Citation: Jonathan R. Emerson, Jack A. Binks, Matthew W. Scott, Ryan P. W. Kenny, Daniel L. Eaves. Combined action observation and motor imagery therapy: a novel method for post-stroke motor rehabilitation[J]. AIMS Neuroscience, 2018, 5(4): 236-252. doi: 10.3934/Neuroscience.2018.4.236
[1] | Warlow CP, van Gijn J, Dennis MS, et al. (2008) Stroke: Practical Management (3rd ed.), Oxford: Blackwell Publishing. |
[2] | Barker WH, Mullooly JP (1997) Stroke in a defined elderly population, 1967–1985. A less lethal and disabling but no less common disease. Stroke 28: 284–290. |
[3] | Hendricks HT, van Limbeek J, Geurts AC, et al. (2002) Motor recovery after stroke: a systematic review of the literature. Arch Phys Med Rehabil 83: 1629–1637. doi: 10.1053/apmr.2002.35473 |
[4] | De Vries S, Mulder T (2007) Motor imagery and stroke rehabilitation: a critical discussion. J Rehabil Med 39: 5–13. doi: 10.2340/16501977-0020 |
[5] | Wade DT (1992). Measurement in Neurological Rehabilitation, Oxford: Oxford University Press. |
[6] | Pandyan AD, Gregoric M, Barnes MP, et al. (2005) Spasticity: clinical perceptions, neurological realities and meaningful measurement. Disabil Rehabil 27: 2–6. doi: 10.1080/09638280400014576 |
[7] | Andrews AW, Bohannon RW (1989) Decreased shoulder range of motion on paretic side after stroke. Phys Ther 69: 768–772. doi: 10.1093/ptj/69.9.768 |
[8] | Meskers CG, Koppe PA, Konijnenbelt MH, et. al. (2005) Kinematic alterations in the ipsilateral shoulder of patients with hemiplegia due to stroke. Am J Phys Med Rehabil 84: 97–105. doi: 10.1097/01.PHM.0000150792.26793.E9 |
[9] | Chan DYL, Chan CCH, Au DKS (2006) Motor relearning programme for stroke patients: a randomized controlled trial. Clin Rehabil 20: 191–200. doi: 10.1191/0269215506cr930oa |
[10] | Rossini PM, Calautti C, Pauri F, et al. (2003) Post-stroke plastic reorganisation in the adult brain. Lancet Neurol 2: 493–502. doi: 10.1016/S1474-4422(03)00485-X |
[11] | Hubbard IJ, Parsons MW, Neilson C, et al. (2009) Task-specific training evidence for and translation to clinical practice. Occup Ther Int 16: 175–189. doi: 10.1002/oti.275 |
[12] | Arya KN, Pandian S, Verma R, et al. (2011) Movement therapy induced neural reorganization and motor recovery in stroke: a review. J Bodyw Mov Ther 15: 528–537. doi: 10.1016/j.jbmt.2011.01.023 |
[13] | Aichner F, Adelwöhrer C, Haring HP (2002) Rehabilitation approaches to stroke, In: Fleischhacker WW, Brooks DJ, Stroke-vascular Diseases, Vienna: Springer, 59–73. |
[14] | Byl N, Roderick J, Mohamed O, et al. (2003) Effectiveness of sensory and motor rehabilitation of the upper limb following the principles of neuroplasticity: patients stable poststroke. Neurorehabil Neural Repair 17: 176–191. doi: 10.1177/0888439003257137 |
[15] | Jang SH, Kim YH, Cho SH, et al. (2003) Cortical reorganization induced by task-oriented training in chronic hemiplegic stroke patients. Neuroreport 14: 137–141. doi: 10.1097/00001756-200301200-00025 |
[16] | Langhorne P, Coupar F, Pollock A (2009) Motor recovery after stroke: a systematic review. Lancet Neurol 8: 741–754. doi: 10.1016/S1474-4422(09)70150-4 |
[17] | Park SW, Kim JH, Yang, YJ (2018) Mental practice for upper limb rehabilitation after stroke: a systematic review and meta-analysis. Int J Rehabil Res 41: 197–203. |
[18] | Sun Y, Wei W, Luo Z, et al. (2016) Improving motor imagery practice with synchronous action observation in stroke patients. Top Stroke Rehabil 23: 245–253. doi: 10.1080/10749357.2016.1141472 |
[19] | Gatti R, Tettamanti A, Gough PM, et al. (2013) Action observation versus motor imagery in learning a complex motor task: a short review of literature and a kinematics study. Neurosci Lett 540: 37–42. doi: 10.1016/j.neulet.2012.11.039 |
[20] | Neuman B, Gray R (2013) A direct comparison of the effects of imagery and action observation on hitting performance. Movement Sport Sci: Sci Motricité 79: 11–21. |
[21] | Guillot A, Collet C (2008) Construction of the motor imagery integrative model in sport: a review and theoretical investigation of motor imagery use. Int Rev Sport Exer P 1: 31–44. doi: 10.1080/17509840701823139 |
[22] | Hardwick RM, Caspers S, Eickhoff SB, et al. (2018) Neural Correlates of Action: Comparing Meta-Analyses of Imagery, Observation, and Execution. Neurosci Biobehav Rev 94: 31–44. doi: 10.1016/j.neubiorev.2018.08.003 |
[23] | Jeannerod M (2006) Motor Cognition, Oxford: Oxford University Press. |
[24] | Vogt S, Di Rienzo F, Collet C, et al. (2013) Multiple roles of motor imagery during action observation. Front Hum Neurosci 7: 807. |
[25] | Rizzolatti G, Sinigaglia C (2010) The functional role of the parieto-frontal mirror circuit: interpretations and misinterpretations. Nat Rev Neurosci 11: 264–274. doi: 10.1038/nrn2805 |
[26] | Vogt S, Thomaschke R (2007) From visuo-motor interactions to imitation learning: behavioural and brain imaging studies. J Sports Sci 25: 497–517. doi: 10.1080/02640410600946779 |
[27] | Buccino G (2014) Action observation treatment: a novel tool in neurorehabilitation. Philos Trans R Soc Lond B Biol Sci 369: 20130185. doi: 10.1098/rstb.2013.0185 |
[28] | Ertelt D, Small S, Solodkin A, et al. (2007) Action observation has a positive impact on rehabilitation of motor deficits after stroke. Neuroimage 36: 164–173. doi: 10.1016/j.neuroimage.2007.03.043 |
[29] | Franceschini M, Ceravolo MG, Agosti M, et al. (2012) Clinical relevance of action observation in upper-limb stroke rehabilitation: a possible role in recovery of functional dexterity. A randomized clinical trial. Neurorehabil Neural Repair 26: 456–462. doi: 10.1177/1545968311427406 |
[30] | Zhang JJQ, Fong KNK, Welage N, et al. (2018) The activation of the mirror neuron system during action observation and action execution with mirror visual feedback in stroke: a systematic review. Neural Plast 2018: 2321045. |
[31] | Cumming J, Eaves DL (2018) The nature, measurement, and development of imagery ability. Imagin Cog Pers 37: 375–393. doi: 10.1177/0276236617752439 |
[32] | Eaves DL, Emerson JR, Binks JA, et al. (2018) Imagery ability: the individual difference gradient and novel training methods (Commentary on Kraeutner et al. (2018)) Eur J Neurosci 47: 1219–1220. doi: 10.1111/ejn.13928 |
[33] | Eaves DL, Riach M, Holmes PS, et al. (2016) Motor imagery during action observation: A brief review of evidence, theory and future research opportunities. Front Neurosci 10: 514. |
[34] | Stinear CM, Byblow WD, Steyvers M, et al. (2006) Kinesthetic, but not visual, motor imagery modulates corticomotor excitability. Exp Brain Res 168: 157–164. doi: 10.1007/s00221-005-0078-y |
[35] | De Vries S, Tepper M, Feenstra W, et al. (2013) Motor imagery ability in stroke patients: the relationship between implicit and explicit motor imagery measures. Front Hum Neurosci 7: 790. |
[36] | Braun S, Kleynen M, van Heel T, et al. (2013) The effects of mental practice in neurological rehabilitation; a systematic review and meta-analysis. Front Hum Neurosci 7: 390. |
[37] | Pascual-Leone A, Nguyet D, Cohen LG, et al. (1995) Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills. J Neurophysiol 74: 1037–1045. doi: 10.1152/jn.1995.74.3.1037 |
[38] | Jackson PL, Lafleur MF, Malouin F, et al. (2003) Functional cerebral reorganization following motor sequence learning through mental practice with motor imagery. Neuroimage 20: 1171–1180. doi: 10.1016/S1053-8119(03)00369-0 |
[39] | Sharma N, Baron JC, Rowe JB (2009) Motor imagery after stroke: relating outcome to motor network connectivity. Ann Neurol: Official J American Neurol Assoc Child Neurol Soc 66: 604–616. |
[40] | Grosprêtre S, Lebon F, Papaxanthis C, et al. (2018) Spinal plasticity with motor imagery practice. J Physiol. |
[41] | Zimmermann-Schlatter A, Schuster C, Puhan MA, et al. (2008) Efficacy of motor imagery in post-stroke rehabilitation: a systematic review. J Neuroeng Rehabil 5: 8. doi: 10.1186/1743-0003-5-8 |
[42] | Machado S, Lattari E, de Sa AS, et al. (2015) Is mental practice an effective adjunct therapeutic strategy for upper limb motor restoration after stroke? A systematic review and meta-analysis. CNS Neurol Disord Drug Targets 14: 567–575. doi: 10.2174/1871527314666150429112702 |
[43] | Winstein CJ, Stein J, Arena R, et al. (2016) Guidelines for adult stroke rehabilitation and recovery: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 47: e98–e169. |
[44] | Hebert D, Lindsay MP, McIntyre A, et al. (2016) Canadian stroke best practice recommendations: stroke rehabilitation practice guidelines, update 2015. Int J Stroke 11: 459–484. doi: 10.1177/1747493016643553 |
[45] | Bovend'Eerdt TJ, Dawes H, Sackley C, et al. (2012) Practical research-based guidance for motor imagery practice in neurorehabilitation. Disabil Rehabil 34: 2192–2200. doi: 10.3109/09638288.2012.676703 |
[46] | Page SJ, Fulk GD, Boyne P (2012) Clinically important differences for the upper-extremity Fugl-Meyer scale in people with minimal to moderate impairment due to chronic stroke. Phys Ther 92: 791–798. doi: 10.2522/ptj.20110009 |
[47] | Tani M, Ono Y, Matsubara M, et al. (2018). Action observation facilitates motor cortical activity in patients with stroke and hemiplegia. Neurosci Res 133: 7–14. doi: 10.1016/j.neures.2017.10.002 |
[48] | Burianová H, Marstaller L, Sowman P, et al. (2013) Multimodal functional imaging of motor imagery using a novel paradigm. Neuroimage 71: 50–58. doi: 10.1016/j.neuroimage.2013.01.001 |
[49] | Kraeutner SN, McWhinney SR, Solomon JP, et al. (2018) Experience modulates motor imagery-based brain activity. Eur J Neurosci 47: 1221–1229. |
[50] | Bar RJ, DeSouza JF (2016) Tracking plasticity: effects of long-term rehearsal in expert dancers encoding music to movement. PloS One 11: e0147731. doi: 10.1371/journal.pone.0147731 |
[51] | Lacourse MG, Orr EL, Cramer SC, et al. (2005) Brain activation during execution and motor imagery of novel and skilled sequential hand movements. Neuroimage 27: 505–519. doi: 10.1016/j.neuroimage.2005.04.025 |
[52] | Macuga KL, Frey SH (2012) Neural representations involved in observed, imagined, and imitated actions are dissociable and hierarchically organized. Neuroimage 59: 2798–2807. doi: 10.1016/j.neuroimage.2011.09.083 |
[53] | Nedelko V, Hassa T, Hamzei F, et al. (2012) Action imagery combined with action observation activates more corticomotor regions than action observation alone. J Neurol Phys Ther 36: 182–188. doi: 10.1097/NPT.0b013e318272cad1 |
[54] | Villiger M, Estévez N, Hepp-Reymond MC, et al. (2013) Enhanced activation of motor execution networks using action observation combined with imagination of lower limb movements. PLoS One 8: e72403. doi: 10.1371/journal.pone.0072403 |
[55] | Taube W, Mouthon M, Leukel C, et al. (2015) Brain activity during observation and motor imagery of different balance tasks: an fMRI study. Cortex 64: 102–114. doi: 10.1016/j.cortex.2014.09.022 |
[56] | Bian Y, Qi H, Zhao L, et al. (2018) Improvements in event-related desynchronization and classification performance of motor imagery using instructive dynamic guidance and complex tasks. Comput Biol Med 96: 266–273. doi: 10.1016/j.compbiomed.2018.03.018 |
[57] | Berends HI, Wolkorte R, Ijzerman MJ, et al. (2013) Differential cortical activation during observation and observation-and-imagination. Exp Brain Res 229: 337–345. doi: 10.1007/s00221-013-3571-8 |
[58] | Eaves DL, Behmer LP, Vogt S (2016) EEG and behavioural correlates of different forms of motor imagery during action observation in rhythmical actions. Brain Cogn 106: 90–103. doi: 10.1016/j.bandc.2016.04.013 |
[59] | Neuper C, Scherer R, Wriessnegger S, et al. (2009) Motor imagery and action observation: modulation of sensorimotor brain rhythms during mental control of a brain-computer interface. Clin Neurophysiol 120: 239–247. doi: 10.1016/j.clinph.2008.11.015 |
[60] | Mouthon A, Ruffieux J, Wälchli M, et al. (2015) Task-dependent changes of corticospinal excitability during observation and motor imagery of balance tasks. Neuroscience 303: 535–543. doi: 10.1016/j.neuroscience.2015.07.031 |
[61] | Sakamoto M, Muraoka T, Mizuguchi N, et al. (2009) Combining observation and imagery of an action enhances human corticospinal excitability. Neurosci Res 65: 23–27. doi: 10.1016/j.neures.2009.05.003 |
[62] | Tsukazaki I, Uehara K, Morishita T, et al. (2012) Effect of observation combined with motor imagery of a skilled hand-motor task on motor cortical excitability: difference between novice and expert. Neurosci Lett 518: 96–100. doi: 10.1016/j.neulet.2012.04.061 |
[63] | Wright DJ, Williams J, Holmes PS (2014) Combined action observation and imagery facilitates corticospinal excitability. Front Hum Neurosci 8: 951. |
[64] | Wright DJ, McCormick SA, Williams J, et al. (2016) Viewing instructions accompanying action observation modulate corticospinal excitability. Front Hum Neurosci 10: 17. |
[65] | Wright DJ, Wood G, Eaves DL, et al. (2018) Corticospinal excitability is facilitated by combined action observation and motor imagery of a basketball free throw. Psychol Sport Exerc 39: 114–121. doi: 10.1016/j.psychsport.2018.08.006 |
[66] | Taube W, Lorch M, Zeiter S, et al. (2014) Non-physical practice improves task performance in an unstable, perturbed environment: motor imagery and observational balance training. Front Hum Neurosci 8: 972. |
[67] | Bek J, Poliakoff E, Marshall H, et al. (2016) Enhancing voluntary imitation through attention and motor imagery. Exp Brain Res 234: 1819–1828. doi: 10.1007/s00221-016-4570-3 |
[68] | Eaves DL, Haythornthwaite L, Vogt S (2014) Motor imagery during action observation modulates automatic imitation effects in rhythmical actions. Front Hum Neurosci 8: 28. |
[69] | Scott M, Taylor S, Chesterton P, et al. (2018) Motor imagery during action observation increases eccentric hamstring force: an acute non-physical intervention. Disabil Rehabil 40: 1443–1451. doi: 10.1080/09638288.2017.1300333 |
[70] | Romano-Smith S, Wood G, Wright DJ, et al. (2018) Simultaneous and alternate action observation and motor imagery combinations improve aiming performance. Psychol Sport Exerc 38: 100–106. doi: 10.1016/j.psychsport.2018.06.003 |
[71] | Marusic U, Giordani B, Moffat SD, et al. (2018) Computerized cognitive training during physical inactivity improves executive functioning in older adults. Aging Neuropsychol Cogn 25: 49–69. doi: 10.1080/13825585.2016.1263724 |
[72] | Bek J, Gowen E, Vogt S, et al. (2018) Combined action observation and motor imagery influences hand movement amplitude in Parkinson's disease. Parkinsonism Relat Disord. |
[73] | Cisek P, Kalaska JF (2010) Neural mechanisms for interacting with a world full of action choices. Annu Rev Neurosci 33: 269–298. doi: 10.1146/annurev.neuro.051508.135409 |
[74] | Eaves DL, Turgeon M, Vogt S (2012) Automatic imitation in rhythmical actions: kinematic fidelity and the effects of compatibility, delay, and visual monitoring. PLoS One 7: e46728. doi: 10.1371/journal.pone.0046728 |
[75] | McInnes K, Friesen C, Boe S (2016) Specific brain lesions impair explicit motor imagery ability: a systematic review of the evidence. Arch Phys Med Rehabil 97: 478–489. doi: 10.1016/j.apmr.2015.07.012 |
[76] | Oostra KM, Van Bladel A, Vanhoonacker AC, et al. (2016) Damage to fronto-parietal networks impairs motor imagery ability after stroke: a voxel-based lesion symptom mapping study. Front Behav Neurosci 10: 5. |
[77] | Evans C, Edwards MG, Taylor LJ, et al. (2016) Perceptual decisions regarding object manipulation are selectively impaired in apraxia or when tDCS is applied over the left IPL. Neuropsychologia 86: 153–166. doi: 10.1016/j.neuropsychologia.2016.04.020 |
[78] | Kraeutner SN, Keeler LT, Boe SG (2016) Motor imagery-based skill acquisition disrupted following rTMS of the inferior parietal lobule. Exp Brain Res 234: 397–407. doi: 10.1007/s00221-015-4472-9 |
[79] | Pinter MM, Brainin M (2012) Rehabilitation after stroke in older people. Maturitas 71: 104–108. doi: 10.1016/j.maturitas.2011.11.011 |
[80] | Pinter MM (2015) Rehabilitation in Stroke Patients: Focusing on the Future. Hamdan Medical J, 8: 321–330. doi: 10.7707/hmj.481 |
[81] | Heyes C (2011) Automatic imitation. Psychol Bull 137: 463–483. doi: 10.1037/a0022288 |
[82] | Holmes PS, Collins DJ (2001) The PETTLEP approach to motor imagery: a functional equivalence model for sport psychologists. J Appl Sport Psychol 13: 60–83. doi: 10.1080/10413200109339004 |
[83] | Cumming J, Cooley SJ, Anuar N, et al. (2017) Developing imagery ability effectively: a guide to layered stimulus response training. J Sport Psychol Action 8: 23–33. doi: 10.1080/21520704.2016.1205698 |
[84] | Lang PJ (1977) Imagery in therapy: an information processing analysis of fear. Behav Ther 8: 862–886. doi: 10.1016/S0005-7894(77)80157-3 |
[85] | Lang PJ (1979) A bio-informational theory of emotional imagery. Psychophysiology 16: 495–512. doi: 10.1111/j.1469-8986.1979.tb01511.x |
[86] | Ventola CL (2014) Mobile devices and apps for health care professionals: uses and benefits. Pharmacy Theraputics 39: 356–364. |
[87] | Mosa AS, Yoo I, Sheets L (2012) A systematic review of healthcare applications for smartphones. BMC Med Inform Decis Mak 12: 67. doi: 10.1186/1472-6947-12-67 |
[88] | Sureshkumar K, Murthy GV, Munuswamy S, et al. (2015) 'Care for Stroke', a web-based, smartphone-enabled educational intervention for management of physical disabilities following stroke: feasibility in the Indian context. BMJ Innov 1: 127–136. doi: 10.1136/bmjinnov-2015-000056 |
[89] | Goodney A, Jung J, Needham S, et al. (2012) Dr Droid: assisting stroke rehabilitation using mobile phones, International Conference on Mobile Computing, Applications and Services, Berlin, Heidelberg: Springer, 231–242. |
[90] | Carr JH, Shepherd RB (2012) An excellent initiative. J Physiother 58: 134–135. doi: 10.1016/S1836-9553(12)70101-7 |
[91] | Intercollegiate Stroke Working Party (2012) National Clinical Guideline for Stroke, 4th edition, London: Royal College of Physicians. |
[92] | Wolpaw JR, Birbaumer N, McFarland DJ, et al. (2002) Brain-computer interfaces for communication and control. Clin Neurophysiol 113: 767–791. doi: 10.1016/S1388-2457(02)00057-3 |
[93] | Cervera MA, Soekadar SR, Ushiba J, et al. (2018) Brain-computer interfaces for post-stroke motor rehabilitation: a meta-analysis. Ann Clin Transl Neurol 5: 651–663. doi: 10.1002/acn3.544 |