ücken, Germany"/>
Citation: Michael R. Koblischka, Anjela Koblischka-Veneva. Porous high-Tc superconductors and their applications[J]. AIMS Materials Science, 2018, 5(6): 1199-1213. doi: 10.3934/matersci.2018.6.1199
[1] | Foltyn SR, Civale L, MacManus-Driscoll JL, et al. (2007) Materials science challenges for high-temperature superconducting wire. Nat Mater 6: 631–642. |
[2] | Murakami M (1991) Melt Processed High-Temperature Superconductors, Singapore: World Scientific. |
[3] | Scanlan RM, Malozemoff AP, Larbalestier DC (2004) Superconducting materials for large scale applications. P IEEE 92: 1639–1654. doi: 10.1109/JPROC.2004.833673 |
[4] | Grant PM, Sheahen TP (1998) Cost projection for high temperature superconductors. Applied Superconductivity Conference, Palm Desert, CA. |
[5] | Hull JR, Strasik M (2010) Concepts for using trapped flux bulk high-temperature superconductors in motors and generators. Supercond Sci Tech 23: 124005. doi: 10.1088/0953-2048/23/12/124005 |
[6] | Tomita M, Murakami M (2003) High-temperature superconductor bulk magnets that can trap magnetic fields above 17 tesla at 29 K. Nature 421: 517–520. doi: 10.1038/nature01350 |
[7] | Durrell JH, Dennis AR, Jaroszynski J, et al. (2014) A trapped field of 17.6 T in melt-processed bulk Gd-Ba-Cu-O reinforced with shrink-fit steel. Supercond Sci Tech 27: 082001. |
[8] | Johansen TH (2000) Flux-pinning-induced stress and magnetostriction in bulk superconductors. Supercond Sci Tech 13: R121–R137. doi: 10.1088/0953-2048/13/10/201 |
[9] | Diko P (2004) Cracking in melt-grown RE-Ba-Cu-O single-grain bulk superconductors. Supercond Sci Tech 17: R45–R58. doi: 10.1088/0953-2048/17/11/R01 |
[10] | Fiertek P, Sadowski W (2006) Processing of porous structures of YBa2Cu3O7−δ high-temperature superconductor. Mater Sci-Pol 24: 1103–1108. |
[11] | Fiertek P, Andrzejewski B, Sadowski W (2010) Synthesis and transport properties of porous superconducting ceramics of YBa2Cu3O7−δ. Rev Adv Mater Sci 23: 52–56. |
[12] | Huang SL, Koblischka MR, Johansen TH, et al. (1997) Increased flux pinning in both pure and carbon-nanotube-embedded Bi-2212 superconductors. Physica C 282–287: 2279–2280. |
[13] | Petrov MI, Tetyueva TN, Kveglis LI, et al. (2003) Synthesis, Microstructure, and the Transport and Magnetic Properties of Bi-Containing High-Temperature Superconductors with a Porous Structure. Tech Phys Lett 29: 986–988. doi: 10.1134/1.1639450 |
[14] | Reddy ES, Schmitz GJ (2002) Ceramic foams. Am Ceram Soc Bull 81: 35–37. |
[15] | Reddy ES, Herweg M, Schmitz GJ (2003) Processing of Y2BaCuO5 foams. Supercond Sci Tech 16: 608–612. |
[16] | Noudem JG, Reddy ES, Tarka M, et al. (2002) Electrical performance of single domain YBa2Cu3O7 fabrics. Physica C 366: 93–101. doi: 10.1016/S0921-4534(01)00828-0 |
[17] | Zhang GQ, Lu XL, Zhang T, et al. (2006) Microstructure and superconductivity of highly ordered YBa2Cu3O7−δ nanowire arrays. Nanotechnology 17: 4252–4256. |
[18] | Li JM, Zeng XL, Mo AD, et al. (2011) Fabrication of cuprate superconducting La1.85Sr0.15CuO4 nanofibers by electrospinning and subsequent calcination in oxygen. CrystEngComm 13: 6964–6967. |
[19] | Duarte EA, Quintero PA, Meisel MW, et al. (2013) Electrospinning synthesis of superconducting BSCCO nanowires. Physica C 495: 109–113. doi: 10.1016/j.physc.2013.08.006 |
[20] | Duarte EA, Rudawski NG, Quintero PA, et al. (2015) Electrospinning of superconducting YBCO nanowires. Supercond Sci Tech 28: 015006. |
[21] | Zeng XL, Koblischka MR, Hartmann U (2015) Synthesis and characterization of electrospun superconducting (La,Sr)CuO4 nanowires and nanoribbons. Mater Res Express 2: 095022. doi: 10.1088/2053-1591/2/9/095022 |
[22] | Rotta M, Zadorosny L, Carvalho CL, et al. (2016) YBCO ceramic nanofibers obtained by the new technique of solution blow spinning. Ceram Int 42: 16230–16234. doi: 10.1016/j.ceramint.2016.07.152 |
[23] | Koblischka MR, Zeng XL, Karwoth T, et al. (2016) Transport and magnetic measurements on Bi2Sr2CaCu2O8 nanowire networks prepared via electrospinning. IEEE T Appl Supercon 26: 1800605. |
[24] | Koblischka MR, Zeng XL, Karwoth T, et al. (2016) Magnetic properties of electrospun non-woven superconducting fabrics. AIP Adv 6: 035115. doi: 10.1063/1.4944747 |
[25] | Zeng XL, Koblischka MR, Karwoth T, et al. (2017) Preparation of granular Bi-2212 nanowires by electrospinning. Supercond Sci Tech 30: 035014. doi: 10.1088/1361-6668/aa544a |
[26] | Cena CR, Torsoni GB, Zadorosny L, et al. (2017) BSCCO superconductor micro/nanofibers produced by solution blow-spinning technique. Ceram Int 43: 7663–7667. doi: 10.1016/j.ceramint.2017.03.065 |
[27] | Koblischka MR, Zeng XL, Laurent F, et al. (2018) Characterization of electrospun Bi2Sr2CaCu2O8+δ nanowires with reduced preparation temperature. IEEE T Appl Supercon 28: 7200505. |
[28] | Noudem JG (2011) Developing of shaping textured YBaCuO superconductors. J Supercond Nov Magn 24: 105–110. |
[29] | Nie Z, Lin Y, Tong Q (2017) Modeling structures of open cell foams. Comp Mater Sci 131: 160–169. doi: 10.1016/j.commatsci.2017.01.029 |
[30] | Wu H, Pan W, Lin D, et al. (2012) Electrospinning of ceramic nanofibers: Fabrication, assembly and applications. J Adv Ceram 1: 2–23. doi: 10.1007/s40145-012-0002-4 |
[31] | Li D, McCann JT, Xia YN (2006) Electrospinning: A simple and versatile technique for producing ceramic nanofibers and nanotubes. J Am Ceram Soc 89: 1861–1869. doi: 10.1111/j.1551-2916.2006.00989.x |
[32] | Huang ZM, Zhang YZ, Kotaki M, et al. (2003) A review on polymer nanofibers by electrospinning and their application in nanocomposites, Compos Sci Technol 63: 2223–2253. |
[33] | Medeiros ES, Glenn GM, Klamczynski AP, et al. (2009) Solution Blow Spinning: A New Method to Produce Micro- and Nanofibers from Polymer Solutions. J Appl Polym Sci 113: 2322–2330. |
[34] | Koblischka-Veneva A, Koblischka MR, Zeng XL, et al. (2018) TEM and electron backscatter diffraction analysis (EBSD) on superconducting nanowires. J Phys Conf Ser 1054: 012005. |
[35] | Zeng XL, Karwoth T, Koblischka MR, et al. (2017) Analysis of magnetization loops of electrospun non-woven superconducting fabrics. Phys Rev Mater 1: 044802. |
[36] | Noudem JG, Reddy ES, Schmitz GJ (2003) Magnetic and transport properties of YBa2Cu3Oy foams. Physica C 390: 286–290. |
[37] | Koblischka MR, Sosnowski J (2005) Temperature-depedendent scaling of pinning force data in Bi-based high-Tc superconductors. Eur Phys J B 44: 277–280. |
[38] | Nakazato K, Muralidhar M, Koblischka MR, et al. (2014) Fabrication of bulk Y–Ba–Cu–O superconductors with high critical current densities through the infiltration-growth process. Cryogenics 63: 129–132. doi: 10.1016/j.cryogenics.2014.04.003 |
[39] | Koblischka MR, Koblischka-Veneva A, Chang C, et al. (2018) Flux pinning analysis of superconducting YBCO foam struts. IEEE T Appl Supercon [In press]. |
[40] | Gokhfeld DM (2014) An extended critical state model: Asymmetric magnetisation loops and field dependence of the critical current of superconductors. Phys Solid State 56: 2380–2386. |
[41] | Mikheenko PN, Uprety KK, Dou SX (2001) BSCCO, In: Cardwell DA, Ginley DS, Handbook of superconductiing materials, Bristol: IOP Publishing, 947–993. |
[42] | Terent'ev KYu, Gokhfeld DM, Popkov SI, et al. (2011) Pinning in a Porous High-Temperature Superconductor Bi2223. Phys Solid State 53: 2409–2414. doi: 10.1134/S1063783411120250 |
[43] | Noudem JG, Guilmeau E, Chateigner D, et al. (2004) Properties of YBa2Cu3Oy-textured superconductor foams. Physica C 408–410: 655–656. |
[44] | Tournier R, Beaugnon E, Belmont O, et al. (2000) Processing of large Y1Ba2Cu3O7−δ single domains for current-limiting applications. Supercond Sci Tech 13: 886–896. |
[45] | Jung A, Diebels S, Koblischka-Veneva A, et al. (2013) Microstructural analysis of electrochemical coated open-cell metal foams by EBSD and nanoindentation. Adv Eng Mater 16: 15–20. |
[46] | Goodfellow A, Shi YH, Durrell JH, et al. (2016) Microstructural evolution in multiseeded YBCO bulk samples grown by the TSMG method. Supercond Sci Tech 19: 115005. |
[47] | Haupt SG, Riley GR, McDevitt JT (1993) Conductive polymer/high-temperature superconductor composite structures. Adv Mater 5: 755–758. |
[48] | Shirbeny W, Hafez M, Mahmoud WE (2013) Synthesis and characterization of PVA/YBCO nanocomposite for improvement of solar energy conversion. Polym Composite 34: 587–591. doi: 10.1002/pc.22460 |
[49] | SupraMotion 2017: Superconductors for automatization. Brochure FESTO AG & Co KG. Available from: http:// www.festo.com/supra. |