Review Special Issues

Molecular markers for genetic diversity studies in Jatropha (Jatropha curcas L.)

  • Received: 20 June 2018 Accepted: 20 November 2018 Published: 29 November 2018
  • The molecular markers namely random amplified polymorphic DNA, amplified fragment length polymorphism, sequence-characterized amplified region, inter simple sequence repeats, simple sequence repeats and single-nucleotide polymorphism, etc. have been successfully used for genetic diversity studies in J. curcas. The assessment of genetic variations among Jatropha germplasms using molecular markers show the presence of high genetic diversity for the Central and South American regions and insignificant genetic variation from Asia and Africa. The use of molecular markers for the assessment of phylogenetic relationships among different Jatropha species has been restricted only to the well adapted and acclimatized species in India. The significant genetic variability in the genus Jatropha for vegetative and floral traits for seed oil content, productivity, toxicity (phorbol esters, curcin), fatty acid profiles, etc. has been studied in the past decade using molecular markers. Genetic enhancement of Jatropha through conventional breeding and interspecific gene transfer can be attempted by exploiting the diverse genetic resource form J. curcas and their wild species. This review focuses on the importance and use of molecular markers towards studying diversity analysis in J. curcas growing at different areas.

    Citation: Doddabhimappa R. Gangapur, Parinita Agarwal, Pradeep K. Agarwal. Molecular markers for genetic diversity studies in Jatropha (Jatropha curcas L.)[J]. AIMS Environmental Science, 2018, 5(5): 340-352. doi: 10.3934/environsci.2018.5.340

    Related Papers:

  • The molecular markers namely random amplified polymorphic DNA, amplified fragment length polymorphism, sequence-characterized amplified region, inter simple sequence repeats, simple sequence repeats and single-nucleotide polymorphism, etc. have been successfully used for genetic diversity studies in J. curcas. The assessment of genetic variations among Jatropha germplasms using molecular markers show the presence of high genetic diversity for the Central and South American regions and insignificant genetic variation from Asia and Africa. The use of molecular markers for the assessment of phylogenetic relationships among different Jatropha species has been restricted only to the well adapted and acclimatized species in India. The significant genetic variability in the genus Jatropha for vegetative and floral traits for seed oil content, productivity, toxicity (phorbol esters, curcin), fatty acid profiles, etc. has been studied in the past decade using molecular markers. Genetic enhancement of Jatropha through conventional breeding and interspecific gene transfer can be attempted by exploiting the diverse genetic resource form J. curcas and their wild species. This review focuses on the importance and use of molecular markers towards studying diversity analysis in J. curcas growing at different areas.


    加载中
    [1] Dehgan B, Webster GL (1979) Morphology and infrageneric relationships of the genus Jatropha (Euphorbiaceae). University of California Publications in Botany 74: 1–73.
    [2] Heller J, Physic Nut-Jatropha curcas L. Promoting the Conservation and use of Underutilized and Neglected Crops. 1. International Plant Genetic Resources Institute, Rome, Italy, 1996. Available from: http://www.ipgri.cgiar.org/ publications/pdf/161.pdf.
    [3] Jones N, Miller JH (1991) Jatropha curcas-a multipurpose species for problematic sites. Land Resources Series-Asia Technical Department, World Bank 1: 1–12.
    [4] Machua J, Muturi G, Omondi SF, et al. (2011) Genetic diversity of Jatropha curcas L. populations in Kenya using RAPDs molecular markers: Implication to plantation establishment. Afr J Biotechnol 10: 3062–3069.
    [5] Ambrosi DG, Galla G, Purelli M, et al. (2010) DNA Markers and FCSS analyses shed light on the genetic diversity and reproductive strategy of Jatropha curcas L.. Diversity 2: 810–836. doi: 10.3390/d2050810
    [6] Wood D (2007) Target properties for biofuels in Thailand. In: Keith SJ, Wood D, Pongmanee T, editors, Proceedings of the International Technical Workshop on Feasibility of Non-Edible Oilseed Crops for Biofuel Production, 25–27 May, Chiang Rai, Thailand.
    [7] Berchmans HJ, Hirata S (2008) Biodiesel production from crude Jatropha curcas L. Seed oil with a high content of free fatty acids. Bioresour Technol 99: 1716–1721.
    [8] Pamidimarri DVNS, Pandya N, Reddy MP, et al. (2009) Comparative study of interspecific genetic divergence and phylogenic analysis of genus Jatropha by RAPD and AFLP. Mol Biol Rep 36: 901–907. doi: 10.1007/s11033-008-9261-0
    [9] Noor Camellia NA, Thohirah Lee A, Abdullah NAP (2012) Genetic relationships and diversity of Jatropha curcas accessions in Malaysia. Afr J Biotechnol 11: 3048–3054.
    [10] Fairless D (2007) Biofuel: the little shrub that could: may be. Nature 499: 652–655.
    [11] Anand KGV, Kubavat D, Trivedi K, et al. (2015) Long-term application of Jatropha cake promotes seed yield by enhanced carbon sequestration, microbial biomass and enzymatic activity in soils of semi-arid tropical wastelands. Eur J Soil Biol 69: 57–65. doi: 10.1016/j.ejsobi.2015.05.005
    [12] Xu Y, Tang L, Wang SH, et al. (2007) The research on comprehensive utilization of Jatropha curcas. In: International Workshop on the Development of the JCL Industry. 29–31 October 2007, China; 55.
    [13] Chen F (2007) Advances in Jatropha industry research and development. In: International Workshop on the Development of the JCL Industry. 29–31, Hainan, China; 7–8.
    [14] Jansen R (2008) Jatropha for investors. In: Jatropha International Congress, 17–18 December, Singapore; K5.
    [15] Zhang Z, Guo X, Lui B, et al. (2011) Genetic diversity and genetic relationship of Jatropha curcas between China and Southeast Asian revealed by amplified fragment length polymorphisms. Afr J Biotechnol 10: 2825–2832. doi: 10.5897/AJB10.838
    [16] Luis RMO, Andres FTS, Raymond EEJ, et al. (2014) High level of molecular and phenotypic biodiversity in Jatropha curcas from Central America compared to Africa, Asia and South America. BMC Plant Biol 14: 77. doi: 10.1186/1471-2229-14-77
    [17] Ovando-Medina I, Sánchez-Gutiérrez A, Adriano-Anaya L, et al. (2011) Genetic Diversity in Jatropha curcas Populations in the State of Chiapas, Mexico. Diversity 3: 641–659. doi: 10.3390/d3040641
    [18] Roberto A, Elmer GD, Marta VM, et al. (2015) Genetic Diversity Analysis of Jatropha Species from Costa Rica Using AFLP Markers. Am J Plant Sci 6: 2426–2438. doi: 10.4236/ajps.2015.614245
    [19] Tatikonda L, Wani PS, Kannan S, et al. (2009) AFLP-based molecular characterization of an elite germplasm collection of Jatropha curcas L., biofuel plant. Plant Sci 176: 505–513.
    [20] Pratima S, Md Aminul I, Madan SN, et al. (2015) Analysis of genetic diversity and fatty acid composition in a prebreeding material of Jatropha. J Plant Biochem Biotechnol 25: 111–116.
    [21] Basha SD, Sujatha M (2007) Inter and intra-population variability of Jatropha curcas L. characterized by RAPD and ISSR markers and development of population-specific SCAR markers. Euphytica 156: 375–386.
    [22] SD Basha, M Sujatha (2009) Genetic analysis of Jatropha species and interspecific hybrids of Jatropha curcas using nuclear and organelle specific markers. Euphytica 168: 197–214. doi: 10.1007/s10681-009-9900-0
    [23] Rosado TB, Laviola BG, Faria DA, et al. (2010) Molecular markers reveal limited genetic diversity in a large germplasm collection of the biofuel crop Jatropha curcas L. in Brazil. Crop Sci 50: 2372–2382.
    [24] Grativol C, Lira Medeiros CDF, Hemerly AS, et al. (2011) High efficiency and reliability of inter-simple sequence repeats (ISSR) markers for evaluation of genetic diversity in Brazilian cultivated Jatropha curcas L. accessions. Mol Biol Rep 38: 4245–4256. doi: 10.1007/s11033-010-0547-7
    [25] Cai Y, Sun D, Wu G, et al. (2010) ISSR based genetic diversity of Jatropha curcas germplasm in China. Biomass Bioenergy 34: 1739–1750. doi: 10.1016/j.biombioe.2010.07.001
    [26] Tanya P, Taeprayoon P, Hadkam Y, et al. (2011) Genetic diversity among Jatropha and Jatropha related species based on ISSR markers. Mol Biol Rep 29: 252–264. doi: 10.1007/s11105-010-0220-2
    [27] Sun QB, Li LF, Li Y, et al. (2008) SSR and AFLP markers reveal low genetic diversity in the biofuel plant Jatropha curcas in China. Crop Sci 48: 1865–1871. doi: 10.2135/cropsci2008.02.0074
    [28] Pamidimarri DVNS, Singh S, Mastan SG, et al. (2009) Molecular characterization and identification of markers for toxic and non-toxic varieties of Jatropha curcas L. using RAPD, AFLP and SSR markers. Mol Biol Rep 36: 1357–1364.
    [29] Wen M, Wang H, Xia Z, et al. (2010) Development of EST-SSR and genomic-SSR markers to assess genetic diversity in Jatropha curcas L. BMC Res Notes 3: 42. doi: 10.1186/1756-0500-3-42
    [30] Hemant KY, Alok R, Mehar HA, et al. (2011) EST-derived SSR markers in Jatropha curcas L.: development, characterization, polymorphism, and transferability across the species/genera. Tree Genet Genomes 7: 207–219.
    [31] Kularb L, Patcharin T, Prakit S, et al. (2015) De novo Transcriptome Analysis of Apical Meristem of Jatropha spp. Using 454 Pyrosequencing Platform, and Identification of SNP and EST-SSR Markers. Plant Mol Biol Rep 4: 786–793.
    [32] Priya G, Asif I , Shrikant M, et al. (2012) Discovery and use of single nucleotide polymorphic (SNP) markers in Jatropha curcas L. Mol Breed 30: 1325–1335. doi: 10.1007/s11032-012-9719-6
    [33] Daniele T, Eleni G, Ezzeddine S, et al. (2015) Assessment of genetic diversity in different accessions of Jatropha curcas. Ind Crops Prod 75: 35–39. doi: 10.1016/j.indcrop.2015.06.051
    [34] Pecina-Quintero V, Anaya JL, Zamarripa A, et al. (2011) Molecular characterisation of Jatropha curcas L. genetic resources from Chiapas, Me´xico through AFLP markers. Biomass Bioenergy 35: 1897–1905.
    [35] Yi C, Zhang S, Liu X, et al. (2010) Does epigenetic polymorphism contribute to phenotypic variances in Jatropha curcas L.? BMC Plant Biol 10: 259.
    [36] Pamidimarri DVNS, Mastan SG, Rahman H, et al. (2010) Molecular characterization and genetic diversity analysis of Jatropha curcas L. in India using RAPD and AFLP analysis. Mol Biol Rep 37: 2249–2257.
    [37] Shen JL, Jia XN, Ni HQ, et al. (2010) AFLP analysis of genetic diversity of Jatropha curcas grown in Hainan, China. Trees 24: 455–462. doi: 10.1007/s00468-010-0413-1
    [38] Pecina-Quintero V, Anaya-López JL, Zamarripa-Colmenero A, et al. (2014) Genetic structure of Jatropha curcas L. in Mexico and probable center of origin. Biomass Bioenergy 60: 147–155.
    [39] Konan NO, Nacoulima LN, Diouf FH (2018) AFLP Analysis of Genetic Diversity Among Different Jatropha curcas L. Genotypes from Africa and Ecuador. Tropicultura 36: 11–22.
    [40] Ranade SA, Srivastava AP, Rana TS, et al. (2008) Easy assessment of diversity in Jatropha curcas L. plants using two single-primer amplification reaction (SPAR) methods. Biomass Bioenergy 32: 533–40.
    [41] Ganesh Ram S, Parthiban KT, Kumar RS, et al. (2008) Genetic diversity among Jatropha species as revealed by RAPD markers. Genet Resour Crop Evol 55: 803–809. doi: 10.1007/s10722-007-9285-7
    [42] Gupta S, Srivastava M, Mishra GP, et al. (2008) Analogy of ISSR and RAPD markers for comparative analysis of genetic diversity among different Jatropha curcas genotypes. Afr J Biotechnol 7: 30–43.
    [43] Abdulla JM, Janagoudar BS, Biradar DP, et al. (2009) Genetic diversity analysis of elite Jatropha curcas (L.) genotypes using randomly amplified polymorphic DNA markers. Karnataka J Agric Sci 22: 293–295.
    [44] Kumar RV, Tripathi YK, Shukla P, et al. (2009) Genetic diversity and relationships among germplasm of Jatropha curcas L. revealed by RAPDs. Trees 23: 1075–1079.
    [45] Popluechai S, Breviario D, Mulpuri S, et al. (2009) Narrow Genetic and Apparent Phenetic Diversity in Jatropha curcas: Initial Success with Generating Low Phorbol Ester Interspecific Hybrids. Nature Proceedings, 1–44.
    [46] Ikbal K, Boora S, Dhillon RS (2010) Evaluation of Jatropha curacs L. using RAPD markers. Indian J Biotechnol 9: 50–57.
    [47] Subramanyam K, Muralidhara RD, Devanna N, et al. (2010) Evaluation of genetic diversity among Jatropha curcas L. by RAPD analysis. Indian J Biotechnol 9: 283–288.
    [48] Chen K, Ren P, Ying C, et al. (2011) Genetic relationships among Jatropha curcas L. clones from Panzhihua, China as revealed by RAPD and ISSR. Afr J Agric Res 6: 2582–2585.
    [49] Leela T, Naresh B, Srikanth RM, et al. (2011) Morphological, physico-chemical and micropropagation studies in Jatropha curcas L. and RAPD analysis of the regenerants. Appl Energy 88: 2071–2079.
    [50] Rafii MY, Shabanimofrad M, Puteri-Edaroyati MW, et al. (2012) Analysis of the genetic diversity of physic nut, Jatropha curcas L. accessions using RAPD markers. Mol Biol Rep 39: 6505–6511.
    [51] Varsha KK, Sumita K, Kothari SL (2012) Characterization of genetic diversity in Jatropha curcas L. germplasm using RAPD and ISSR markers. Indian J Biotechnol 11: 54–61.
    [52] Darmawan S, Sri Hartati RR, Asep S, et al. (2017) Genetic diversity of Indonesian physic Nut (J. curcas) based on molecular marker. Agrivita J Agril Sci 39: 160–171.
    [53] He W, Guo L, Wang L, et al. (2007) ISSR analysis of genetic diversity of Jatropha curcas L. Chinese J Appl Envir Biol 13: 466–470.
    [54] Senthil Kumar R, Parthiban KT, Govinda Rao M (2009) Molecular characterization of Jatropha genetic resources through inter simple sequence repeat (ISSR) markers. Mol Biol Rep 36: 1951–1956. doi: 10.1007/s11033-008-9404-3
    [55] Mittal N, Dubey AK (2010) A novel set of highly polymorphic chloroplast microsatellite and ISSR for the biofuel crop Jatropha curcas. Eurasia J Biosci 4: 119–131.
    [56] Díaz BG, Argollo DM, Franco MC, et al. (2017) High genetic diversity of Jatropha curcas assessed by ISSR. Genet Mol Res 16: gmr16029683.
    [57] Ribeiro DO, Silva-Mann R, Alvares-Carvalho SV, et al. (2017) Genetic variability in Jatropha curcas L. from diallel crossing. Genet Mol Res 16: gmr16029651.
    [58] Juan USV, Neith P, Guadalupe LP, et al. (2018) Behavior of genetic diversity in F1 crosses of selected accessions of J. curcas. Ind Crops Prod 122: 669–674. doi: 10.1016/j.indcrop.2018.05.029
    [59] Bressan EDA, Scotton DC, Ferreira RR, et al. (2012) Development of microsatellite primers of Jatropha curcas (Euphorbiaceae) and transferability to congeners. Am J Bot 99: 237–239. doi: 10.3732/ajb.1100532
    [60] Massimo V, Steluta R, Mario B (2013) Evaluation of genetic diversity between toxic and non toxic Jatropha curcas L. accessions using a set of simple sequence repeat (SSR) markers. Afr J Biotechnol 12: 265–274.
    [61] Massimo V, Steluta R, Claudio F, et al. (2014) Study on genetic control for phorbol esters accumulation in Jatropha curcas genotypes. Plant Cel Biotechnol Mol Bi 15: 1–10.
    [62] Salvador-Figueroa M, Magan˜a-Ramos J, Va´zquez-Ovando JA, et al. (2015) Genetic diversity and structure of Jatropha curcas L. in its centre of origin. Plant Genet Resour C 13: 9–17.
    [63] Heriberto M, Javier M, Julio L, et al. (2017) Genetic variability in the collection of physic nut (Jatropha Curcas L.) Of the National Institute of Agricultural Research of Ecuador using microsatelite markers. Revista Tecnica 17: 18–29.
    [64] Marcela VM, Eric JF, Eduardo JH, et al. (2017) Molecular characterization and genetic diversity of Jatropha curcas L. in Costa Rica. Peer J 5: e2931.
  • Reader Comments
  • © 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3696) PDF downloads(956) Cited by(1)

Article outline

Figures and Tables

Tables(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog