Berron J, et al. (2014) Spin-coating defect theory and experiments. ECS Trans 60: 293–302. doi: 10.1149/06001.0293ecst |
[11] | Xu Y, Luo A, Zhang A, et al. (2016) Spray coating of polymer electret with nano particles for stable surface charge. IEEE 11th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), 17–20 April 2016, Sendai, Japan. |
[12] | Kolev G, Aleksandrova M, Videkov V, et al. (2012) Piezoelectric MEMS stress sensor with thin lead zirconate titanate (PZT) layer. IEEE 20th Telecommunications Forum (TELFOR), Belgrade, Serbia, 991–993. |
[13] | Aleksandrova M, Kurtev N, Videkov V, et al. (2015) Material alternative to ITO for transparent conductive electrode in flexible display and photovoltaic devices. Microelectron Eng 145: 112–116. doi: 10.1016/j.mee.2015.03.053 |
[14] | Thirmal C, Nayek C, Murugavel P, et al. (2013) Magnetic, dielectric and magnetodielectric properties of PVDF-La0.7Sr0.3MnO3 polymer nanocomposite film. AIP Adv 3: 112109. |
[15] | Ruan L, Yao X, Chang Y, et al. (2018) Properties and applications of the β phase poly(vinylidene fluoride). Polymers 10: 228–255. doi: 10.3390/polym10030228 |
[16] | Mandal D, Henkel K, Schmeißer D (2011) Control of the crystalline polymorph, molecular dipole and chain orientations in P(VDF-HFP) for high electrical energy storage application. 2011 International Conference on Nanoscience, Technology and Societal Implications (NSTSI), Bhubaneswar, India. |
[17] | Parker A, Ueda A, Marvinney CE, et al. (2018) Structural and thermal treatment evaluation of electrospun PVDF nanofibers for sensors. J Polym Sci Appl 2: 1–4. |