Citation: Alexander Fekete. Urban and Rural Landslide Hazard and Exposure Mapping Using Landsat and Corona Satellite Imagery for Tehran and the Alborz Mountains, Iran[J]. AIMS Geosciences, 2017, 3(1): 37-66. doi: 10.3934/geosci.2017.1.37
[1] | United Nations (2015) Sendai Framework for Disaster Risk Reduction 2015–2030. Geneva. |
[2] | Hufschmidt G (2011) A comparative analysis of several vulnerability concepts. Nat Hazards 58: 621-643. doi: 10.1007/s11069-011-9823-7 |
[3] | Brunsden D, Prior D, editors (1984) Slope instability. New York: Wiley & Sons. p620. |
[4] | Cruden D, Varnes D (1996) Landslide types and processes. Washington: Transportation Research Board, National Research Coucil, 36-75. |
[5] | Dikau R, Brunsden D, Schrott L, et al. (1996) Landslide Recognition. Chichester: Wiley. p274. |
[6] | Erismann T, Abele G (2001) Dynamics of rockslides and rockfalls. Berlin, Heidelberg: Springer-Verlag. p291. |
[7] | Varnes D (1984) Landslide Hazard Zonation: A Review of Principles and Practice. Paris. 60 p. |
[8] | Mantovani F, Soeters R, Van Westen CJ (1996) Remote sensing techniques for landslide studies and hazard zonation in Europe. Geomorphol 15: 213-225. doi: 10.1016/0169-555X(95)00071-C |
[9] | Guzzetti F, Mondini AC, Cardinali M, et al. (2012) Landslide inventory maps: New tools for an old problem. Earth-Sci Rev 112: 42-66. doi: 10.1016/j.earscirev.2012.02.001 |
[10] | Margottini C, Canuti P, Sassa K, editors (2013) Landslide Science and Practice: Volume 1: Landslide Inventory and Susceptibility and Hazard Zoning. Berlin, Heidelberg: Springer Berlin Heidelberg. p607. |
[11] | Fell Z, Corominas J, Bonnard Z, et al. (2008) Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Special Issue. Eng Geol 102: 83-256. |
[12] | Mandal S, Maiti R (2015) Introduction. Semi-quantitative Approaches for Landslide Assessment and Prediction. Singapore: Springer Singapore, 1-56. |
[13] | Sassa K, Rouhban B, Briceño S, et al., editors (2013) Landslides: Global Risk Preparedness. Berlin, Heidelberg: Springer Berlin Heidelberg. p383. |
[14] | Au SWC (1998) Rain-induced slope instability in Hong Kong. Eng Geol 51: 1-36. doi: 10.1016/S0013-7952(98)00038-6 |
[15] | Crosta GB (2004) Introduction to the special issue on rainfall-triggered landslides and debris flows. Eng Geol 73: 191-192. doi: 10.1016/j.enggeo.2004.01.004 |
[16] | van Asch TWJ, Hendriks MR, Hessel R, et al. (1996) Hydrological triggering conditions of landslides in varved clays in the French Alps. Eng Geol 42: 239-251. doi: 10.1016/0013-7952(95)00082-8 |
[17] | Basile A, Mele G, Terribile F (2003) Soil hydraulic behaviour of a selected benchmark soil involved in the landslide of Sarno 1998. Geoderma 117: 331-346. doi: 10.1016/S0016-7061(03)00132-0 |
[18] | Chen H, Wan J-P (2004) The effect of orientation and shape distribution of gravel on slope angles in central Taiwan. Eng Geol 72: 19-31. doi: 10.1016/j.enggeo.2003.06.001 |
[19] | Chleborad A (1998) Use of Air Temperature Data to Anticipate the Onset of Snowmelt-Season Landslides. |
[20] | Atkinson PM, Massari R (1998) Generalised Linear Modelling of Suscpetibility to Landsliding in the Central Appenines, Italy. Comput Geosci 24: 373-385. doi: 10.1016/S0098-3004(97)00117-9 |
[21] | Alexander D (2005) Vulnerability to Landslides. Landslide Hazard and Risk: John Wiley & Sons, Ltd, 175-198. |
[22] | Papathoma-Köhle M, Zischg A, Fuchs S, et al. (2015) Loss estimation for landslides in mountain areas—An integrated toolbox for vulnerability assessment and damage documentation. Environ Model Softw 63: 156-169. doi: 10.1016/j.envsoft.2014.10.003 |
[23] | Klose M, Damm B, Terhorst B (2014) Landslide cost modeling for transportation infrastructures: a methodological approach. Landslides 12: 321-334. |
[24] | Australian Geomechanics Society S-CoLRM (2000) Landslide Risk Management Concept and Guidelines. Australian Geomechanics, 49-92. |
[25] | Glade T, Anderson MG, MJ C, editors (2005) Landslide Hazard and Risk. Chichester: Wiley. p824. |
[26] | Dou J, Yamagishi H, Pourghasemi HR, et al. (2015) An integrated artificial neural network model for the landslide susceptibility assessment of Osado Island, Japan. Nat Hazards 78: 1749-1776. doi: 10.1007/s11069-015-1799-2 |
[27] | Hervás J, Barredo JI, Rosin PL, et al. (2003) Monitoring landslides from optical remotely sensed imagery: the case history of Tessina landslide, Italy. Geomorphol 54: 63-75. doi: 10.1016/S0169-555X(03)00056-4 |
[28] | Pradhan B, Buchroithner M, editors (2012) Terrigenous Mass Movements: Detection, Modelling, Early Warning and Mitigation Using Geoinformation Technology. Berlin, Heidelberg: Springer Berlin Heidelberg. p398. |
[29] | Honda K, Picton Phillipps G, Yokoyama N (2002) Identifying the threat of debris flow to major arterial roads using Landsat ETM+ imagery and GIS modeling – an example from Catanduanes Island, Republic of the Philippines. |
[30] | Iwahashi J, Watanabe S, Furuya T (2001) Landform analysis of slope movements using DEM in Higashikubiki area, Japan. Comput Geosci 27: 851-865. doi: 10.1016/S0098-3004(00)00144-8 |
[31] | Chian SC, Wilkinson SM (2015) Feasibility of Remote Sensing for Multihazard Analysis of Landslides in Padang Pariaman during the 2009 Padang Earthquake. Nat Hazards Rev. |
[32] | Khorram S, van der Wiele CF, Koch FH, et al. (2016) Remote Sensing: Past and Present. Principles of Applied Remote Sensing. Cham: Springer International Publishing, 1-20. |
[33] | Rowbotham DN, Dudycha D (1998) GIS modelling of slope stability in Phewa Tal watershed, Nepal. Geomorphol 26: 151-170. doi: 10.1016/S0169-555X(98)00056-7 |
[34] | Zinck JA, López J, Metternicht GI, et al. (2001) Mapping and modelling mass movements and gullies in mountainous areas using remote sensing and GIS techniques. Int J Appl Earth Obs Geoinform 3: 43-53. doi: 10.1016/S0303-2434(01)85020-0 |
[35] | Dou J, Oguchi T, S. Hayakawa Y, et al. (2014) GIS-Based Landslide Susceptibility Mapping Using a Certainty Factor Model and Its Validation in the Chuetsu Area, Central Japan. In: Sassa K, Canuti P, Yin Y, editors. Landslide Science for a Safer Geoenvironment: Volume 2: Methods of Landslide Studies. Cham: Springer International Publishing, 419-424. |
[36] | Carrara A, Cardinali M, Guzzetti F, et al. (1995) GIS Technology in Mapping Landslide Hazard. In: Carrara A, Guzzetti F, editors. Geographical Information System in Assessing Natural Hazards. Netherlands: Kluwer Academic Publisher, 135-175. |
[37] | Dai FC, Lee CF (2002) Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphol 42: 213-228. doi: 10.1016/S0169-555X(01)00087-3 |
[38] | Meißl G (2001) Modelling the runout distance of rockfalls using a geographic information system. Z Geomorph NF: 129-137. |
[39] | van Westen CJ, Castellanos E, Kuriakose SL (2008) Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview. Eng Geol 102: 112-131. doi: 10.1016/j.enggeo.2008.03.010 |
[40] | Alexander DE (2008) A brief survey of GIS in mass-movement studies, with reflections on theory and methods. Geomorphol 94: 261-267. doi: 10.1016/j.geomorph.2006.09.022 |
[41] | Ardizzone F, Cardinali M, Carrara A, et al. (2002) Impact of mapping errors on the reliability of landslide hazard maps. Nat Hazards Earth Syst Sci 2: 3-14. doi: 10.5194/nhess-2-3-2002 |
[42] | van Westen CJ, van Asch TWJ, Soeters R (2006) Landslide hazard and risk zonation—why is it still so difficult? Bull Eng Geol Environ 65: 167-184. doi: 10.1007/s10064-005-0023-0 |
[43] | Harrison JV, Falcon NL (1938) An Ancient Landslip at Saidmarreh in Southwestern Iran. J Geol 46: 296-309. doi: 10.1086/624654 |
[44] | Mohammady M, Pourghasemi HR, Pradhan B (2012) Landslide susceptibility mapping at Golestan Province, Iran: A comparison between frequency ratio, Dempster–Shafer, and weights-of-evidence models. J Asian Earth Sci 61: 221-236. doi: 10.1016/j.jseaes.2012.10.005 |
[45] | Arzjani Z, Asadian F, Varavipour M (2011) Analysis of the effect of landslides on the microenvironment in Iran. A case study of Lityan Basin. J Agric Ext Rural Dev 4: 1-10. |
[46] | Ghafoori M, Lashkaripour GR, Moghaddas NH, et al. (2013) Landslide Susceptibility Mapping for Yadak-Tevil Watershed (Northeast Iran), Using AHP Method. In: Margottini C, Canuti P, Sassa K, editors. Landslide Science and Practice: Volume 1: Landslide Inventory and Susceptibility and Hazard Zoning. Berlin, Heidelberg: Springer Berlin Heidelberg, 567-572. |
[47] | Moradi S, Rezaei M (2013) A GIS-based comparative study of the analytic hierarchy process, bivariate statistics and frequency ration methods for landslide susceptibility mapping in part of the Tehran metropolis, Iran. Geopersia 4: 45-61. |
[48] | Sharifi R, Solgi A, Pourkermani M (2013) A Study of the Relationship between Landslide and Active Tectonic Zones. A Case Study in Karaj Watershed Management. Open J Geol 3: 233-239. |
[49] | Pourghasemi HR, Mohammady M, Pradhan B (2012) Landslide susceptibility mapping using index of entropy and conditional probability models in GIS: Safarood Basin, Iran. CATENA 97: 71-84. doi: 10.1016/j.catena.2012.05.005 |
[50] | Pourghasemi HR, Pradhan B, Gokceoglu C, et al. (2012) Landslide Susceptibility Mapping Using a Spatial Multi Criteria Evaluation Model at Haraz Watershed, Iran. In: Pradhan B, Buchroithner M, editors. Terrigenous Mass Movements: Detection, Modelling, Early Warning and Mitigation Using Geoinformation Technology. Berlin, Heidelberg: Springer Berlin Heidelberg, 23-49. |
[51] | Jadda M, Shafri HZM, Mansor SB (2011) PFR model and GiT for landslide susceptibility mapping: a case study from Central Alborz, Iran. Nat Hazards 57: 395-412. doi: 10.1007/s11069-010-9620-8 |
[52] | Aghdam IN, Varzandeh MHM, Pradhan B (2016) Landslide susceptibility mapping using an ensemble statistical index (Wi) and adaptive neuro-fuzzy inference system (ANFIS) model at Alborz Mountains (Iran). Environ Earth Sci 75: 1-20. doi: 10.1007/s12665-015-4873-x |
[53] | Asadi Z, Zare M (2014) Estimating magnitudes of prehistoric earthquakes and seismic capability of fault from landslide data in Noor valley (central Alborz, Iran). Nat Hazards 74: 445-461. doi: 10.1007/s11069-014-1186-4 |
[54] | Feizizadeh B, Blaschke T (2011) Landslide Risk Assessment Based on GIS Multi-Criteria Evaluation: A Case Study in Bostan-Abad County, Iran. J Earth Sci Eng 1: 66-71. |
[55] | Peyret M, Djamour Y, Rizza M, et al. (2008) Monitoring of the large slow Kahrod landslide in Alborz mountain range (Iran) by GPS and SAR interferometry. Eng Geol 100: 131-141. |
[56] | Safei M, Omar H, Huat B, et al. (2012) Relationship between Lithology Factor and landslide occurrence based on Information Value (IV) and Frequency Ratio (FR) approaches – Case study in North of Iran. Electron J Geotech Eng 17: 79-90. |
[57] | Akasheh B, Berckheimer H (1983) Focal mechanisms of earthquakes in Iran with special emphasis to small shocks in the Teheran region. Teheran: Geol. Survey of Iran. |
[58] | Alavi M (1996) Tectonostratigraphic synthesis and structural style of the alborz mountain system in Northern Iran. J Geodyn 21: 1-33. |
[59] | Annels R, Arthurton R, Bazley R, et al. (1975) Explanatory text of the Qazvin and Rasht Quadrangles Map 1:250,000: Geological Survey of Iran. |
[60] | De Martini PM, Hessami K, Pantosti D, et al. (1998) A geologic contribution to the evaluation of the seismic potential of the Kahrizak fault (Tehran, Iran). Tectonophysics 287: 187-199. doi: 10.1016/S0040-1951(98)80068-1 |
[61] | Bagha N, Arian M, Ghorashi M, et al. (2014) Evaluation of relative tectonic activity in the Tehran basin, central Alborz, northern Iran. Geomorphol 213: 66-87. doi: 10.1016/j.geomorph.2013.12.041 |
[62] | Khazai B, Hausler E (2005) Intermediate Shelters in Bam and Permanent Shelter Reconstruction in Villages Following the 2003 Bam, Iran, Earthquake. Earthq Spectra 21: 487-511. doi: 10.1193/1.2098907 |
[63] | Davidson RA, Shah HC (1997) An Urban Earthquake Disaster Risk Index. |
[64] | Adger WN (2006) Vulnerability. Glob Environ Chang 16: 268-281. doi: 10.1016/j.gloenvcha.2006.02.006 |
[65] | Birkmann J (2013) Measuring vulnerability to promote disaster-resilient societies: Conceptual frameworks and definitions. In: Birkmann J, editor. Measuring Vulnerability to Natural Hazards: towards disaster resilient societies. Second Edition ed. Tokyo: United Nations University Press, 9-54. |
[66] | Fuchs S, Glade T (2016) Foreword: Vulnerability assessment in natural hazard risk—a dynamic perspective. Nat Hazards 82: 1-5. |
[67] | Cutter SL, Barnes L, Berry M, et al. (2008) A place-based model for understanding community resilience. Glob Environ Chang 18: 598-606. |
[68] | Villagrán de León JC (2006) Vulnerability. A Conceptual and Methodological Review. UNU-EHS. p68. |
[69] | Fekete A (2004) Massenbewegungen im Elbursgebirge, Iran – im Spannungsfeld zwischen natürlicher Stabilität und anthropogener Beeinflussung. (Landslides in Alborz-mountains, Iran – an area of conflict between natural stability and human impact) [Diplomarbeit]. Würzburg: Universität Würzburg. p137. |
[70] | Fekete A (2012) Spatial disaster vulnerability and risk assessments: challenges in their quality and acceptance. Nat Hazards 61: 1161-1178. doi: 10.1007/s11069-011-9973-7 |
[71] | de Sherbinin A (2014) Mapping the Unmeasurable? Spatial Analysis of Vulnerability to Climate Change and Climate Variability. Enschede: University of Twente. |
[72] | Hufschmidt G, Glade T (2010) Vulnerability analysis in geomorphic risk assessment. In: Alcántara-Ayala I, Goudie A, editors. Geomorphological Hazards and Disaster Prevention. Cambridge: Cambridge University Press, 233-244. |
[73] | Fekete A, Hufschmidt G (2014) From Application to Evaluation: Addressing the Usefulness of Resilience and Vulnerability. Int J Disaster Risk Sci 5: 1-2. doi: 10.1007/s13753-014-0007-4 |
[74] | Siefker U, Busche D (2004) Endbericht zum BMBF-Vorhaben 50EE0042 DRYSATMAP (Dryland Satellite Mapping), Entwicklung einer neuen, anwendungsorientierten geomorphologischen Kartierungsmethode für Trockengebiete mittels hochauflösender Satellitendaten Würzburg: Universität Würzburg. |
[75] | McKean J, Roering J (2004) Objective landslide detection and surface morphology mapping using high-resolution airborne laser altimetry. Geomorphol 57: 331-351. doi: 10.1016/S0169-555X(03)00164-8 |