Citation: Andrea Bianchi, Chiara Lanzuolo. Into the chromatin world: Role of nuclear architecture in epigenome regulation[J]. AIMS Biophysics, 2015, 2(4): 585-612. doi: 10.3934/biophy.2015.4.585
[1] | Luger K, Mader AW, Richmond RK, et al. (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389: 251-260. |
[2] | Travers A (1999) The location of the linker histone on the nucleosome. Trends Biochem Sci 24: 4-7. doi: 10.1016/S0968-0004(98)01339-5 |
[3] | Goytisolo FA, Gerchman SE, Yu X, et al. (1996) Identification of two DNA-binding sites on the globular domain of histone H5. Embo J 15: 3421-3429. |
[4] | Thoma F, Koller T, Klug A (1979) Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin. J Cell Biol 83: 403-427. doi: 10.1083/jcb.83.2.403 |
[5] | Woodcock CL, Skoultchi AI, Fan Y (2006) Role of linker histone in chromatin structure and function: H1 stoichiometry and nucleosome repeat length. Chromosome Res 14: 17-25. doi: 10.1007/s10577-005-1024-3 |
[6] | Fan Y, Nikitina T, Morin-Kensicki EM, et al. (2003) H1 linker histones are essential for mouse development and affect nucleosome spacing in vivo. Mol Cell Biol 23: 4559-4572. doi: 10.1128/MCB.23.13.4559-4572.2003 |
[7] | Zacharias H (1995) Emil Heitz (1892-1965): chloroplasts, heterochromatin, and polytene chromosomes. Genetics 141: 7-14. |
[8] | Huisinga KL, Brower-Toland B, Elgin SC (2006) The contradictory definitions of heterochromatin: transcription and silencing. Chromosoma 115: 110-122. doi: 10.1007/s00412-006-0052-x |
[9] | Gilbert N, Boyle S, Fiegler H, et al. (2004) Chromatin architecture of the human genome: gene-rich domains are enriched in open chromatin fibers. Cell 118: 555-566. doi: 10.1016/j.cell.2004.08.011 |
[10] | Gorisch SM, Wachsmuth M, Toth KF, et al. (2005) Histone acetylation increases chromatin accessibility. J Cell Sci 118: 5825-5834. doi: 10.1242/jcs.02689 |
[11] | Vakoc CR, Mandat SA, Olenchock BA, et al. (2005) Histone H3 lysine 9 methylation and HP1gamma are associated with transcription elongation through mammalian chromatin. Mol Cell 19: 381-391. doi: 10.1016/j.molcel.2005.06.011 |
[12] | Gilbert N, Allan J (2001) Distinctive higher-order chromatin structure at mammalian centromeres. Proc Natl Acad Sci U S A 98: 11949-11954. doi: 10.1073/pnas.211322798 |
[13] | Blasco MA (2007) The epigenetic regulation of mammalian telomeres. Nat Rev Genet 8: 299-309. doi: 10.1038/nrg2047 |
[14] | Slotkin RK, Martienssen R (2007) Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 8: 272-285. |
[15] | Kouzarides T (2007) Chromatin modifications and their function. Cell 128: 693-705. doi: 10.1016/j.cell.2007.02.005 |
[16] | Bernstein BE, Kamal M, Lindblad-Toh K, et al. (2005) Genomic maps and comparative analysis of histone modifications in human and mouse. Cell 120: 169-181. doi: 10.1016/j.cell.2005.01.001 |
[17] | Allshire RC, Ekwall K (2015) Epigenetic Regulation of Chromatin States in Schizosaccharomyces pombe. Cold Spring Harb Perspect Biol 7. |
[18] | Nakamura T, Mori T, Tada S, et al. (2002) ALL-1 is a histone methyltransferase that assembles a supercomplex of proteins involved in transcriptional regulation. Mol Cell 10: 1119-1128. doi: 10.1016/S1097-2765(02)00740-2 |
[19] | Milne TA, Briggs SD, Brock HW, et al. (2002) MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol Cell 10: 1107-1117. doi: 10.1016/S1097-2765(02)00741-4 |
[20] | Trojer P, Reinberg D (2007) Facultative heterochromatin: is there a distinctive molecular signature? Mol Cell 28: 1-13. doi: 10.1016/j.molcel.2007.09.011 |
[21] | Rea S, Eisenhaber F, O'Carroll D, et al. (2000) Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406: 593-599. doi: 10.1038/35020506 |
[22] | Lachner M, O'Carroll D, Rea S, et al. (2001) Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410: 116-120. doi: 10.1038/35065132 |
[23] | Cowell IG, Aucott R, Mahadevaiah SK, et al. (2002) Heterochromatin, HP1 and methylation at lysine 9 of histone H3 in animals. Chromosoma 111: 22-36. doi: 10.1007/s00412-002-0182-8 |
[24] | Fanti L, Berloco M, Piacentini L, et al. (2003) Chromosomal distribution of heterochromatin protein 1 (HP1) in Drosophila: a cytological map of euchromatic HP1 binding sites. Genetica 117: 135-147. doi: 10.1023/A:1022971407290 |
[25] | Nielsen SJ, Schneider R, Bauer UM, et al. (2001) Rb targets histone H3 methylation and HP1 to promoters. Nature 412: 561-565. doi: 10.1038/35087620 |
[26] | Lanzuolo C, Orlando V (2012) Memories from the Polycomb Group Proteins. Annu Rev Genet. |
[27] | Simon JA, Kingston RE (2009) Mechanisms of polycomb gene silencing: knowns and unknowns. Nat Rev Mol Cell Biol 10: 697-708. doi: 10.1038/nrn2731 |
[28] | Boyer LA, Plath K, Zeitlinger J, et al. (2006) Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441: 349-353. doi: 10.1038/nature04733 |
[29] | Sauvageau M, Sauvageau G (2010) Polycomb group proteins: multi-faceted regulators of somatic stem cells and cancer. Cell Stem Cell 7: 299-313. doi: 10.1016/j.stem.2010.08.002 |
[30] | Zhou W, Zhu P, Wang J, et al. (2008) Histone H2A monoubiquitination represses transcription by inhibiting RNA polymerase II transcriptional elongation. Mol Cell 29: 69-80. doi: 10.1016/j.molcel.2007.11.002 |
[31] | van Kruijsbergen I, Hontelez S, Veenstra GJ (2015) Recruiting polycomb to chromatin. Int J Biochem Cell Biol. |
[32] | Blackledge NP, Farcas AM, Kondo T, et al. (2014) Variant PRC1 complex-dependent H2A ubiquitylation drives PRC2 recruitment and polycomb domain formation. Cell 157: 1445-1459. doi: 10.1016/j.cell.2014.05.004 |
[33] | Ku M, Koche RP, Rheinbay E, et al. (2008) Genomewide analysis of PRC1 and PRC2 occupancy identifies two classes of bivalent domains. PLoS Genet 4: e1000242. doi: 10.1371/journal.pgen.1000242 |
[34] | Gao Z, Zhang J, Bonasio R, et al. (2012) PCGF Homologs, CBX Proteins, and RYBP Define Functionally Distinct PRC1 Family Complexes. Mol Cell 45: 344-356. doi: 10.1016/j.molcel.2012.01.002 |
[35] | Cooper S, Dienstbier M, Hassan R, et al. (2014) Targeting polycomb to pericentric heterochromatin in embryonic stem cells reveals a role for H2AK119u1 in PRC2 recruitment. Cell Rep 7: 1456-1470. doi: 10.1016/j.celrep.2014.04.012 |
[36] | Kalb R, Latwiel S, Baymaz HI, et al. (2014) Histone H2A monoubiquitination promotes histone H3 methylation in Polycomb repression. Nat Struct Mol Biol 21: 569-571. doi: 10.1038/nsmb.2833 |
[37] | Nazer E, Lei EP (2014) Modulation of chromatin modifying complexes by noncoding RNAs in trans. Curr Opin Genet Dev 25: 68-73. doi: 10.1016/j.gde.2013.11.019 |
[38] | Jacinto FV, Benner C, Hetzer MW (2015) The nucleoporin Nup153 regulates embryonic stem cell pluripotency through gene silencing. Genes Dev 29: 1224-1238. doi: 10.1101/gad.260919.115 |
[39] | Mozzetta C, Pontis J, Fritsch L, et al. (2014) The histone H3 lysine 9 methyltransferases G9a and GLP regulate polycomb repressive complex 2-mediated gene silencing. Mol Cell 53: 277-289. doi: 10.1016/j.molcel.2013.12.005 |
[40] | Sarma K, Cifuentes-Rojas C, Ergun A, et al. (2014) ATRX directs binding of PRC2 to Xist RNA and Polycomb targets. Cell 159: 869-883. doi: 10.1016/j.cell.2014.10.019 |
[41] | Wu S, Shi Y, Mulligan P, et al. (2007) A YY1-INO80 complex regulates genomic stability through homologous recombination-based repair. Nat Struct Mol Biol 14: 1165-1172. doi: 10.1038/nsmb1332 |
[42] | Margueron R, Justin N, Ohno K, et al. (2009) Role of the polycomb protein EED in the propagation of repressive histone marks. Nature 461: 762-767. doi: 10.1038/nature08398 |
[43] | Xu C, Bian C, Yang W, et al. (2010) Binding of different histone marks differentially regulates the activity and specificity of polycomb repressive complex 2 (PRC2). Proc Natl Acad Sci U S A 107: 19266-19271. doi: 10.1073/pnas.1008937107 |
[44] | Posfai E, Kunzmann R, Brochard V, et al. (2012) Polycomb function during oogenesis is required for mouse embryonic development. Genes Dev. |
[45] | Surface LE, Thornton SR, Boyer LA (2010) Polycomb group proteins set the stage for early lineage commitment. Cell Stem Cell 7: 288-298. doi: 10.1016/j.stem.2010.08.004 |
[46] | Bracken AP, Dietrich N, Pasini D, et al. (2006) Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev 20: 1123-1136. doi: 10.1101/gad.381706 |
[47] | Asp P, Blum R, Vethantham V, et al. (2011) Genome-wide remodeling of the epigenetic landscape during myogenic differentiation. Proc Natl Acad Sci U S A 108: E149-158. doi: 10.1073/pnas.1102223108 |
[48] | Caretti G, Di Padova M, Micales B, et al. (2004) The Polycomb Ezh2 methyltransferase regulates muscle gene expression and skeletal muscle differentiation. Genes Dev 18: 2627-2638. doi: 10.1101/gad.1241904 |
[49] | Juan AH, Derfoul A, Feng X, et al. (2011) Polycomb EZH2 controls self-renewal and safeguards the transcriptional identity of skeletal muscle stem cells. Genes Dev 25: 789-794. doi: 10.1101/gad.2027911 |
[50] | Juan AH, Kumar RM, Marx JG, et al. (2009) Mir-214-dependent regulation of the polycomb protein Ezh2 in skeletal muscle and embryonic stem cells. Mol Cell 36: 61-74. doi: 10.1016/j.molcel.2009.08.008 |
[51] | Palacios D, Mozzetta C, Consalvi S, et al. (2010) TNF/p38alpha/polycomb signaling to Pax7 locus in satellite cells links inflammation to the epigenetic control of muscle regeneration. Cell Stem Cell 7: 455-469. doi: 10.1016/j.stem.2010.08.013 |
[52] | Pombo A, Dillon N (2015) Three-dimensional genome architecture: players and mechanisms. Nat Rev Mol Cell Biol 16: 245-257. |
[53] | Bantignies F, Cavalli G (2011) Polycomb group proteins: repression in 3D. Trends Genet 27: 454-464. doi: 10.1016/j.tig.2011.06.008 |
[54] | Dekker J, Rippe K, Dekker M, et al. (2002) Capturing chromosome conformation. Science 295: 1306-1311. doi: 10.1126/science.1067799 |
[55] | de Wit E, de Laat W (2012) A decade of 3C technologies: insights into nuclear organization. Genes Dev 26: 11-24. doi: 10.1101/gad.179804.111 |
[56] | Simonis M, Klous P, Splinter E, et al. (2006) Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat Genet 38: 1348-1354. doi: 10.1038/ng1896 |
[57] | Lieberman-Aiden E, van Berkum NL, Williams L, et al. (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326: 289-293. doi: 10.1126/science.1181369 |
[58] | Bantignies F, Roure V, Comet I, et al. (2011) Polycomb-Dependent Regulatory Contacts between Distant Hox Loci in Drosophila. Cell 144: 214-26. doi: 10.1016/j.cell.2010.12.026 |
[59] | Lanzuolo C, Roure V, Dekker J, et al. (2007) Polycomb response elements mediate the formation of chromosome higher-order structures in the bithorax complex. Nat Cell Biol 9: 1167-1174. doi: 10.1038/ncb1637 |
[60] | Lo Sardo F, Lanzuolo C, Comoglio F, et al. (2013) PcG-Mediated Higher-Order Chromatin Structures Modulate Replication Programs at the Drosophila BX-C. PLoS Genet 9: e1003283. doi: 10.1371/journal.pgen.1003283 |
[61] | Tolhuis B, Blom M, Kerkhoven RM, et al. (2011) Interactions among Polycomb domains are guided by chromosome architecture. PLoS Genet 7: e1001343. doi: 10.1371/journal.pgen.1001343 |
[62] | Lanzuolo C, Lo Sardo F, Diamantini A, et al. (2011) PcG Complexes Set the Stage for Epigenetic Inheritance of Gene Silencing in Early S Phase before Replication. PLoS Genet 7: e1002370. doi: 10.1371/journal.pgen.1002370 |
[63] | Schoenfelder S, Sugar R, Dimond A, et al. (2015) Polycomb repressive complex PRC1 spatially constrains the mouse embryonic stem cell genome. Nat Genet 47: 1179-1186. doi: 10.1038/ng.3393 |
[64] | Ringrose L, Paro R (2007) Polycomb/Trithorax response elements and epigenetic memory of cell identity. Development 134: 223-232. doi: 10.1242/dev.02723 |
[65] | Dekker J, Marti-Renom MA, Mirny LA (2013) Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nat Rev Genet 14: 390-403. doi: 10.1038/nrg3454 |
[66] | Dixon JR, Selvaraj S, Yue F, et al. (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485: 376-380. doi: 10.1038/nature11082 |
[67] | Hou C, Li L, Qin ZS, et al. (2012) Gene density, transcription, and insulators contribute to the partition of the Drosophila genome into physical domains. Mol Cell 48: 471-484. doi: 10.1016/j.molcel.2012.08.031 |
[68] | Andrey G, Montavon T, Mascrez B, et al. (2013) A switch between topological domains underlies HoxD genes collinearity in mouse limbs. Science 340: 1234167. doi: 10.1126/science.1234167 |
[69] | Cremer T, Cremer M, Dietzel S, et al. (2006) Chromosome territories--a functional nuclear landscape. Curr Opin Cell Biol 18: 307-316. doi: 10.1016/j.ceb.2006.04.007 |
[70] | Parada LA, McQueen PG, Misteli T (2004) Tissue-specific spatial organization of genomes. Genome Biol 5: R44. doi: 10.1186/gb-2004-5-7-r44 |
[71] | Tanabe H, Muller S, Neusser M, et al. (2002) Evolutionary conservation of chromosome territory arrangements in cell nuclei from higher primates. Proc Natl Acad Sci U S A 99: 4424-4429. doi: 10.1073/pnas.072618599 |
[72] | Meaburn KJ, Misteli T (2007) Cell biology: chromosome territories. Nature 445: 379-781. doi: 10.1038/445379a |
[73] | Cremer T, Kreth G, Koester H, et al. (2000) Chromosome territories, interchromatin domain compartment, and nuclear matrix: an integrated view of the functional nuclear architecture. Crit Rev Eukaryot Gene Expr 10: 179-212. |
[74] | Schneider R, Grosschedl R (2007) Dynamics and interplay of nuclear architecture, genome organization, and gene expression. Genes Dev 21: 3027-3043. doi: 10.1101/gad.1604607 |
[75] | Cremer M, von Hase J, Volm T, et al. (2001) Non-random radial higher-order chromatin arrangements in nuclei of diploid human cells. Chromosome Res 9: 541-567. doi: 10.1023/A:1012495201697 |
[76] | Rajapakse I, Groudine M (2011) On emerging nuclear order. J Cell Biol 192: 711-721. doi: 10.1083/jcb.201010129 |
[77] | Albiez H, Cremer M, Tiberi C, et al. (2006) Chromatin domains and the interchromatin compartment form structurally defined and functionally interacting nuclear networks. Chromosome Res 14: 707-733. doi: 10.1007/s10577-006-1086-x |
[78] | Mahy NL, Perry PE, Gilchrist S, et al. (2002) Spatial organization of active and inactive genes and noncoding DNA within chromosome territories. J Cell Biol 157: 579-589. doi: 10.1083/jcb.200111071 |
[79] | Branco MR, Pombo A (2006) Intermingling of chromosome territories in interphase suggests role in translocations and transcription-dependent associations. PLoS Biol 4: e138. doi: 10.1371/journal.pbio.0040138 |
[80] | Meister P, Taddei A (2013) Building silent compartments at the nuclear periphery: a recurrent theme. Curr Opin Genet Dev 23: 96-103. doi: 10.1016/j.gde.2012.12.001 |
[81] | Deniaud E, Bickmore WA (2009) Transcription and the nuclear periphery: edge of darkness? Curr Opin Genet Dev 19: 187-191. doi: 10.1016/j.gde.2009.01.005 |
[82] | Andrulis ED, Neiman AM, Zappulla DC, et al. (1998) Perinuclear localization of chromatin facilitates transcriptional silencing. Nature 394: 592-595. doi: 10.1038/29100 |
[83] | Finlan LE, Sproul D, Thomson I, et al. (2008) Recruitment to the nuclear periphery can alter expression of genes in human cells. PLoS Genet 4: e1000039. doi: 10.1371/journal.pgen.1000039 |
[84] | Towbin BD, Gonzalez-Aguilera C, Sack R, et al. (2012) Step-wise methylation of histone H3K9 positions heterochromatin at the nuclear periphery. Cell 150: 934-947. doi: 10.1016/j.cell.2012.06.051 |
[85] | Steglich B, Sazer S, Ekwall K (2013) Transcriptional regulation at the yeast nuclear envelope. Nucleus 4: 379-389. doi: 10.4161/nucl.26394 |
[86] | Dundr M (2012) Nuclear bodies: multifunctional companions of the genome. Curr Opin Cell Biol 24: 415-422. doi: 10.1016/j.ceb.2012.03.010 |
[87] | Zhu L, Brangwynne CP (2015) Nuclear bodies: the emerging biophysics of nucleoplasmic phases. Curr Opin Cell Biol 34: 23-30. doi: 10.1016/j.ceb.2015.04.003 |
[88] | Cmarko D, Verschure PJ, Otte AP, et al. (2003) Polycomb group gene silencing proteins are concentrated in the perichromatin compartment of the mammalian nucleus. J Cell Sci 116: 335-343. doi: 10.1242/jcs.00225 |
[89] | Isono K, Endo TA, Ku M, et al. (2013) SAM domain polymerization links subnuclear clustering of PRC1 to gene silencing. Dev Cell 26: 565-577. doi: 10.1016/j.devcel.2013.08.016 |
[90] | Gonzalez I, Mateos-Langerak J, Thomas A, et al. (2014) Identification of regulators of the three-dimensional polycomb organization by a microscopy-based genome-wide RNAi screen. Mol Cell 54: 485-499. doi: 10.1016/j.molcel.2014.03.004 |
[91] | Vandenbunder B, Fourre N, Leray A, et al. (2014) PRC1 components exhibit different binding kinetics in Polycomb bodies. Biol Cell 106: 111-125. doi: 10.1111/boc.201300077 |
[92] | Cheutin T, Cavalli G (2012) Progressive Polycomb Assembly on H3K27me3 Compartments Generates Polycomb Bodies with Developmentally Regulated Motion. PLoS Genet 8: e1002465. doi: 10.1371/journal.pgen.1002465 |
[93] | Ren X, Vincenz C, Kerppola TK (2008) Changes in the distributions and dynamics of polycomb repressive complexes during embryonic stem cell differentiation. Mol Cell Biol 28: 2884-2895. doi: 10.1128/MCB.00949-07 |
[94] | Gao Z, Lee P, Stafford JM, et al. (2014) An AUTS2-Polycomb complex activates gene expression in the CNS. Nature 516: 349-354. doi: 10.1038/nature13921 |
[95] | Mousavi K, Zare H, Wang AH, et al. (2011) Polycomb Protein Ezh1 Promotes RNA Polymerase II Elongation. Mol Cell. |
[96] | Goldman RD, Gruenbaum Y, Moir RD, et al. (2002) Nuclear lamins: building blocks of nuclear architecture. Genes Dev 16: 533-547. doi: 10.1101/gad.960502 |
[97] | Goldman AE, Maul G, Steinert PM, et al. (1986) Keratin-like proteins that coisolate with intermediate filaments of BHK-21 cells are nuclear lamins. Proc Natl Acad Sci U S A 83: 3839-3843. doi: 10.1073/pnas.83.11.3839 |
[98] | McKeon FD, Kirschner MW, Caput D (1986) Homologies in both primary and secondary structure between nuclear envelope and intermediate filament proteins. Nature 319: 463-468. doi: 10.1038/319463a0 |
[99] | Rober RA, Sauter H, Weber K, et al. (1990) Cells of the cellular immune and hemopoietic system of the mouse lack lamins A/C: distinction versus other somatic cells. J Cell Sci 95 ( Pt 4): 587-598. |
[100] | Solovei I, Wang AS, Thanisch K, et al. (2013) LBR and lamin A/C sequentially tether peripheral heterochromatin and inversely regulate differentiation. Cell 152: 584-598. doi: 10.1016/j.cell.2013.01.009 |
[101] | Guilly MN, Bensussan A, Bourge JF, et al. (1987) A human T lymphoblastic cell line lacks lamins A and C. Embo J 6: 3795-3799. |
[102] | Stewart C, Burke B (1987) Teratocarcinoma stem cells and early mouse embryos contain only a single major lamin polypeptide closely resembling lamin B. Cell 51: 383-392. doi: 10.1016/0092-8674(87)90634-9 |
[103] | Kolb T, Maass K, Hergt M, et al. (2011) Lamin A and lamin C form homodimers and coexist in higher complex forms both in the nucleoplasmic fraction and in the lamina of cultured human cells. Nucleus 2: 425-433. doi: 10.4161/nucl.2.5.17765 |
[104] | Shimi T, Pfleghaar K, Kojima S, et al. (2008) The A- and B-type nuclear lamin networks: microdomains involved in chromatin organization and transcription. Genes Dev 22: 3409-3421. doi: 10.1101/gad.1735208 |
[105] | Dubinska-Magiera M, Zaremba-Czogalla M, Rzepecki R (2013) Muscle development, regeneration and laminopathies: how lamins or lamina-associated proteins can contribute to muscle development, regeneration and disease. Cell Mol Life Sci 70: 2713-2741. doi: 10.1007/s00018-012-1190-3 |
[106] | Collas P, Lund EG, Oldenburg AR (2014) Closing the (nuclear) envelope on the genome: How nuclear lamins interact with promoters and modulate gene expression. Bioessays 36: 75-83. doi: 10.1002/bies.201300138 |
[107] | Meuleman W, Peric-Hupkes D, Kind J, et al. (2013) Constitutive nuclear lamina-genome interactions are highly conserved and associated with A/T-rich sequence. Genome Res 23: 270-280. doi: 10.1101/gr.141028.112 |
[108] | Kind J, Pagie L, Ortabozkoyun H, et al. (2013) Single-cell dynamics of genome-nuclear lamina interactions. Cell 153: 178-192. doi: 10.1016/j.cell.2013.02.028 |
[109] | Kind J, van Steensel B (2010) Genome-nuclear lamina interactions and gene regulation. Curr Opin Cell Biol 22: 320-325. doi: 10.1016/j.ceb.2010.04.002 |
[110] | Lund E, Oldenburg A, Delbarre E, et al. (2013) Lamin A/C-promoter interactions specify chromatin state-dependent transcription outcomes. Genome Res. |
[111] | Pickersgill H, Kalverda B, de Wit E, et al. (2006) Characterization of the Drosophila melanogaster genome at the nuclear lamina. Nat Genet 38: 1005-1014. doi: 10.1038/ng1852 |
[112] | Guelen L, Pagie L, Brasset E, et al. (2008) Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453: 948-951. doi: 10.1038/nature06947 |
[113] | Kind J, Pagie L, de Vries SS, et al. (2015) Genome-wide Maps of Nuclear Lamina Interactions in Single Human Cells. Cell 163: 134-147. doi: 10.1016/j.cell.2015.08.040 |
[114] | Mattout A, Pike BL, Towbin BD, et al. (2011) An EDMD mutation in C. elegans lamin blocks muscle-specific gene relocation and compromises muscle integrity. Curr Biol 21: 1603-1614. |
[115] | Peric-Hupkes D, Meuleman W, Pagie L, et al. (2010) Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation. Mol Cell 38: 603-613. doi: 10.1016/j.molcel.2010.03.016 |
[116] | Zaidi SK, Young DW, Montecino MA, et al. (2010) Mitotic bookmarking of genes: a novel dimension to epigenetic control. Nat Rev Genet 11: 583-589. doi: 10.1038/nrg2827 |
[117] | Kind J, van Steensel B (2014) Stochastic genome-nuclear lamina interactions: Modulating roles of Lamin A and BAF. Nucleus 5: 124-130. doi: 10.4161/nucl.28825 |
[118] | Amendola M, van Steensel B (2015) Nuclear lamins are not required for lamina-associated domain organization in mouse embryonic stem cells. EMBO Rep 16: 610-617. doi: 10.15252/embr.201439789 |
[119] | Osmanagic-Myers S, Dechat T, Foisner R (2015) Lamins at the crossroads of mechanosignaling. Genes Dev 29: 225-237. doi: 10.1101/gad.255968.114 |
[120] | Haque F, Lloyd DJ, Smallwood DT, et al. (2006) SUN1 interacts with nuclear lamin A and cytoplasmic nesprins to provide a physical connection between the nuclear lamina and the cytoskeleton. Mol Cell Biol 26: 3738-3751. doi: 10.1128/MCB.26.10.3738-3751.2006 |
[121] | Gruenbaum Y, Foisner R (2015) Lamins: Nuclear Intermediate Filament Proteins with Fundamental Functions in Nuclear Mechanics and Genome Regulation. Annu Rev Biochem. |
[122] | Swift J, Ivanovska IL, Buxboim A, et al. (2013) Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341: 1240104. doi: 10.1126/science.1240104 |
[123] | Padiath QS, Saigoh K, Schiffmann R, et al. (2006) Lamin B1 duplications cause autosomal dominant leukodystrophy. Nat Genet 38: 1114-1123. doi: 10.1038/ng1872 |
[124] | Hegele RA, Cao H, Liu DM, et al. (2006) Sequencing of the reannotated LMNB2 gene reveals novel mutations in patients with acquired partial lipodystrophy. Am J Hum Genet 79: 383-389. doi: 10.1086/505885 |
[125] | Harborth J, Elbashir SM, Bechert K, et al. (2001) Identification of essential genes in cultured mammalian cells using small interfering RNAs. J Cell Sci 114: 4557-4565. |
[126] | Zaremba-Czogalla M, Dubinska-Magiera M, Rzepecki R (2011) Laminopathies: the molecular background of the disease and the prospects for its treatment. Cell Mol Biol Lett 16: 114-148. |
[127] | Broers JL, Peeters EA, Kuijpers HJ, et al. (2004) Decreased mechanical stiffness in LMNA-/- cells is caused by defective nucleo-cytoskeletal integrity: implications for the development of laminopathies. Hum Mol Genet 13: 2567-2580. doi: 10.1093/hmg/ddh295 |
[128] | Sullivan T, Escalante-Alcalde D, Bhatt H, et al. (1999) Loss of A-type lamin expression compromises nuclear envelope integrity leading to muscular dystrophy. J Cell Biol 147: 913-920. doi: 10.1083/jcb.147.5.913 |
[129] | Hernandez L, Roux KJ, Wong ES, et al. (2010) Functional coupling between the extracellular matrix and nuclear lamina by Wnt signaling in progeria. Dev Cell 19: 413-425. doi: 10.1016/j.devcel.2010.08.013 |
[130] | Sinha JK, Ghosh S, Raghunath M (2014) Progeria: a rare genetic premature ageing disorder. Indian J Med Res 139: 667-674. |
[131] | McCord RP, Nazario-Toole A, Zhang H, et al. (2013) Correlated alterations in genome organization, histone methylation, and DNA-lamin A/C interactions in Hutchinson-Gilford progeria syndrome. Genome Res 23: 260-269. doi: 10.1101/gr.138032.112 |
[132] | Shumaker DK, Dechat T, Kohlmaier A, et al. (2006) Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature aging. Proc Natl Acad Sci U S A 103: 8703-8708. doi: 10.1073/pnas.0602569103 |
[133] | Landires I, Pascale JM, Motta J (2007) The position of the mutation within the LMNA gene determines the type and extent of tissue involvement in laminopathies. Clin Genet 71: 592-593; author reply 594-596. doi: 10.1111/j.1399-0004.2007.00772.x |
[134] | Scharner J, Gnocchi VF, Ellis JA, et al. (2010) Genotype-phenotype correlations in laminopathies: how does fate translate? Biochem Soc Trans 38: 257-262. doi: 10.1042/BST0380257 |
[135] | Sewry CA, Brown SC, Mercuri E, et al. (2001) Skeletal muscle pathology in autosomal dominant Emery-Dreifuss muscular dystrophy with lamin A/C mutations. Neuropathol Appl Neurobiol 27: 281-290. doi: 10.1046/j.0305-1846.2001.00323.x |
[136] | Cesarini E, Mozzetta C, Marullo F, et al. (2015) Lamin A/C sustains PcG proteins architecture maintaining transcriptional repression at target genes. J Cell Biol. |
[137] | Ptak C, Aitchison JD, Wozniak RW (2014) The multifunctional nuclear pore complex: a platform for controlling gene expression. Curr Opin Cell Biol 28: 46-53. doi: 10.1016/j.ceb.2014.02.001 |
[138] | Blobel G (1985) Gene gating: a hypothesis. Proc Natl Acad Sci U S A 82: 8527-8529. doi: 10.1073/pnas.82.24.8527 |
[139] | Cabal GG, Genovesio A, Rodriguez-Navarro S, et al. (2006) SAGA interacting factors confine sub-diffusion of transcribed genes to the nuclear envelope. Nature 441: 770-773. doi: 10.1038/nature04752 |
[140] | Taddei A, Van Houwe G, Hediger F, et al. (2006) Nuclear pore association confers optimal expression levels for an inducible yeast gene. Nature 441: 774-778. doi: 10.1038/nature04845 |
[141] | Tan-Wong SM, Wijayatilake HD, Proudfoot NJ (2009) Gene loops function to maintain transcriptional memory through interaction with the nuclear pore complex. Genes Dev 23: 2610-2624. doi: 10.1101/gad.1823209 |
[142] | Green EM, Jiang Y, Joyner R, et al. (2012) A negative feedback loop at the nuclear periphery regulates GAL gene expression. Mol Biol Cell 23: 1367-1375. doi: 10.1091/mbc.E11-06-0547 |
[143] | Yoshida T, Shimada K, Oma Y, et al. (2010) Actin-related protein Arp6 influences H2A.Z-dependent and -independent gene expression and links ribosomal protein genes to nuclear pores. PLoS Genet 6: e1000910. |
[144] | Van de Vosse DW, Wan Y, Lapetina DL, et al. (2013) A role for the nucleoporin Nup170p in chromatin structure and gene silencing. Cell 152: 969-983. doi: 10.1016/j.cell.2013.01.049 |
[145] | Galy V, Olivo-Marin JC, Scherthan H, et al. (2000) Nuclear pore complexes in the organization of silent telomeric chromatin. Nature 403: 108-112. doi: 10.1038/47528 |
[146] | Buchwalter AL, Liang Y, Hetzer MW (2014) Nup50 is required for cell differentiation and exhibits transcription-dependent dynamics. Mol Biol Cell 25: 2472-2484. doi: 10.1091/mbc.E14-04-0865 |
[147] | Gomez-Cavazos JS, Hetzer MW (2015) The nucleoporin gp210/Nup210 controls muscle differentiation by regulating nuclear envelope/ER homeostasis. J Cell Biol 208: 671-681. doi: 10.1083/jcb.201410047 |
[148] | Iwamoto M, Koujin T, Osakada H, et al. (2015) Biased assembly of the nuclear pore complex is required for somatic and germline nuclear differentiation in Tetrahymena. J Cell Sci 128: 1812-1823. doi: 10.1242/jcs.167353 |
[149] | Liang Y, Franks TM, Marchetto MC, et al. (2013) Dynamic association of NUP98 with the human genome. PLoS Genet 9: e1003308. doi: 10.1371/journal.pgen.1003308 |
[150] | Lupu F, Alves A, Anderson K, et al. (2008) Nuclear pore composition regulates neural stem/progenitor cell differentiation in the mouse embryo. Dev Cell 14: 831-842. doi: 10.1016/j.devcel.2008.03.011 |
[151] | D'Angelo MA, Gomez-Cavazos JS, Mei A, et al. (2012) A change in nuclear pore complex composition regulates cell differentiation. Dev Cell 22: 446-458. doi: 10.1016/j.devcel.2011.11.021 |
[152] | Lin Y, Yang Y, Li W, et al. (2012) Reciprocal regulation of Akt and Oct4 promotes the self-renewal and survival of embryonal carcinoma cells. Mol Cell 48: 627-640. doi: 10.1016/j.molcel.2012.08.030 |
[153] | Yang J, Cai N, Yi F, et al. (2014) Gating pluripotency via nuclear pores. Trends Mol Med 20: 1-7. |
[154] | Zhang X, Chen S, Yoo S, et al. (2008) Mutation in nuclear pore component NUP155 leads to atrial fibrillation and early sudden cardiac death. Cell 135: 1017-1027. doi: 10.1016/j.cell.2008.10.022 |
[155] | Basel-Vanagaite L, Muncher L, Straussberg R, et al. (2006) Mutated nup62 causes autosomal recessive infantile bilateral striatal necrosis. Ann Neurol 60: 214-222. doi: 10.1002/ana.20902 |
[156] | van Koningsbruggen S, Gierlinski M, Schofield P, et al. (2010) High-resolution whole-genome sequencing reveals that specific chromatin domains from most human chromosomes associate with nucleoli. Mol Biol Cell 21: 3735-3748. doi: 10.1091/mbc.E10-06-0508 |
[157] | Nemeth A, Conesa A, Santoyo-Lopez J, et al. (2010) Initial genomics of the human nucleolus. PLoS Genet 6: e1000889. doi: 10.1371/journal.pgen.1000889 |
[158] | Kim SK, Lee H, Han K, et al. (2014) SET7/9 methylation of the pluripotency factor LIN28A is a nucleolar localization mechanism that blocks let-7 biogenesis in human ESCs. Cell Stem Cell 15: 735-749. doi: 10.1016/j.stem.2014.10.016 |
[159] | Savic N, Bar D, Leone S, et al. (2014) lncRNA maturation to initiate heterochromatin formation in the nucleolus is required for exit from pluripotency in ESCs. Cell Stem Cell 15: 720-734. doi: 10.1016/j.stem.2014.10.005 |
[160] | Talamas JA, Capelson M (2015) Nuclear envelope and genome interactions in cell fate. Front Genet 6: 95. |
[161] | Fischer AH (2014) The diagnostic pathology of the nuclear envelope in human cancers. Adv Exp Med Biol 773: 49-75. doi: 10.1007/978-1-4899-8032-8_3 |
[162] | de Las Heras JI, Schirmer EC (2014) The nuclear envelope and cancer: a diagnostic perspective and historical overview. Adv Exp Med Biol 773: 5-26. doi: 10.1007/978-1-4899-8032-8_1 |
[163] | Skvortsov S, Schafer G, Stasyk T, et al. (2011) Proteomics profiling of microdissected low- and high-grade prostate tumors identifies Lamin A as a discriminatory biomarker. J Proteome Res 10: 259-268. doi: 10.1021/pr100921j |
[164] | Willis ND, Cox TR, Rahman-Casans SF, et al. (2008) Lamin A/C is a risk biomarker in colorectal cancer. PLoS One 3: e2988. doi: 10.1371/journal.pone.0002988 |
[165] | Vargas JD, Hatch EM, Anderson DJ, et al. (2012) Transient nuclear envelope rupturing during interphase in human cancer cells. Nucleus 3: 88-100. doi: 10.4161/nucl.18954 |
[166] | Fischer AH, Bardarov S, Jr., Jiang Z (2004) Molecular aspects of diagnostic nucleolar and nuclear envelope changes in prostate cancer. J Cell Biochem 91: 170-184. doi: 10.1002/jcb.10735 |
[167] | Suresh S (2007) Biomechanics and biophysics of cancer cells. Acta Biomater 3: 413-438. doi: 10.1016/j.actbio.2007.04.002 |
[168] | Lammerding J, Fong LG, Ji JY, et al. (2006) Lamins A and C but not lamin B1 regulate nuclear mechanics. J Biol Chem 281: 25768-25780. doi: 10.1074/jbc.M513511200 |
[169] | Chow KH, Factor RE, Ullman KS (2012) The nuclear envelope environment and its cancer connections. Nat Rev Cancer 12: 196-209. |
[170] | Mjelle R, Hegre SA, Aas PA, et al. (2015) Cell cycle regulation of human DNA repair and chromatin remodeling genes. DNA Repair (Amst) 30: 53-67. doi: 10.1016/j.dnarep.2015.03.007 |
[171] | Yi C, He C (2013) DNA repair by reversal of DNA damage. Cold Spring Harb Perspect Biol 5: a012575. doi: 10.1101/cshperspect.a012575 |
[172] | Davis AJ, Chen DJ (2013) DNA double strand break repair via non-homologous end-joining. Transl Cancer Res 2: 130-143. |
[173] | Shroff R, Arbel-Eden A, Pilch D, et al. (2004) Distribution and dynamics of chromatin modification induced by a defined DNA double-strand break. Curr Biol 14: 1703-1711. doi: 10.1016/j.cub.2004.09.047 |
[174] | Jazayeri A, Falck J, Lukas C, et al. (2006) ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks. Nat Cell Biol 8: 37-45. doi: 10.1038/ncb1337 |
[175] | Radhakrishnan SK, Jette N, Lees-Miller SP (2014) Non-homologous end joining: emerging themes and unanswered questions. DNA Repair (Amst) 17: 2-8. doi: 10.1016/j.dnarep.2014.01.009 |
[176] | Shrivastav M, De Haro LP, Nickoloff JA (2008) Regulation of DNA double-strand break repair pathway choice. Cell Res 18: 134-147. doi: 10.1038/cr.2007.111 |
[177] | Lemaitre C, Grabarz A, Tsouroula K, et al. (2014) Nuclear position dictates DNA repair pathway choice. Genes Dev 28: 2450-2463. doi: 10.1101/gad.248369.114 |
[178] | Aymard F, Bugler B, Schmidt CK, et al. (2014) Transcriptionally active chromatin recruits homologous recombination at DNA double-strand breaks. Nat Struct Mol Biol 21: 366-374. doi: 10.1038/nsmb.2796 |
[179] | Horigome C, Oma Y, Konishi T, et al. (2014) SWR1 and INO80 chromatin remodelers contribute to DNA double-strand break perinuclear anchorage site choice. Mol Cell 55: 626-639. doi: 10.1016/j.molcel.2014.06.027 |
[180] | Dion V, Gasser SM (2013) Chromatin movement in the maintenance of genome stability. Cell 152: 1355-1364. doi: 10.1016/j.cell.2013.02.010 |
[181] | Dion V, Kalck V, Horigome C, et al. (2012) Increased mobility of double-strand breaks requires Mec1, Rad9 and the homologous recombination machinery. Nat Cell Biol 14: 502-509. doi: 10.1038/ncb2465 |
[182] | Seeber A, Dion V, Gasser SM (2013) Checkpoint kinases and the INO80 nucleosome remodeling complex enhance global chromatin mobility in response to DNA damage. Genes Dev 27: 1999-2008. doi: 10.1101/gad.222992.113 |
[183] | Neumann FR, Dion V, Gehlen LR, et al. (2012) Targeted INO80 enhances subnuclear chromatin movement and ectopic homologous recombination. Genes Dev 26: 369-383. doi: 10.1101/gad.176156.111 |
[184] | Mahen R, Hattori H, Lee M, et al. (2013) A-type lamins maintain the positional stability of DNA damage repair foci in mammalian nuclei. PLoS One 8: e61893. doi: 10.1371/journal.pone.0061893 |
[185] | van Sluis M, McStay B (2015) A localized nucleolar DNA damage response facilitates recruitment of the homology-directed repair machinery independent of cell cycle stage. Genes Dev 29: 1151-1163. doi: 10.1101/gad.260703.115 |
[186] | Tang J, Cho NW, Cui G, et al. (2013) Acetylation limits 53BP1 association with damaged chromatin to promote homologous recombination. Nat Struct Mol Biol 20: 317-325. doi: 10.1038/nsmb.2499 |
[187] | Botuyan MV, Lee J, Ward IM, et al. (2006) Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair. Cell 127: 1361-1373. doi: 10.1016/j.cell.2006.10.043 |
[188] | Misteli T, Soutoglou E (2009) The emerging role of nuclear architecture in DNA repair and genome maintenance. Nat Rev Mol Cell Biol 10: 243-254. |
[189] | Constantinescu D, Csoka AB, Navara CS, et al. (2010) Defective DSB repair correlates with abnormal nuclear morphology and is improved with FTI treatment in Hutchinson-Gilford progeria syndrome fibroblasts. Exp Cell Res 316: 2747-2759. doi: 10.1016/j.yexcr.2010.05.015 |
[190] | Lattanzi G, Marmiroli S, Facchini A, et al. (2012) Nuclear damages and oxidative stress: new perspectives for laminopathies. Eur J Histochem 56: e45. doi: 10.4081/ejh.2012.e45 |
[191] | Richards SA, Muter J, Ritchie P, et al. (2011) The accumulation of un-repairable DNA damage in laminopathy progeria fibroblasts is caused by ROS generation and is prevented by treatment with N-acetyl cysteine. Hum Mol Genet 20: 3997-4004. doi: 10.1093/hmg/ddr327 |
[192] | Allen RG, Tresini M (2000) Oxidative stress and gene regulation. Free Radic Biol Med 28: 463-499. doi: 10.1016/S0891-5849(99)00242-7 |
[193] | Sieprath T, Corne T, Nooteboom M, et al. (2015) Sustained accumulation of prelamin A and depletion of lamin A/C both cause oxidative stress and mitochondrial dysfunction but induce different cell fates. Nucleus 6: 236-246. doi: 10.1080/19491034.2015.1050568 |
[194] | Pekovic V, Gibbs-Seymour I, Markiewicz E, et al. (2011) Conserved cysteine residues in the mammalian lamin A tail are essential for cellular responses to ROS generation. Aging Cell 10: 1067–1079. doi: 10.1111/j.1474-9726.2011.00750.x |
[195] | Viteri G, Chung YW, Stadtman ER (2010) Effect of progerin on the accumulation of oxidized proteins in fibroblasts from Hutchinson Gilford progeria patients. Mech Ageing Dev 131: 2–8. doi: 10.1016/j.mad.2009.11.006 |
[196] | Csoka AB, Cao H, Sammak PJ, et al. (2004) Novel lamin A/C gene (LMNA) mutations in atypical progeroid syndromes. J Med Genet 41: 304–308. doi: 10.1136/jmg.2003.015651 |
[197] | Doubaj Y, De Sandre-Giovannoli A, Vera EV, et al. (2012) An inherited LMNA gene mutation in atypical Progeria syndrome. Am J Med Genet A 158A: 2881–2887. doi: 10.1002/ajmg.a.35557 |
[198] | Seco-Cervera M, Spis M, Garcia-Gimenez JL, et al. (2014) Oxidative stress and antioxidant response in fibroblasts from Werner and atypical Werner syndromes. Aging (Albany NY) 6: 231–245. |
[199] | Schroder AR, Shinn P, Chen H, et al. (2002) HIV-1 integration in the human genome favors active genes and local hotspots. Cell 110: 521–529. doi: 10.1016/S0092-8674(02)00864-4 |
[200] | Wong RW, Mamede JI, Hope TJ (2015) The Impact of Nucleoporin Mediated Chromatin localization and Nuclear Architecture on HIV Integration Site Selection. J Virol. |
[201] | Marini B, Kertesz-Farkas A, Ali H, et al. (2015) Nuclear architecture dictates HIV-1 integration site selection. Nature 521: 227–231.202. Lelek M, Casartelli N, Pellin D, et al. (2015) Chromatin organization at the nuclear pore favours HIV replication. Nat Commun 6: 6483. doi: 10.1038/nature14226 |