Citation: David Ludwig, Christian Breyer, A.A. Solomon, Robert Seguin. Evaluation of an onsite integrated hybrid PV-Wind power plant[J]. AIMS Energy, 2020, 8(5): 988-1006. doi: 10.3934/energy.2020.5.988
[1] | Agora Energiewende, 2018. Die Energiewende im Stromsektor: Stand der Dinge 2017, Berlin. Available from: www.agora-energiewende.de. |
[2] | Teske S (Ed.) (2019) Achieving the Paris Climate Agreement Goals—Global and Regional 100% Renewable Energy Scenarios with Non-energy GHG Pathways for +1.5 ℃ and +2 ℃. Springer Open, Cham. |
[3] | [IEA]—International Energy Agency, 2011. Solar Energy Perspectives, IEA, Paris. Available from: https://www.iea.org/reports/solar-energy-perspectives. |
[4] | Breyer C, Bogdanov D, Aghahosseini A, et al. (2018) Solar photovoltaics demand for the global energy transition in the power sector. Photovoltaics: Res Appl 26: 505-523. |
[5] | Bogdanov D, Farfan J, Sadovskaia K, et al. (2019) Radical transformation pathway towards sustainable electricity via evolutionary steps. Nat Commun 10: 1077. |
[6] | Hansen K, Breyer C, Lund H (2019) Status and perspectives on 100% renewable energy systems. Energy 175: 471-480. |
[7] | Vartiainen E, Masson G, Breyer C, et al. (2020) Impact of weighted average cost of capital, capital expenditure, and other parameters on future utility-scale PV levelized cost of electricity. Photovoltaics: Res Appl 28: 439-453. |
[8] | [IEA-PVPS]—International Energy Agency Photovoltaic Power Systems Programme, 2019. Trends 2019 in Photovoltaic Applications, St. Ursen. Available from: www.iea-pvps.org. |
[9] | Murray J, King D (2012) Oil's tipping point has passed. Nature 481: 433-435. |
[10] | [EWG]—Energy Watch Group, 2013. Fossil and Nuclear Fuels—the Supply Outlook, Berlin. Available from: www.energywatchgroup.org. |
[11] | Brown TW, Bischof-Niemz T, Blok K, et al. (2018) Response to 'Burden of proof: A comprehensive review of the feasibility of 100% renewable-electricity systems'. Renewable Sustainable Energy Rev 92: 434-847. |
[12] | Ram M, Child M, Aghahosseini A, et al. (2018) A comparative analysis of electricity generation costs from renewable, fossil fuel and nuclear sources in G20 countries for the period 2015-2030. J Cleaner Prod 199: 687-704. |
[13] | Krewitt W, Schlomann B (2006) Externe Kosten der Stromerzeugung aus erneuerbaren Energien im Vergleich zur Stromerzeugung aus fossilen Energieträ gern, study on behalf of Bundesministerium für Umwelt Naturschutz und Reaktorsicherheit. |
[14] | Epstein PR, Buonocore JJ, Eckerle K, et al. (2011) Full cost accounting for the life cycle of coal. Ann N Y Acad Sci 1219: 73-98. |
[15] | Stern N (Ed.) (2006) Stern Review on the economics of climate change, HM Treasury, London. |
[16] | Stern RJ (2010) United States cost of military force projection in the Persian Gulf 1976-2007. Energy Policy 38: 2816-2825. |
[17] | Guenther B, Karau T, Kastner EM, et al. (2011) Berechnung einer risikoadaequaten Versicherungspraemie zur Deckung der Haftpflichtrisiken, die aus dem Betrieb von Kernkraftwerken resultieren, Versicherungsforen Leipzig, Leipzig. |
[18] | Bundesnetzagentur and Bundeskartellamt, 2018. Monitoringbericht 2018, Bonn. Available from: www.bundeskartellamt.de. |
[19] | Sandia National Labs, 2016. Electricity Storage Handbook, SAND2016-9180, Albuquerque. Available from: www.sandia.org. |
[20] | Lund PD, Lindgren J, Mikkola J, et al. (2015) Review of energy system flexibility measures to enable high levels of variable renewable electricity. Renewable Sustainable Energy Rev 45: 785-807. |
[21] | Sterner M (2009) Bioenergy and renewable power methane in integrated 100% renewable energy systems. PhD thesis, Faculty of Electrical Engineering and Computer Science, University of Kassel. |
[22] | Gahleitner G (2013) Hydrogen from renewable electricity: An international review of power-to-gas pilot plants for stationary applications. Int J Hydrogen Energy 38: 2039-2061. |
[23] | Deutsche Bank DB Research, 2012. State-of-the-art electricity storage systems—Indispensable elements of the energy revolution, Frankfurt a.M. Available from: www.dbresearch.com. |
[24] | [EPRI]—Electric Power Research Institute, 2012. Electricity Energy Storage Technology Options—A White Paper Primer on Applications Costs and Benefits, Palo Alto. Available from: https://www.epri.com/. |
[25] | Gerlach AK, Stetter D, Schmid J, et al. (2011) PV and Wind Power—Complementary Technologies. 30th ISES Biennial Solar World Congress, Kassel 2: 1972-1978. |
[26] | Solomon AA, Faiman D, Meron G (2010) Grid matching of large-scale wind energy conversion systems, alone and in tandem with large-scale photovoltaic systems: An Israeli case study. Energy Policy 38: 7070-7081. |
[27] | Solomon AA, Kammen DM, Callaway D (2016) Investigating the impact of wind-solar complementarities on energy storage requirement and the corresponding supply reliability criteria. Appl Energy 168: 130-145. |
[28] | Slusarewicz JH, Cohan DS (2018) Assessing solar and wind complementarity in Texas, Renewables: Wind, Water, Sol 5: 7. |
[29] | Monforti F, Huld T, Bódis K, et al. (2014) Assessing complementarity of wind and solar resources for energy production in Italy. A Monte Carlo approach. Renewable Energy 63: 576-586. |
[30] | Fasihi M, Breyer C (2020) Baseload electricity and hydrogen supply based on hybrid PV-wind power plants. J Cleaner Prod 243: 118466. |
[31] | Bozonnat C, Schlosser CA (2014) Characterization of Solar Power Resources in Europe and Assessing Benefits of Co-location with Wind Power Installations. MIT Join Program on the science and Policy of global change, Report No. 268, Cambridge. |
[32] | [UNEP]—United Nations Environmental Programs, 2018. Global trends in Renewable Energy investment 2018, Frankfurt School of Finance and Management—UNEP centre, Frankfurt. Available from: https://bit.ly/2ZZqkiE. |
[33] | [AECOM]—AECOM Australia Pty Ltd., 2016. Co-location investigation—A study into the potential for co-locating wind and solar farms in Australia, ABN 35 932 927 899, Sydney. Available from: https://bit.ly/3j1gt4T. |
[34] | Faiman D (2014) Concerning the global-scale introduction of renewable energies: Technical and economic challenges. MRS Energy Sustainability: Rev J 1: 1-19. |
[35] | Nikolakakis T, Fthenakis V (2011) The optimum mix of electricity from Wind- and Solar-Sources in conventional power systems: Evaluating the case for New York State. Energy Policy 39: 6972-6980. |
[36] | Shaner MR, Davis SJ, Lewis NS, et al. (2018) Geophysical constraints on the reliability of solar and wind power in the United States. Energy Environ Sci 11: 914-925. |
[37] | Fthenakis V, Adam A, Perez M, et al. (2014) Prospects for photovoltaics in sunny and arid regions: A solar grand plan for Chile. 40th IEEE Photovoltaic Specialists Conference, Denver, June 9-13. |
[38] | Solomon AA, Child M, Caldera U, et al. (2020) Exploiting wind-solar resource complementarity to reduce energy storage need. AIMS Energy 8: 749-770. |
[39] | Klonari V, Fraile D, Rossi R, et al. (2019) Exploring the Viability of hybrid wind-solar power plants. 4th International Hybrid Power Systems Workshop, Crete, May 22-23. |
[40] | [MNRE]—Ministry of New & Renewable Energy, 2018. National Wind-Solar Hybrid Policy, No. 238/78/2017-Wind, MNRE, New Delhi. Available from: https://bit.ly/2OpfRaQ. |
[41] | PV Magazine (2017) Siemens Gamesa to build India's first hybrid wind-solar farm, Berlin, September 26. Available from: https://bit.ly/2ZpluMH. |
[42] | PV Magazine (2018) Wind giant Vestas taps solar storage markets for hybridization drive, Berlin, February 8. Available from: https://bit.ly/32dWQjZ. |
[43] | [ARENA]—Australian Renewable Energy Agency, 2016. Australian first project to harness sun, wind and batteries, ARENA, Canberra. Available from: https://bit.ly/2WdAc7G. |
[44] | Piguet G, Maza JL, Incalza A, et al. (2013) Combining solar photovoltaic power plants and wind farms: An innovative approach to the synergetic design. Proceedings of the 28th EU PVSEC, Paris. |
[45] | PVSyst, 2013. PVSyst Software, [online]. Available from: www.pvsyst.com. |
[46] | Schuhmacher J (2012) INSEL 8 tutorial Integrated Simulation Environment Language, doppelintegral GmbH, Stuttgart. |
[47] | Stetter D (2012) Enhancement of the REMix energy system model: Global renewable energy potentials, optimized power plant siting and scenario validation. PhD thesis, Faculty of Energy-, Process- and Bio-Engineering, University of Stuttgart. |
[48] | Anemos, 2011. Windatlas, anemos Gesellschaft für Umweltmeteorologie mbH, Reppenstedt. |
[49] | Gasch R, Twele J (2012) Wind Power Plants: Fundamentals Design Construction and Operation. 2nd ed., Springer, Heidelberg. |
[50] | Machal U, 2012. Private correspondence, Berlin. |
[51] | Ludwig D, 2013. Photovoltaik und Windkraft als integriertes Kraftwerk auf gleicher Flä che. Masters thesis, University of Applied Sciences Berlin. |
[52] | Solomon AA, Faiman D, Meron G (2011) Appropriate storage for high-penetration grid-connected photovoltaic plants. Energy Policy 40: 335-344. |
[53] | Solomon AA, Bogdanov D, Breyer C (2019) Curtailment-storage-penetration nexus in energy transition. Appl Energy 235: 1351-1368. |
[54] | François B, Hingray B, Raynaud D, et al. (2016) Increasing climate-related-energy penetration by integrating run-of-the river hydropower to wind/solar mix. Renewable Energy 87: 686-696. |
[55] | Jurasz J, Ciapala B (2018) Solar-hydro hybrid power station as a way to smooth power output and increase water retention. Sol Energy 173: 675-690. |
[56] | Guangqian D, Bekhrad K, Azarikhan P, et al. (2018) A hybrid algorithm based optimization on modeling of grid independent biodiesel-based hybrid solar/wind systems. Renewable Energy 122: 551-560. |
[57] | PV Magazine, 2020. South Korea's largest hybrid solar-wind project, Berlin, August 27. Available from: https://bit.ly/3hTldaS. |