Theory article Recurring Topics

The prominent role of the cerebellum in the social learning of the phonological loop in working memory: How language was adaptively built from cerebellar inner speech required during stone-tool making

  • Received: 08 July 2020 Accepted: 30 August 2020 Published: 16 September 2020
  • Based on advances in cerebellum research as to its cognitive, social, and language contributions to working memory, the purpose of this article is to describe new support for the prominent involvement of cerebellar internal models in the adaptive selection of language. Within this context it has been proposed that (1) cerebellar internal models of inner speech during stone-tool making accelerated the adaptive evolution of new cause-and-effect sequences of precision stone-tool knapping requirements, and (2) that these evolving cerebellar internal models coded (i.e., learned in corticonuclear microcomplexes) such cause-and-effect sequences as phonological counterparts and, these, when sent to the cerebral cortex, became new phonological working memory. This article describes newer supportive research findings on (1) the cerebellum's role in silent speech in working memory, and (2) recent findings on genetic aspects (FOXP2) of the role of silent speech in language evolution. It is concluded that within overall cerebro-cerebellar evolution, without the evolution of cerebellar coding of stone-tool making sequences of primitive working memory (beginning approximately 1.7 million years ago) language would not have evolved in the subsequent evolution of Homo sapiens.

    Citation: Larry Vandervert. The prominent role of the cerebellum in the social learning of the phonological loop in working memory: How language was adaptively built from cerebellar inner speech required during stone-tool making[J]. AIMS Neuroscience, 2020, 7(3): 333-343. doi: 10.3934/Neuroscience.2020020

    Related Papers:

  • Based on advances in cerebellum research as to its cognitive, social, and language contributions to working memory, the purpose of this article is to describe new support for the prominent involvement of cerebellar internal models in the adaptive selection of language. Within this context it has been proposed that (1) cerebellar internal models of inner speech during stone-tool making accelerated the adaptive evolution of new cause-and-effect sequences of precision stone-tool knapping requirements, and (2) that these evolving cerebellar internal models coded (i.e., learned in corticonuclear microcomplexes) such cause-and-effect sequences as phonological counterparts and, these, when sent to the cerebral cortex, became new phonological working memory. This article describes newer supportive research findings on (1) the cerebellum's role in silent speech in working memory, and (2) recent findings on genetic aspects (FOXP2) of the role of silent speech in language evolution. It is concluded that within overall cerebro-cerebellar evolution, without the evolution of cerebellar coding of stone-tool making sequences of primitive working memory (beginning approximately 1.7 million years ago) language would not have evolved in the subsequent evolution of Homo sapiens.


    加载中


    Conflict of interest



    The author declares no conflict of interest in this article.

    [1] Leiner H, Leiner A, Dow R (1986) Does the cerebellum contribute to mental skills? Behav Neurosci 100: 443-454. doi: 10.1037/0735-7044.100.4.443
    [2] Leiner H, Leiner A, Dow R (1989) Reappraising the cerebellum: What does the hindbrain contribute to the forebrain? Behav Neurosci 103: 998-1008. doi: 10.1037/0735-7044.103.5.998
    [3] Luria AR (1980)  Higher cortical functions in man New York: Basic Books. doi: 10.1007/978-1-4615-8579-4
    [4] Marvel CL, Desmond JE (2010) Functional topography of the cerebellum in verbal working memory. Neuropsychol Rev 20: 271-279. doi: 10.1007/s11065-010-9137-7
    [5] Marvel CL, Desmond JE (2016) The cerebellum and verbal working memory. The linguistic cerebellum (Chap. 3) Amsterdam: Elsevier.
    [6] Marvel C, Morgan O, Kronemer S (2019) How the motor system integrates with working memory. Neurosci Biobehav Rev 102: 184-194. doi: 10.1016/j.neubiorev.2019.04.017
    [7] Ito M (1993) Movement and thought: identical control mechanisms by the cerebellum. Trends Neurosci 16: 448-450. doi: 10.1016/0166-2236(93)90073-U
    [8] Ito M (1997) Cerebellar microcomplexes. The cerebellum and cognition New York: Academic Press, 475-487.
    [9] Ito M (2008) Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci 9: 304-313. doi: 10.1038/nrn2332
    [10] Ito M (2011)  The cerebellum: brain for an implicit self Upper Saddle River: FT Press.
    [11] Van Overwalle F, Manto M, Leggio M, et al. (2019) The sequencing process generated by the cerebellum crucially contributes to social interactions. Med Hypotheses 128: 33-42. doi: 10.1016/j.mehy.2019.05.014
    [12] Adamaszek M, D'Agata F, Ferrucci R, et al. (2017) Consensus paper: Cerebellum and emotion. Cerebellum 16: 552-576. doi: 10.1007/s12311-016-0815-8
    [13] Bareš M, Apps R, Avanzino L, et al. (2019) Consensus paper: Decoding the contributions of the cerebellum as a time machine. From neurons to clinical applications. Cerebellum 18: 266-286. doi: 10.1007/s12311-018-0979-5
    [14] Baumann O, Borra RJ, Bower JM, et al. (2015) Consensus paper: The role of the cerebellum in perceptual processes. Cerebellum 14: 197-220. doi: 10.1007/s12311-014-0627-7
    [15] Buckner RL (2013) The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging. Neuron 80: 807-815. doi: 10.1016/j.neuron.2013.10.044
    [16] Koziol LF, Budding D, Andreasen N, et al. (2014) Consensus paper: The cerebellum's role in movement and cognition. Cerebellum 13: 151-177. doi: 10.1007/s12311-013-0511-x
    [17] Leto K, Arancillo M, Becker EB, et al. (2016) Consensus Paper: Cerebellar development. Cerebellum 15: 789-828. doi: 10.1007/s12311-015-0724-2
    [18] Mariën P, Ackermann H, Adamaszek M, et al. (2014) Consensus paper: Language and the cerebellum: an ongoing enigma. Cerebellum 13: 386-410.
    [19] Schmahmann JD, Guell X, Stoodley CJ, et al. (2019) The theory and neuroscience of cerebellar cognition. Annu Rev Neurosci 42: 337-364. doi: 10.1146/annurev-neuro-070918-050258
    [20] Van Overwalle F, Ma Q, Heleven E (2020) The posterior crus II cerebellum is specialized for social mentalizing and emotional self-experiences: A meta-analysis. Soc Cogn Affect Neurosci nsaa124.
    [21] Vandervert L (2015) How music training enhances working memory: A cerebrocerebellar blending mechanism that can lead equally to scientific discovery and therapeutic efficacy in neurological disorders. Cerebellum Ataxias 2: 11. doi: 10.1186/s40673-015-0030-2
    [22] Vandervert L (2016) The prominent role of the cerebellum in the origin, advancement and individual learning of culture. Cerebellum Ataxias 3: 10. doi: 10.1186/s40673-016-0049-z
    [23] Vandervert L (2018) How prediction based on sequence detection in the cerebellum led to the origins of stone tools, language, and culture and, thereby, to the rise of Homo sapiens. Front Cell Neurosci 12: 408. doi: 10.3389/fncel.2018.00408
    [24] Vandervert L (2019) The evolution of theory of mind (ToM) within the evolution of cerebellar sequence detection in stone-tool making and language: Implications for studies of higher-level cognitive functions in degenerative cerebellar atrophy. Cerebellum Ataxias 6: 1. doi: 10.1186/s40673-019-0101-x
    [25] Vandervert L (2020) The cerebellum-driven social learning of inner speech in the evolution of stone-tool making and language: Innate hand-tool connections in the cerebro-cerebellar system. Consensus Paper: Cerebellum and Social Cognition Springer.
    [26] Marvel C, Desmond J (2012) From storage to manipulation: How the neural correlates of verbal working memory reflect varying demands on inner speech. Brain Lang 120: 42-51. doi: 10.1016/j.bandl.2011.08.005
    [27] Liao DA, Kronemer SI, Yau JM, et al. (2014) Motor system contributions to verbal and non-verbal working memory. Front Hum Neurosci 8: 753.
    [28] Alderson-Day B, Fernyhough C (2015) Inner speech: Development, cognitive functions, phenomenology, and neurobiology. Psychol Bull 141: 931-965. doi: 10.1037/bul0000021
    [29] Geva S, Fernyhough C (2019) A penny for your thoughts: Children's inner speech and its neuro-development. Front Psychol 10: 1708. doi: 10.3389/fpsyg.2019.01708
    [30] Stout D, Hecht E (2017) The evolutionary neuroscience of cumulative culture. PNAS 114: 7861-7868. doi: 10.1073/pnas.1620738114
    [31] Baddeley A (1992) Working memory. Science 255: 556-559. doi: 10.1126/science.1736359
    [32] Baddeley AD (2000) The episodic buffer: A new component of working memory? Trends Cogn Sci 4: 417-423. doi: 10.1016/S1364-6613(00)01538-2
    [33] Ashida R, Cerminara NL, Edwards RJ, et al. (2019) Sensorimotor, language, and working memory representation within the human cerebellum. Hum Brain Mapp 40: 4732-4747. doi: 10.1002/hbm.24733
    [34] Crespi B, Read S, Hurd P (2017) Segregating polymorphisms of FOXP2 are associated with measures of inner speech, speech fluency and strength of handedness in a healthy population. Brain Lang 173: 33-40. doi: 10.1016/j.bandl.2017.06.002
    [35] Hayter AL, Langdon DW, Ramnani N (2007) Cerebellar contributions to working memory. Neuroimage 36: 943-954. doi: 10.1016/j.neuroimage.2007.03.011
    [36] Macher K, Böhringer A, Villringer A, et al. (2014) Cerebellar-parietal connections underpin phonological storage. J Neurosci 34: 5029-5037. doi: 10.1523/JNEUROSCI.0106-14.2014
    [37] Unsworth N, Spillers G, Brewer G (2012) The role of working memory capacity in autobiographical retrieval: Individual differences in strategic search. Memory 20: 167-176. doi: 10.1080/09658211.2011.651087
    [38] Baddeley A, Gathercole S, Papagno C (1998) The phonological loop as a language learning device. Psychol Rev 105: 158-173. doi: 10.1037/0033-295X.105.1.158
    [39] Castellazzi G, Bruno SD, Toosy AT, et al. (2018) Prominent changes in cerebro-cerebellar functional connectivity during continuous cognitive processing. Front Cell Neurosci 12: 331. doi: 10.3389/fncel.2018.00331
    [40] Saeki E, Baddeley AD, Hitch GJ, et al. (2013) Breaking a habit: A further role of the phonological loop in action control. Memory Cognition 41: 1065-1078. doi: 10.3758/s13421-013-0320-y
    [41] Vandervert L (2011) The evolution of language: The cerebro-cerebellar blending of visual-spatial working memory with vocalizations. J Mind Behav 32: 317-331.
    [42] Akshoomoff N, Courchesne E, Townsend J (1997) Attention coordination and anticipatory control. The cerebellum and cognition New York: Academic Press, 575-598.
    [43] Clausi S, Olivito G, Lupo M, et al. (2019) The cerebellar predictions for social interactions: Theory of mind abilities in patients with degenerative cerebellar atrophy. Front Cell Neurosci 12: 510. doi: 10.3389/fncel.2018.00510
    [44] Nonaka T, Bril B, Rein R (2010) How do stone knappers predict and control the outcome of flaking? Implications for understanding early stone tool technology. J Hum Evol 59: 155-167. doi: 10.1016/j.jhevol.2010.04.006
    [45] Roux V, Bril B, Dietrich G (1995) Skills and learning difficulties involved in stone knapping: The case of stone-bead knapping in Khambhat, India. World Archaeol 27: 63-87. doi: 10.1080/00438243.1995.9980293
    [46] Faisal A, Stout D, Apel J, et al. (2010) The manipulative complexity of lower paleolithic stone toolmaking. PLoS One 5: e13718. doi: 10.1371/journal.pone.0013718
    [47] Magnani M, Rezek Z, Lin SC, et al. (2014) Flake variation in relation to the application of force. J Archaeol Sci 46: 37-49. doi: 10.1016/j.jas.2014.02.029
    [48] Putt SS, Woods AD, Franciscus RG (2014) The role of verbal interaction during experimental bifacial stone tool manufacture. Lithic Technol 39: 96-112. doi: 10.1179/0197726114Z.00000000036
    [49] Stout D, Apel J, Commander J, et al. (2014) Late Acheulean technology and cognition at Boxgrove, UK. J Archaeol Sci 41: 576-590. doi: 10.1016/j.jas.2013.10.001
    [50] Morgan TJ, Uomini NT, Rendell LE, et al. (2015) Experimental evidence for the co-evolution of hominin toolmaking teaching and language. Nat Commun 6: 6029. doi: 10.1038/ncomms7029
    [51] Cook R, Bird G, Catmur C, et al. (2014) Mirror neurons: From origin to function. Behav Brain Sci 37: 177-192. doi: 10.1017/S0140525X13000903
    [52] Laland KN, Bateson P (2001) The mechanisms of imitation. Cybern Syst 32: 195-224. doi: 10.1080/019697201300001858
    [53] Stout D (2013) Neuroscience of technology. Cultural Evolution: Society, Technology, Language, and Religion (Strungmann Forum Reports) Cambridge: MIT Press, 157-173. doi: 10.7551/mitpress/9780262019750.003.0009
    [54] Doya K (1999) What are the computations of the cerebellum, the basal ganglia and the cerebral Cortex? Neural Netw 12: 961-974. doi: 10.1016/S0893-6080(99)00046-5
    [55] Imamizu H, Kawato M (2009) Brain mechanisms for predictive control by switching internal models: implications for higher-order cognitive functions. Psychol Res 73: 527-544. doi: 10.1007/s00426-009-0235-1
    [56] Moberget T, Gullesen EH, Andersson S, et al. (2014) Generalized role for the cerebellum in encoding internal models: evidence from semantic processing. J Neurosci 34: 2871-2878. doi: 10.1523/JNEUROSCI.2264-13.2014
    [57] Wolpert D, Doya K, Kawato M (2003) A unifying computational framework for motor control and social interaction. Philos Trans R Soc Lond B Biol Sci 358: 593-602. doi: 10.1098/rstb.2002.1238
    [58] Flanagan R, Nakano E, Imamizu H, et al. (1999) Composition and decomposition of internal models in learning under altered kinematic and dynamic environments. J Neurosci 19: 1-5. doi: 10.1523/JNEUROSCI.19-20-j0005.1999
    [59] Imamizu H, Higuchi S, Toda A, et al. (2007) Reorganization of brain activity for multiple internal models after short but intensive training. Cortex 43: 338-349. doi: 10.1016/S0010-9452(08)70459-3
    [60] Nakano E, Flanagan J, Imamizu H, et al. (2002) Composition and decomposition learning of reaching movements under altered environments: An examination of the multiplicity of internal models. Syst Comput Japan 33: 80-94. doi: 10.1002/scj.1166
    [61] Imamizu H, Kawato M (2012) Cerebellar internal models: Implications for dexterous use of tools. Cerebellum 11: 325-335. doi: 10.1007/s12311-010-0241-2
    [62] Leggio M, Molinari M (2015) Cerebellar sequencing: A trick for predicting the future. Cerebellum 14: 35-38. doi: 10.1007/s12311-014-0616-x
    [63] Perrone-Bertolotti M, Rapin L, Lachaux JP, et al. (2014) What is that little voice inside my head? Inner speech phenomenology, its role in cognitive performance, and its relation to self-monitoring. Behav Brain Res 261: 220-239. doi: 10.1016/j.bbr.2013.12.034
    [64] Rijntjes M, Weiller C, Bormann T, et al. (2012) The dual loop model: Its relation to language and other modalities. Front Evol Neurosci 4: 9. doi: 10.3389/fnevo.2012.00009
    [65] Jackendoff R (1996) How language helps us think. Pragmat Cogn 4: 1-34. doi: 10.1075/pc.4.1.03jac
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3774) PDF downloads(116) Cited by(8)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog