Research article

Estimation and inversion across the spectrum of carbon cycle modeling

  • Received: 04 December 2017 Accepted: 02 May 2018 Published: 08 May 2018
  • Understanding of the carbon cycle is particularly important because of the role of carbon dioxide as a greenhouse gas. Carbon cycle models play an essential role in the interpretation of observational data. The analysis of the carbon cycle involves statistical estimation in various contexts. These include various types of model calibration, including the estimation of feedbacks. A range of inverse calculations are involved in estimating the spatial and/or temporal dependence of carbon dioxide sources and sinks, given observations of concentrations. The uncertainties in these estimates propagate into uncertainties in projections of future carbon cycle behavior. These disparate analyses are discussed in terms of a modeling spectrum that runs from empirical statistical models through to reductionist mechanistic models. The use of the modeling spectrum allows a comparison of di erent modeling approaches. Comparing di erent levels of modeling can provide a basis for assessing the extent to which estimation is being applied consistently.

    Citation: Ian Enting. Estimation and inversion across the spectrum of carbon cycle modeling[J]. AIMS Geosciences, 2018, 4(2): 126-143. doi: 10.3934/geosci.2018.2.126

    Related Papers:

  • Understanding of the carbon cycle is particularly important because of the role of carbon dioxide as a greenhouse gas. Carbon cycle models play an essential role in the interpretation of observational data. The analysis of the carbon cycle involves statistical estimation in various contexts. These include various types of model calibration, including the estimation of feedbacks. A range of inverse calculations are involved in estimating the spatial and/or temporal dependence of carbon dioxide sources and sinks, given observations of concentrations. The uncertainties in these estimates propagate into uncertainties in projections of future carbon cycle behavior. These disparate analyses are discussed in terms of a modeling spectrum that runs from empirical statistical models through to reductionist mechanistic models. The use of the modeling spectrum allows a comparison of di erent modeling approaches. Comparing di erent levels of modeling can provide a basis for assessing the extent to which estimation is being applied consistently.


    加载中
    [1] Field CB, Raupach MR (2004) The Global Carbon Cycle: Integrating Humans, Climate and the Natural World. Island Press, Washington DC.
    [2] Falkowski P, Scholes RJ, Boyle E, et al. (2000) The global carbon cycle: A test of our knowledge of the earth as a system. Sci 290: 291–296. doi: 10.1126/science.290.5490.291
    [3] Canadell JG, Mooney HA, Baldocchi DD, et al. (2000) Carbon metabolism of the terrestrial biosphere: a multitechnique approach for improved understanding. Ecosyst 3: 115–130. doi: 10.1007/s100210000014
    [4] Raupach MR, Rayner PJ, Barrett DJ et al. (2005) Model-data synthesis in terrestrial carbon observation: methods, data requirements and data uncertainty specifications. GCB 11: 378–397.
    [5] Enting IG, Rayner PJ, Ciais P (2012) Carbon cycle uncertainty in REgional Carbon Cycle Assessment and Processes (RECCAP). Biogeosci 9: 2889–2904. doi: 10.5194/bg-9-2889-2012
    [6] Karplus W (1977) The spectrum of mathematical modeling and systems simulation. Math Comp Simul 19: 3–10 doi: 10.1016/0378-4754(77)90034-9
    [7] Enting IG (1987) A modeling spectrum for carbon cycle studies. Math Comp Simul 29: 75–85. doi: 10.1016/0378-4754(87)90099-1
    [8] Enting IG (2010) Inverse problems and complexity in earth system science. In R. L. Dewar and F. Detering, editors, Complex Physical, Biophysical and Econophysical Systems. World Scientific, Singapore.
    [9] Enting IG (2002) Inverse Problems in Atmospheric Constituent Transport. CUP, Cambridge, UK.
    [10] Boschetti F, Grigg N, Enting IG (2010) Modelling = conditional prediction. Ecological Complexity.
    [11] Enting IG (2008) Assessing the information content in environmental modelling: A carbon cycle perspective. Entropy 10: 556–575. doi: 10.3390/e10040556
    [12] Rayner PJ, Brien DO (2001) The utility of remotely sensed CO2 concentration data in surface source inversions. Geophys Res Lett 28: 175–178. doi: 10.1029/2000GL011912
    [13] Evans SN, Stark PB (2002) Inverse problems as statistics. Inverse Probl 18: R55–R97. doi: 10.1088/0266-5611/18/4/201
    [14] Trudinger CM, Raupach MR, Rayner PJ, et al. (2008) OptIC project: an intercomparison of optimization techniques for parameter estimation in terrestrial biogeochemical models. J Geophys Res 112: G02027 .
    [15] Schneider SH (1983) The problem of pre-industrial CO2 concentration: An editorial. Clim Change 5: 311–313. doi: 10.1007/BF02423527
    [16] Laurmann JA, Spreiter JR (1983) The e ects of carbon cycle model error in calculating future atmospheric carbon dioxide levels. Clim Change 5: 145–181. doi: 10.1007/BF02423488
    [17] Gloor M, Sarmiento JL, Gruber N (2010) What can be learned about carbon cycle climate feedbacks from the CO2 airborne fraction? Atmos Chem Phys 10: 7739–7751. doi: 10.5194/acp-10-7739-2010
    [18] Oeschger H, Heimann M (1983) Uncertainties of predictions of future atmospheric CO2 concentrations. J Geophys Res 88C: 1258–1262.
    [19] Joos F, Roth R, Fuglestvedt JS, et al. (2013) Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: a multi-model analysis. Atmos Chem Phys 13: 2793–2825. doi: 10.5194/acp-13-2793-2013
    [20] Wigley TML (1991) A simple inverse carbon cycle model. Global Biogeochem Cycles 5: 373–382. doi: 10.1029/91GB02279
    [21] Joos F, Bruno M (1998) Long-term variability of the terrestrial and oceanic carbon sinks and the budgets of the carbon isotopes 13C and 14C. Global Biogeochem Cycles 12: 277–295. doi: 10.1029/98GB00746
    [22] Joos F, Prentice IC, Sitch S, et al. (2001) Global warming feedbacks on terrestrial carbon uptake under the Intergovernmental Panel on Climate Change (IPCC) scenarios. Global Biogeochem Cycles 15: 891–907. doi: 10.1029/2000GB001375
    [23] Meinshausen M, Raper SCB, Wigley TML (2011) Emulating coupled atmosphere-ocean and carbon cycle models with a simpler model: - part 1 model description and calibration MAGICC6. Atmos Chem Phys 11: 1417–1456. doi: 10.5194/acp-11-1417-2011
    [24] Enting IG (2007) Laplace transform analysis of the carbon cycle. Environ Modelling Software 22: 1488–1497. doi: 10.1016/j.envsoft.2006.06.018
    [25] Trudinger CM, Enting IG, Rayner PJ, et al. (2002) Kalman filter analysis of ice core data. 2 Double deconvolution of CO2 and 13C measurements. J Geophys Res 107: 4423.
    [26] Enting IG, Pearman GI (1987) Description of a one-dimensional carbon cycle model calibrated using techniques of constrained inversion. Tellus 39B: 459–476. doi: 10.1111/j.1600-0889.1987.tb00206.x
    [27] Young P, Parkinson S, Lees M (1996) Simplicity out of complexity in environmental modelling: Occam's razor revisited. J Appl Statist 23: 165–210. doi: 10.1080/02664769624206
    [28] Bodman RW (2011) Estimating Uncertainties in Future Global Warming using a Simple Climate Model. PhD thesis, University of Melbourne.
    [29] Bodman RW, Rayner PJ, Karoly DJ (2013) Uncertainty in temperature projections reduced using carbon cycle and climate observations. Nature Clim Change pages 725–729.
    [30] Sundquist ET (1985) Geological perspectives on carbon dioxide and the carbon cycle. In E. T. Sundquist and W. S. Broecker, editors, The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, Geophysical Monograph 32, pages 5–59. AGU, Washington.
    [31] Wigley TML, Raper SCB (1992) Implications for climate and sea level rise of the revised IPCC emission scenarios. Nature 357: 293–300. doi: 10.1038/357293a0
    [32] Willeit M, Ganopolski A, Dalmonech D, et al. (2014) Time-scale and state dependence of the carbon-cycle feedback to climate. Clim Dynamics 42: 1699–1713. doi: 10.1007/s00382-014-2102-z
    [33] Friedlingstein P, Dufresne JL, Cox PM, et al. (2003) How positive is the feedback between climate change and the carbon cycle? Tellus 55B: 692–700.
    [34] Rubino M, Etheridge DM, Trudinger CM, et al. (2016) Low atmospheric CO2 levels during the Little Ice Age due to cooling-induced terrestrial uptake. Nature Geosci 9: 691–694. doi: 10.1038/ngeo2769
    [35] Enting IG, Mansbridge JV (1987) The incompatibility of ice-core CO2 data with reconstructions of biotic CO2 sources. Tellus B 39B: 318–325. doi: 10.1111/j.1600-0889.1987.tb00102.x
    [36] Enting IG (1992) The incompatibility of ice-core CO2 data with reconstructions of biotic CO2sources (II). Tellus B 44: 23–32. doi: 10.3402/tellusb.v44i1.15418
    [37] Broecker WS, Peng TH, Engh R (1980) Modeling the carbon system. Radiocarbon 22: 565–598. doi: 10.1017/S0033822200009966
    [38] Enting IG, Mansbridge JV (1987) Inversion relations for the deconvolution of CO2 data from ice cores. Inverse Problems 3: L63–69. doi: 10.1088/0266-5611/3/4/001
    [39] Siegenthaler U, Oeschger H (1987) Biospheric CO2 emissions during the past 200 years reconstructed by deconvolution of ice core data. Tellus 39B: 140–154. doi: 10.1111/j.1600-0889.1987.tb00278.x
    [40] Enting IG (2010) Inversion of atmospheric CO2 concentrations. In D. Moreira and M. Vilhena, editors, Air Pollution and Turbulence: Modeling and Applications, chapter 11, pages 287–316. CRC Press (Taylor and Francis), Boca Raton, Florida.
    [41] Bolin B, Keeling CD (1963) Large-scale atmospheric mixing as deduced from the seasonal and meridional variations of carbon dioxide. J Geophys Res 68: 3899–3920. doi: 10.1029/JZ068i013p03899
    [42] Enting IG, Mansbridge JV (1989) Seasonal sources and sinks of atmospheric CO2: Direct inversion of filtered data. Tellus 41B: 111–126. doi: 10.1111/j.1600-0889.1989.tb00129.x
    [43] Tans PP, Conway TJ, Nakazawa T (1989) Latitudinal distribution of the sources and sinks of atmospheric carbon dioxide derived from surface observations and an atmospheric transport model. J Geophys Res 94D: 5151–5172.
    [44] Enting IG, Mansbridge JV (1991) Latitudinal distribution of sources and sinks of CO2: Results of an inversion study. Tellus 43B: 156–170.
    [45] Law RM (1999) CO2 sources from a mass-balance inversion: sensitivity to the surface constraint. Tellus 51B: 254–265.
    [46] Dargaville RJ, Simmonds I (2000). Calculating CO2 fluxes by data assimilation coupled to a three dimensional massbalance inversion. In P. Kasibhatla et al., editors, Inverse Methods on Global Biogeochemical Cycles, pages 255–264. AGU, Washington, DC.
    [47] Keeling CD, Piper SC, Heimann M (1989) A three-dimensional model of atmospheric CO2 transport based on observed winds. 4: Mean annual gradients and interannual variations. In D. H. Peterson, editor, Aspects of Climate Variability of the Pacific and Western Americas . Geophysical Monograph 55. AGU, Washington.
    [48] Tans PP, Fung IY, Takahashi T. Observational constraints on the global atmospheric CO2 budget. Sci 247: 1431–1438.
    [49] Fung IY, John J, Lerner J, et al. (1991) Three-dimensional model synthesis of the global methane cycle. J Geophys Res 96D: 13033–13065.
    [50] Enting IG, Trudinger CM, Francey RJ (1995). A synthesis inversion of the concentration and 13C of atmospheric CO2. Tellus 47B: 35–52.
    [51] Trudinger CM, Raupach MR, Rayner PJ, et al. (2008) Using the Kalman filter for parameter estimation in biogeochemical models. Environ.
    [52] Newsam GN, Enting IG (1988) Inverse problems in atmospheric constituent studies: I. Determination of surface sources under a di usive transport approximation. Inverse Problems 4: 1037–1054.
    [53] Griewank A (2000). Evaluating Derivatives: Principles and Techniques of Algorithmic Di erentiation. SIAM, Philadelphia.
    [54] Enting IG (2011) Tangents, adjoints and computational complexity in terrestrial carbon modelling. In W. McLean and A. J. Roberts, editors, Proceedings of the 15th Biennial Computational Techniques and Applications Conference, CTAC-2010, volume 52 of ANZIAM J., pages C806–C822, October.
    [55] R¨odenbeck C, Houweling S, Gloor M, et al. (2003) CO2 flux history 1982–2001 inferred from atmospheric data using a global inversion of atmospheric transport. Atmos Chem Phys 3: 1919– 1964. doi: 10.5194/acp-3-1919-2003
    [56] Kaminski T, Knorr W, Rayner PJ, et al. (2002) Assimilating atmospheric data into a terrestrial biosphere model: A case study of the seasonal cycle. Global Biogeochem Cycles 16: 1066.
    [57] Rayner PJ, Scholze M, Knorr W, et al. (2005) Two decades of terrestrial carbon fluxes from a carbon cycle data assimilation system (CCDAS). Global Biogeochemical Cycles, 19:GB2026.
    [58] Enting IG (2011) Seeking carbon-consistency in the climate-science-to-policy interface. Biogeochem 104: 59–67. doi: 10.1007/s10533-009-9351-7
    [59] Tans PP, Berry JA, Keeling RF (1993) Oceanic 13C/12C observations: A new window on ocean CO2 uptake. Global Biogeochem Cycles 7: 353–368. doi: 10.1029/93GB00053
    [60] Quay PD, Tilbrook B, Wong CS (1992) Oceanic uptake of fossil fuel CO2: Carbon-13 evidence. Sci 256: 74–79. doi: 10.1126/science.256.5053.74
    [61] Sarmiento JL, Sundquist ET (1992) Revised budget for the oceanic uptake of anthropogenic carbon dioxide. Nature 356: 589–593. doi: 10.1038/356589a0
    [62] Heimann M, Maier-Reimer E (1996) On the relations between the oceanic uptake of CO2 and its isotopes. Global Biogeochem Cycles 10: 89–110. doi: 10.1029/95GB03191
    [63] Francey RJ, Tans PP, Allison CE, et al. (1995) Changes in oceanic and terrestrial carbon uptake since 1982. Nature 373: 326–330. doi: 10.1038/373326a0
    [64] Keeling CD, Whorf TP, Wahlen M, et al. (1995) Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980. Nature 375: 666–670. doi: 10.1038/375666a0
    [65] Keeling RF, Najjar RP, Bender ML, et al. (1993) What atmospheric oxygen measurements can tell us about the global carbon cycle. Global Biogeochem Cycles 7:37–67. doi: 10.1029/92GB02733
    [66] Bender M, Ellis T, Tans P, et al. (1996) Variability in the O2/N2 ratio of southern hemisphere air, 1991–1994: Implications for the carbon cycle. Global Biogeochem Cycles 10: 9–21. doi: 10.1029/95GB03295
    [67] Manning AC, Keeling RF, Severinghaus JP (1999) Precise atmospheric oxygen measurements with a paramagnetic oxygen analyzer. Global Biogeochem Cycles 13: 1107–1115. doi: 10.1029/1999GB900054
    [68] Denning AS, Fung IY, Randall D (1995) Latitudinal gradient of atmospheric CO2 due to seasonal exchange with the land biota. Nature 376: 240–243. doi: 10.1038/376240a0
    [69] Friedlingstein P, Cox P, Betts R, et al. (2006) Climate-carbon cycle feedback analysis: Results from the C4MIP model intercomparison. J Clim 19: 3337–3353. doi: 10.1175/JCLI3800.1
    [70] Canadell JG, Ciais P, Gurney K, et al. (2011) An international e ort to quantify regional carbon fluxes. EOS Trans AGU 92: 81–82.
    [71] Le Qu´er´e C, Raupach MR, Canadell JG, et al. (2009) Trends in the sources and sinks of carbon dioxide. Nature Geosci 2: 831–836. doi: 10.1038/ngeo689
    [72] Le Qu´er´e C, Andrew RM, Canadell JG, et al. (2016) Global carbon budget 2016. Earth Syst Sci Data 8: 605–649. doi: 10.5194/essd-8-605-2016
  • Reader Comments
  • © 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3805) PDF downloads(911) Cited by(4)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog