Citation: Daniel A. Barone, Ana C. Krieger. The Function of Sleep[J]. AIMS Neuroscience, 2015, 2(2): 71-90. doi: 10.3934/Neuroscience.2015.2.71
[1] | Banks S, Dinges DF (2007) Behavioral and physiological consequences of sleep restriction. J Clin Sleep Med 3: 519-528. |
[2] | Van Dongen HP, Maislin G, Mullington JM, et al. (2003) The cumulative cost of additional wakefulness: dose-response effects on neurobehavioral functions and sleep physiology from chronic sleep restriction and total sleep deprivation. Sleep 26: 117-126. |
[3] | Knutson KL, Spiegel K, Penev P, et al. (2007) The metabolic consequences of sleep deprivation. Sleep Med Rev 11: 163-178. doi: 10.1016/j.smrv.2007.01.002 |
[4] | Dixit A, Mittal T (2015) Executive Functions are not Affected by 24 Hours of Sleep Deprivation: A Color-Word Stroop Task Study. Indian J Psychol Med 37: 165-168. doi: 10.4103/0253-7176.155615 |
[5] | Mignot E (2008) Why we sleep: the temporal organization of recovery. PLoS Biol 6: e106. doi: 10.1371/journal.pbio.0060106 |
[6] | McCormick DA, Bal T (1997) Sleep and arousal: thalamocortical mechanisms. Annu Rev Neurosci 20: 185-215. doi: 10.1146/annurev.neuro.20.1.185 |
[7] | Pace-Schott EF, Hobson JA (2002) The neurobiology of sleep: genetics, cellular physiology and subcortical networks. Nat Rev Neurosci 3: 591-605. doi: 10.1038/nrn895 |
[8] | Villablanca JR (2004) Counterpointing the functional role of the forebrain and of the brainstem in the control of the sleep-waking system. J Sleep Res 13: 179-208. doi: 10.1111/j.1365-2869.2004.00412.x |
[9] | Krueger J CL, Rector D (2009) Cytokines and other neuromodulators. Stickgold R, Walker M (eds) The neuroscience of sleep. |
[10] | Porkka-Heiskanen T (2011) Methylxanthines and sleep. Fredholm BB (ed) Methylxanthines, handbook of experimental pharmacology 331-348. |
[11] | Krueger JM, Rector DM, Roy S, et al. (2008) Sleep as a fundamental property of neuronal assemblies. Nat Rev Neurosci 9: 910-919. doi: 10.1038/nrn2521 |
[12] | Vyazovskiy VV, Olcese U, Hanlon EC, et al. (2011) Local sleep in awake rats. Nature 472: 443-447. doi: 10.1038/nature10009 |
[13] | Llinas RR, Steriade M (2006) Bursting of thalamic neurons and states of vigilance. J Neurophysiol 95: 3297-3308. doi: 10.1152/jn.00166.2006 |
[14] | Coulon P, Budde T, Pape HC (2012) The sleep relay--the role of the thalamus in central and decentral sleep regulation. Pflugers Arch 463: 53-71. doi: 10.1007/s00424-011-1014-6 |
[15] | Steriade M MR (1990) Brainstem control of wakefulness and sleep. Plenum, New York. |
[16] | Haas HL L, JS (2012) Waking with the hypothalamus. Pflugers Arch 463: 31-42. doi: 10.1007/s00424-011-0996-4 |
[17] | Basheer R SR, Thakkar MM, McCarley RW (2004) Adenosine and sleep-wake regulation. Progr Neurobiol 73: 379-396. doi: 10.1016/j.pneurobio.2004.06.004 |
[18] | Obal F, Jr., Krueger JM (2003) Biochemical regulation of non-rapid-eye-movement sleep. Front Biosci 8: d520-550. doi: 10.2741/1033 |
[19] | De Sarro G, Gareri P, Sinopoli VA, et al. (1997) Comparative, behavioural and electrocortical effects of tumor necrosis factor-alpha and interleukin-1 microinjected into the locus coeruleus of rat. Life Sci 60: 555-564. doi: 10.1016/S0024-3205(96)00692-3 |
[20] | Manfridi A, Brambilla D, Bianchi S, et al. (2003) Interleukin-1beta enhances non-rapid eye movement sleep when microinjected into the dorsal raphe nucleus and inhibits serotonergic neurons in vitro. Eur J Neurosci 18: 1041-1049. doi: 10.1046/j.1460-9568.2003.02836.x |
[21] | De A, Churchill L, Obal F, Jr., et al. (2002) GHRH and IL1beta increase cytoplasmic Ca(2+) levels in cultured hypothalamic GABAergic neurons. Brain Res 949: 209-212. doi: 10.1016/S0006-8993(02)03157-8 |
[22] | Huber R, Tononi G, Cirelli C (2007) Exploratory behavior, cortical BDNF expression, and sleep homeostasis. Sleep 30: 129-139. |
[23] | Porkka-Heiskanen T, Alanko L, Kalinchuk A, et al. (2002) Adenosine and sleep. Sleep Med Rev 6: 321-332. doi: 10.1053/smrv.2001.0201 |
[24] | Oishi Y, Huang ZL, Fredholm BB, et al. (2008) Adenosine in the tuberomammillary nucleus inhibits the histaminergic system via A1 receptors and promotes non-rapid eye movement sleep. Proc Natl Acad Sci U S A 105: 19992-19997. doi: 10.1073/pnas.0810926105 |
[25] | Rosenberg PA, Li Y, Le M, et al. (2000) Nitric oxide-stimulated increase in extracellular adenosine accumulation in rat forebrain neurons in culture is associated with ATP hydrolysis and inhibition of adenosine kinase activity. J Neurosci 20: 6294-6301. |
[26] | MM H (2011) Thalamocortical dynamics of sleep: roles of purinergic neuromodulation. Semin Cell Dev Biol 22: 245-251. doi: 10.1016/j.semcdb.2011.02.008 |
[27] | Steriade M, McCormick DA, Sejnowski TJ (1993) Thalamocortical oscillations in the sleeping and aroused brain. Science 262: 679-685. doi: 10.1126/science.8235588 |
[28] | Brown RE, Basheer R, McKenna JT, et al. (2012) Control of sleep and wakefulness. Physiol Rev 92: 1087-1187. doi: 10.1152/physrev.00032.2011 |
[29] | Rechtschaffen A KA (1968) A manual of Standardized Terminology, Techniques and Scoring System for Sleep Stages of Human Subjects. National Institue of Health Publication Washington, DC: NIH US Goverment Printing Office |
[30] | Jeanneret PR, Webb WB (1963) Strength of grip on arousal from full night's sleep. Percept Mot Skills 17: 759-761. doi: 10.2466/pms.1963.17.3.759 |
[31] | Tassi P, Muzet A (2000) Sleep inertia. Sleep Med Rev 4: 341-353. doi: 10.1053/smrv.2000.0098 |
[32] | Klemm WR (2011) Why does rem sleep occur? A wake-up hypothesis. Front Syst Neurosci 5: 73. |
[33] | Roffwarg HP, Muzio JN, Dement WC (1966) Ontogenetic development of the human sleep-dream cycle. Science 152: 604-619. doi: 10.1126/science.152.3722.604 |
[34] | Endo T, Roth C, Landolt HP, et al. (1998) Selective REM sleep deprivation in humans: effects on sleep and sleep EEG. Am J Physiol 274: R1186-1194. |
[35] | Barone DA, Krieger AC (2014) Muscle Tone Control of REM Sleep. REM Sleep: Characteristics, Disorders, and Physiological Effects / Editor: Chelsea L Saylor |
[36] | Kamphuis J, Lancel M, Koolhaas JM, et al. (2015) Deep sleep after social stress: NREM sleep slow-wave activity is enhanced in both winners and losers of a conflict. Brain Behav Immun 47:149-54. doi: 10.1016/j.bbi.2014.12.022 |
[37] | Benington JH, Heller HC (1995) Restoration of brain energy metabolism as the function of sleep. Prog Neurobiol 45: 347-360. doi: 10.1016/0301-0082(94)00057-O |
[38] | H. Blake RWG (1937) Brain potentials during sleep. Am J Physiol 119 692-703. |
[39] | Friedman L, Bergmann BM, Rechtschaffen A (1979) Effects of sleep deprivation on sleepiness, sleep intensity, and subsequent sleep in the rat. Sleep 1: 369-391. |
[40] | Tobler I, Borbely AA (1986) Sleep EEG in the rat as a function of prior waking. Electroencephalogr Clin Neurophysiol 64: 74-76. doi: 10.1016/0013-4694(86)90044-1 |
[41] | Dijk DJ, Beersma DG, Daan S (1987) EEG power density during nap sleep: reflection of an hourglass measuring the duration of prior wakefulness. J Biol Rhythms 2: 207-219. doi: 10.1177/074873048700200304 |
[42] | Franken P, Tobler I, Borbely AA (1991) Sleep homeostasis in the rat: simulation of the time course of EEG slow-wave activity. Neurosci Lett 130: 141-144. doi: 10.1016/0304-3940(91)90382-4 |
[43] | Lancel M, van Riezen H, Glatt A (1992) The time course of sigma activity and slow-wave activity during NREMS in cortical and thalamic EEG of the cat during baseline and after 12 hours of wakefulness. Brain Res 596: 285-295. doi: 10.1016/0006-8993(92)91559-W |
[44] | Huber R, Deboer T, Tobler I (2000) Effects of sleep deprivation on sleep and sleep EEG in three mouse strains: empirical data and simulations. Brain Res 857: 8-19. doi: 10.1016/S0006-8993(99)02248-9 |
[45] | Sanchez-Vives MV, Mattia M (2014) Slow wave activity as the default mode of the cerebral cortex. Arch Ital Biol 152: 147-155. |
[46] | Meerlo P, Pragt BJ, Daan S (1997) Social stress induces high intensity sleep in rats. Neurosci Lett 225: 41-44. doi: 10.1016/S0304-3940(97)00180-8 |
[47] | Meerlo P, de Bruin EA, Strijkstra AM, et al. (2001) A social conflict increases EEG slow-wave activity during subsequent sleep. Physiol Behav 73: 331-335. doi: 10.1016/S0031-9384(01)00451-6 |
[48] | Berger RJ, Phillips NH (1995) Energy conservation and sleep. Behav Brain Res 69: 65-73. doi: 10.1016/0166-4328(95)00002-B |
[49] | Berger RJ (1984) Slow wave sleep, shallow torpor and hibernation: homologous states of diminished metabolism and body temperature. Biol Psychol 19: 305-326. doi: 10.1016/0301-0511(84)90045-0 |
[50] | Siegel JM (2009) Sleep viewed as a state of adaptive inactivity. Nat Rev Neurosci 10: 747-753. doi: 10.1038/nrn2697 |
[51] | Rechtschaffen A (1998) Current perspectives on the function of sleep. Perspect Biol Med 41: 359-390. doi: 10.1353/pbm.1998.0051 |
[52] | Zepelin H, Rechtschaffen A (1974) Mammalian sleep, longevity, and energy metabolism. Brain Behav Evol 10: 425-470. doi: 10.1159/000124330 |
[53] | Horne J (2002) Why sleep? Biologist (London) 49: 213-216. |
[54] | Schmidt MH (2014) The energy allocation function of sleep: A unifying theory of sleep, torpor, and continuous wakefulness. Neurosci Biobehav Rev 47c: 122-153. |
[55] | Adam K (1980) Sleep as a restorative process and a theory to explain why. Prog Brain Res 53: 289-305. doi: 10.1016/S0079-6123(08)60070-9 |
[56] | Oswald I (1980) Sleep as restorative process: human clues. Prog Brain Res 53: 279-288. doi: 10.1016/S0079-6123(08)60069-2 |
[57] | Landgraf D, Shostak A, Oster H (2012) Clock genes and sleep. Pflugers Arch 463: 3-14. doi: 10.1007/s00424-011-1003-9 |
[58] | Wisor JP (2012) A metabolic-transcriptional network links sleep and cellular energetics in the brain. Pflugers Arch 463: 15-22. doi: 10.1007/s00424-011-1030-6 |
[59] | Cirelli C, Gutierrez CM, Tononi G (2004) Extensive and divergent effects of sleep and wakefulness on brain gene expression. Neuron 41: 35-43. doi: 10.1016/S0896-6273(03)00814-6 |
[60] | Mackiewicz M, Shockley KR, Romer MA, et al. (2007) Macromolecule biosynthesis: a key function of sleep. Physiol Genomics 31: 441-457. doi: 10.1152/physiolgenomics.00275.2006 |
[61] | Cirelli C (2006) Cellular consequences of sleep deprivation in the brain. Sleep Med Rev 10: 307-321. doi: 10.1016/j.smrv.2006.04.001 |
[62] | Clugston GA, Garlick PJ (1982) The response of protein and energy metabolism to food intake in lean and obese man. Hum Nutr Clin Nutr 36c: 57-70. |
[63] | Clugston GA, Garlick PJ (1982) The response of whole-body protein turnover to feeding in obese subjects given a protein-free, low-energy diet for three weeks. Hum Nutr Clin Nutr 36: 391-397. |
[64] | Golden MH, Waterlow JC (1977) Total protein synthesis in elderly people: a comparison of results with [15N]glycine and [14C]leucine. Clin Sci Mol Med 53: 277-288. |
[65] | Horne JA (1980) Sleep and body restitution. Experientia 36: 11-13. doi: 10.1007/BF02003942 |
[66] | Meddis R (1975) On the function of sleep. Anim Behav 23: 676-691. doi: 10.1016/0003-3472(75)90144-X |
[67] | Rial RV, Nicolau MC, Gamundi A, et al. (2007) The trivial function of sleep. Sleep Med Rev 11: 311-325. doi: 10.1016/j.smrv.2007.03.001 |
[68] | Webb WB (1974) Sleep as an adaptive response. Percept Mot Skills 38: 1023-1027. doi: 10.2466/pms.1974.38.3c.1023 |
[69] | Villafuerte G, Miguel-Puga A, Rodriguez EM, et al. (2015) Sleep deprivation and oxidative stress in animal models: a systematic review. Oxid Med Cell Longev 2015: 234952. |
[70] | Komoda Y, Honda K, Inoue S (1990) SPS-B, a physiological sleep regulator, from the brainstems of sleep-deprived rats, identified as oxidized glutathione. Chem Pharm Bull (Tokyo) 38: 2057-2059. doi: 10.1248/cpb.38.2057 |
[71] | Honda K, Komoda Y, Inoue S (1994) Oxidized glutathione regulates physiological sleep in unrestrained rats. Brain Res 636: 253-258. doi: 10.1016/0006-8993(94)91024-3 |
[72] | Kimura M, Kapas L, Krueger JM (1998) Oxidized glutathione promotes sleep in rabbits. Brain Res Bull 45: 545-548. doi: 10.1016/S0361-9230(97)00441-3 |
[73] | Krueger JM, Obal F, Jr., Fang J (1999) Why we sleep: a theoretical view of sleep function. Sleep Med Rev 3: 119-129. doi: 10.1016/S1087-0792(99)90019-9 |
[74] | Basner M, Rao H, Goel N, et al. (2013) Sleep deprivation and neurobehavioral dynamics. Curr Opin Neurobiol 23: 854-863. doi: 10.1016/j.conb.2013.02.008 |
[75] | Hennevin E, Huetz C, Edeline JM (2007) Neural representations during sleep: from sensory processing to memory traces. Neurobiol Learn Mem 87: 416-440. doi: 10.1016/j.nlm.2006.10.006 |
[76] | Tononi G, Cirelli C (2014) Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration. Neuron 81: 12-34. doi: 10.1016/j.neuron.2013.12.025 |
[77] | Xie L, Kang H, Xu Q, et al. (2013) Sleep drives metabolite clearance from the adult brain. Science 342: 373-377. doi: 10.1126/science.1241224 |
[78] | Mendelsohn AR, Larrick JW (2013) Sleep facilitates clearance of metabolites from the brain: glymphatic function in aging and neurodegenerative diseases. Rejuvenation Res 16: 518-523. doi: 10.1089/rej.2013.1530 |
[79] | Spira AP, Gamaldo AA, An Y, et al. (2013) Self-reported sleep and beta-amyloid deposition in community-dwelling older adults. JAMA Neurol 70: 1537-1543. |
[80] | Hahn EA, Wang HX, Andel R, et al. (2014) A change in sleep pattern may predict Alzheimer disease. Am J Geriatr Psychiatry 22: 1262-1271. doi: 10.1016/j.jagp.2013.04.015 |
[81] | Lim AS, Yu L, Kowgier M, et al. (2013) Modification of the relationship of the apolipoprotein E epsilon4 allele to the risk of Alzheimer disease and neurofibrillary tangle density by sleep. JAMA Neurol 70: 1544-1551. doi: 10.1001/jamaneurol.2013.4215 |
[82] | Ambrosini MV, Giuditta A (2001) Learning and sleep: the sequential hypothesis. Sleep Med Rev 5: 477-490. doi: 10.1053/smrv.2001.0180 |
[83] | Ribeiro S, Mello CV, Velho T, et al. (2002) Induction of hippocampal long-term potentiation during waking leads to increased extrahippocampal zif-268 expression during ensuing rapid-eye-movement sleep. J Neurosci 22: 10914-10923. |
[84] | Ribeiro S, Gervasoni D, Soares ES, et al. (2004) Long-lasting novelty-induced neuronal reverberation during slow-wave sleep in multiple forebrain areas. PLoS Biol 2: E24. doi: 10.1371/journal.pbio.0020024 |
[85] | Huber R, Ghilardi MF, Massimini M, et al. (2004) Local sleep and learning. Nature 430: 78-81. doi: 10.1038/nature02663 |
[86] | Walker MP, Stickgold R (2004) Sleep-dependent learning and memory consolidation. Neuron 44: 121-133. doi: 10.1016/j.neuron.2004.08.031 |
[87] | Stickgold R, Walker MP (2005) Memory consolidation and reconsolidation: what is the role of sleep? Trends Neurosci 28: 408-415. doi: 10.1016/j.tins.2005.06.004 |
[88] | Maquet P, Schwartz S, Passingham R, et al. (2003) Sleep-related consolidation of a visuomotor skill: brain mechanisms as assessed by functional magnetic resonance imaging. J Neurosci 23: 1432-1440. |
[89] | Tononi G, Cirelli C (2006) Sleep function and synaptic homeostasis. Sleep Med Rev 10: 49-62. doi: 10.1016/j.smrv.2005.05.002 |
[90] | Kavanau JL (1997) Memory, sleep and the evolution of mechanisms of synaptic efficacy maintenance. Neuroscience 79: 7-44. doi: 10.1016/S0306-4522(96)00610-0 |
[91] | Stickgold R (2006) Neuroscience: a memory boost while you sleep. Nature 444: 559-560. doi: 10.1038/nature05309 |
[92] | Eichenbaum H (2007) To sleep, perchance to integrate. Proc Natl Acad Sci U S A 104: 7317-7318. doi: 10.1073/pnas.0702503104 |
[93] | Fenn KM, Nusbaum HC, Margoliash D (2003) Consolidation during sleep of perceptual learning of spoken language. Nature 425: 614-616. doi: 10.1038/nature01951 |
[94] | Ferrara M, Iaria G, De Gennaro L, et al. (2006) The role of sleep in the consolidation of route learning in humans: a behavioural study. Brain Res Bull 71: 4-9. doi: 10.1016/j.brainresbull.2006.07.015 |
[95] | Peigneux P, Laureys S, Fuchs S, et al. (2004) Are spatial memories strengthened in the human hippocampus during slow wave sleep? Neuron 44: 535-545. doi: 10.1016/j.neuron.2004.10.007 |
[96] | Gottselig JM, Hofer-Tinguely G, Borbely AA, et al. (2004) Sleep and rest facilitate auditory learning. Neuroscience 127: 557-561. doi: 10.1016/j.neuroscience.2004.05.053 |
[97] | Peters KR, Smith V, Smith CT (2007) Changes in sleep architecture following motor learning depend on initial skill level. J Cogn Neurosci 19: 817-829. doi: 10.1162/jocn.2007.19.5.817 |
[98] | Ellenbogen JM, Payne JD, Stickgold R (2006) The role of sleep in declarative memory consolidation: passive, permissive, active or none? Curr Opin Neurobiol 16: 716-722. doi: 10.1016/j.conb.2006.10.006 |
[99] | Ellenbogen JM, Hulbert JC, Stickgold R, et al. (2006) Interfering with theories of sleep and memory: sleep, declarative memory, and associative interference. Curr Biol 16: 1290-1294. doi: 10.1016/j.cub.2006.05.024 |
[100] | Roth TC, 2nd, Rattenborg NC, Pravosudov VV (2010) The ecological relevance of sleep: the trade-off between sleep, memory and energy conservation. Philos Trans R Soc Lond B Biol Sci 365: 945-959. doi: 10.1098/rstb.2009.0209 |
[101] | Fogel SMS, C. T. (2006) Declarative learningdependent changes in theta power during REM sleep. Sleep: A375-A375. |
[102] | Born J, Rasch B, Gais S (2006) Sleep to remember. Neuroscientist 12: 410-424. doi: 10.1177/1073858406292647 |
[103] | Wyatt RJ, Fram DH, Kupfer DJ, et al. (1971) Total prolonged drug-induced REM sleep suppression in anxious-depressed patients. Arch Gen Psychiatry 24: 145-155. doi: 10.1001/archpsyc.1971.01750080049007 |
[104] | Siegel JM (2001) The REM sleep-memory consolidation hypothesis. Science 294: 1058-1063. doi: 10.1126/science.1063049 |
[105] | Rasch B, Pommer J, Diekelmann S, et al. (2009) Pharmacological REM sleep suppression paradoxically improves rather than impairs skill memory. Nat Neurosci 12: 396-397. doi: 10.1038/nn.2206 |
[106] | Irwin MR (2015) Why sleep is important for health: a psychoneuroimmunology perspective. Annu Rev Psychol 66: 143-172. doi: 10.1146/annurev-psych-010213-115205 |
[107] | Baglioni C, Battagliese G, Feige B, et al. (2011) Insomnia as a predictor of depression: a meta-analytic evaluation of longitudinal epidemiological studies. J Affect Disord 135: 10-19. doi: 10.1016/j.jad.2011.01.011 |
[108] | Dryman A, Eaton WW (1991) Affective symptoms associated with the onset of major depression in the community: findings from the US National Institute of Mental Health Epidemiologic Catchment Area Program. Acta Psychiatr Scand 84: 1-5. doi: 10.1111/j.1600-0447.1991.tb01410.x |
[109] | Lee E, Cho HJ, Olmstead R, et al. (2013) Persistent sleep disturbance: a risk factor for recurrent depression in community-dwelling older adults. Sleep 36: 1685-1691. |
[110] | Cho HJ, Lavretsky H, Olmstead R, et al. (2008) Sleep disturbance and depression recurrence in community-dwelling older adults: a prospective study. Am J Psychiatry 165: 1543-1550. doi: 10.1176/appi.ajp.2008.07121882 |
[111] | Jaussent I, Bouyer J, Ancelin ML, et al. (2011) Insomnia and daytime sleepiness are risk factors for depressive symptoms in the elderly. Sleep 34: 1103-1110. |
[112] | Manber R, Edinger JD, Gress JL, et al. (2008) Cognitive behavioral therapy for insomnia enhances depression outcome in patients with comorbid major depressive disorder and insomnia. Sleep 31: 489-495. |
[113] | Giedke H, Schwarzler F (2002) Therapeutic use of sleep deprivation in depression. Sleep Med Rev 6: 361-377. doi: 10.1016/S1087-0792(02)90235-2 |
[114] | Grozinger M, Kogel P, Roschke J (2002) Effects of REM sleep awakenings and related wakening paradigms on the ultradian sleep cycle and the symptoms in depression. J Psychiatr Res 36: 299-308. doi: 10.1016/S0022-3956(02)00022-5 |
[115] | Killgore WD, Kamimori GH, Balkin TJ (2011) Caffeine protects against increased risk-taking propensity during severe sleep deprivation. J Sleep Res 20: 395-403. doi: 10.1111/j.1365-2869.2010.00893.x |
[116] | McKenna BS, Dickinson DL, Orff HJ, et al. (2007) The effects of one night of sleep deprivation on known-risk and ambiguous-risk decisions. J Sleep Res 16: 245-252. doi: 10.1111/j.1365-2869.2007.00591.x |
[117] | Venkatraman V, Chuah YM, Huettel SA, et al. (2007) Sleep deprivation elevates expectation of gains and attenuates response to losses following risky decisions. Sleep 30: 603-609. |
[118] | Killgore WD, Killgore DB, Day LM, et al. (2007) The effects of 53 hours of sleep deprivation on moral judgment. Sleep 30: 345-352. |
[119] | Trinder J, Waloszek J, Woods MJ, et al. (2012) Sleep and cardiovascular regulation. Pflugers Arch 463: 161-168. doi: 10.1007/s00424-011-1041-3 |
[120] | Barone DA, Krieger AC (2013) Stroke and obstructive sleep apnea: a review. Curr Atheroscler Rep 15: 334. doi: 10.1007/s11883-013-0334-8 |
[121] | Mullington JM, Haack M, Toth M, et al. (2009) Cardiovascular, inflammatory, and metabolic consequences of sleep deprivation. Prog Cardiovasc Dis 51: 294-302. doi: 10.1016/j.pcad.2008.10.003 |
[122] | Vgontzas AN, Fernandez-Mendoza J, Liao D, et al. (2013) Insomnia with objective short sleep duration: the most biologically severe phenotype of the disorder. Sleep Med Rev 17: 241-254. doi: 10.1016/j.smrv.2012.09.005 |
[123] | Meng L, Zheng Y, Hui R (2013) The relationship of sleep duration and insomnia to risk of hypertension incidence: a meta-analysis of prospective cohort studies. Hypertens Res 36: 985-995. doi: 10.1038/hr.2013.70 |
[124] | Palagini L, Bruno RM, Gemignani A, et al. (2013) Sleep loss and hypertension: a systematic review. Curr Pharm Des 19: 2409-2419. doi: 10.2174/1381612811319130009 |
[125] | Suka M, Yoshida K, Sugimori H (2003) Persistent insomnia is a predictor of hypertension in Japanese male workers. J Occup Health 45: 344-350. doi: 10.1539/joh.45.344 |
[126] | Vgontzas AN, Liao D, Bixler EO, et al. (2009) Insomnia with objective short sleep duration is associated with a high risk for hypertension. Sleep 32: 491-497. |
[127] | Fernandez-Mendoza J, Vgontzas AN, Liao D, et al. (2012) Insomnia with objective short sleep duration and incident hypertension: the Penn State Cohort. Hypertension 60: 929-935. doi: 10.1161/HYPERTENSIONAHA.112.193268 |
[128] | Chung WS, Lin CL, Chen YF, et al. (2013) Sleep disorders and increased risk of subsequent acute coronary syndrome in individuals without sleep apnea: a nationwide population-based cohort study. Sleep 36: 1963-1968. |
[129] | Vozoris NT (2013) The relationship between insomnia symptoms and hypertension using United States population-level data. J Hypertens 31: 663-671. doi: 10.1097/HJH.0b013e32835ed5d0 |
[130] | Phillips B, Buzkova P, Enright P (2009) Insomnia did not predict incident hypertension in older adults in the cardiovascular health study. Sleep 32: 65-72. |
[131] | Phillips B, Mannino DM (2007) Do insomnia complaints cause hypertension or cardiovascular disease? J Clin Sleep Med 3: 489-494. |
[132] | Ayas NT, White DP, Manson JE, et al. (2003) A prospective study of sleep duration and coronary heart disease in women. Arch Intern Med 163: 205-209. doi: 10.1001/archinte.163.2.205 |
[133] | Hoevenaar-Blom MP, Spijkerman AM, Kromhout D, et al. (2011) Sleep duration and sleep quality in relation to 12-year cardiovascular disease incidence: the MORGEN study. Sleep 34: 1487-1492. |
[134] | Mallon L, Broman JE, Hetta J (2002) Sleep complaints predict coronary artery disease mortality in males: a 12-year follow-up study of a middle-aged Swedish population. J Intern Med 251: 207-216. doi: 10.1046/j.1365-2796.2002.00941.x |
[135] | Wang Q, Xi B, Liu M, et al. (2012) Short sleep duration is associated with hypertension risk among adults: a systematic review and meta-analysis. Hypertens Res 35: 1012-1018. doi: 10.1038/hr.2012.91 |
[136] | Cappuccio FP, Cooper D, D'Elia L, et al. (2011) Sleep duration predicts cardiovascular outcomes: a systematic review and meta-analysis of prospective studies. Eur Heart J 32: 1484-1492. doi: 10.1093/eurheartj/ehr007 |
[137] | Sabanayagam C, Shankar A, Buchwald D, et al. (2011) Insomnia symptoms and cardiovascular disease among older American Indians: the Native Elder Care Study. J Environ Public Health 2011: 964617. |
[138] | Heslop P, Smith GD, Metcalfe C, et al. (2002) Sleep duration and mortality: The effect of short or long sleep duration on cardiovascular and all-cause mortality in working men and women. Sleep Med 3: 305-314. doi: 10.1016/S1389-9457(02)00016-3 |
[139] | Kronholm E, Laatikainen T, Peltonen M, et al. (2011) Self-reported sleep duration, all-cause mortality, cardiovascular mortality and morbidity in Finland. Sleep Med 12: 215-221. doi: 10.1016/j.sleep.2010.07.021 |
[140] | Ikehara S, Iso H, Date C, et al. (2009) Association of sleep duration with mortality from cardiovascular disease and other causes for Japanese men and women: the JACC study. Sleep 32: 295-301. |
[141] | Suzuki E, Yorifuji T, Ueshima K, et al. (2009) Sleep duration, sleep quality and cardiovascular disease mortality among the elderly: a population-based cohort study. Prev Med 49: 135-141. doi: 10.1016/j.ypmed.2009.06.016 |
[142] | Dew MA, Hoch CC, Buysse DJ, et al. (2003) Healthy older adults' sleep predicts all-cause mortality at 4 to 19 years of follow-up. Psychosom Med 65: 63-73. doi: 10.1097/01.PSY.0000039756.23250.7C |
[143] | Kripke DF, Garfinkel L, Wingard DL, et al. (2002) Mortality associated with sleep duration and insomnia. Arch Gen Psychiatry 59: 131-136. doi: 10.1001/archpsyc.59.2.131 |
[144] | LeBlanc M, Merette C, Savard J, et al. (2009) Incidence and risk factors of insomnia in a population-based sample. Sleep 32: 1027-1037. |
[145] | Morin CM, LeBlanc M, Daley M, et al. (2006) Epidemiology of insomnia: prevalence, self-help treatments, consultations, and determinants of help-seeking behaviors. Sleep Med 7: 123-130. doi: 10.1016/j.sleep.2005.08.008 |
[146] | Ohayon M (1996) Epidemiological study on insomnia in the general population. Sleep 19: S7-15. |
[147] | Ohayon MM (2002) Epidemiology of insomnia: what we know and what we still need to learn. Sleep Med Rev 6: 97-111. doi: 10.1053/smrv.2002.0186 |
[148] | Buysse DJ (2014) Sleep health: can we define it? Does it matter? Sleep 37: 9-17. |
[149] | Besedovsky L, Lange T, Born J (2012) Sleep and immune function. Pflugers Arch 463: 121-137. doi: 10.1007/s00424-011-1044-0 |
[150] | Redwine L, Hauger RL, Gillin JC, et al. (2000) Effects of sleep and sleep deprivation on interleukin-6, growth hormone, cortisol, and melatonin levels in humans. J Clin Endocrinol Metab 85: 3597-3603. |
[151] | Meier-Ewert HK, Ridker PM, Rifai N, et al. (2004) Effect of sleep loss on C-reactive protein, an inflammatory marker of cardiovascular risk. J Am Coll Cardiol 43: 678-683. doi: 10.1016/j.jacc.2003.07.050 |
[152] | Haack M, Sanchez E, Mullington JM (2007) Elevated inflammatory markers in response to prolonged sleep restriction are associated with increased pain experience in healthy volunteers. Sleep 30: 1145-1152. |
[153] | Vgontzas AN, Zoumakis E, Bixler EO, et al. (2004) Adverse effects of modest sleep restriction on sleepiness, performance, and inflammatory cytokines. J Clin Endocrinol Metab 89: 2119-2126. doi: 10.1210/jc.2003-031562 |
[154] | van Leeuwen WM, Lehto M, Karisola P, et al. (2009) Sleep restriction increases the risk of developing cardiovascular diseases by augmenting proinflammatory responses through IL-17 and CRP. PLoS One 4: e4589. doi: 10.1371/journal.pone.0004589 |
[155] | Abedelmalek S, Chtourou H, Aloui A, et al. (2013) Effect of time of day and partial sleep deprivation on plasma concentrations of IL-6 during a short-term maximal performance. Eur J Appl Physiol 113: 241-248. doi: 10.1007/s00421-012-2432-7 |
[156] | Schmid SM, Hallschmid M, Jauch-Chara K, et al. (2011) Disturbed glucoregulatory response to food intake after moderate sleep restriction. Sleep 34: 371-377. |
[157] | Stamatakis KA, Punjabi NM (2010) Effects of sleep fragmentation on glucose metabolism in normal subjects. Chest 137: 95-101. doi: 10.1378/chest.09-0791 |
[158] | Faraut B, Boudjeltia KZ, Dyzma M, et al. (2011) Benefits of napping and an extended duration of recovery sleep on alertness and immune cells after acute sleep restriction. Brain Behav Immun 25: 16-24. doi: 10.1016/j.bbi.2010.08.001 |
[159] | Shearer WT, Reuben JM, Mullington JM, et al. (2001) Soluble TNF-alpha receptor 1 and IL-6 plasma levels in humans subjected to the sleep deprivation model of spaceflight. J Allergy Clin Immunol 107: 165-170. doi: 10.1067/mai.2001.112270 |
[160] | Irwin M, Rinetti G, Redwine L, et al. (2004) Nocturnal proinflammatory cytokine-associated sleep disturbances in abstinent African American alcoholics. Brain Behav Immun 18: 349-360. doi: 10.1016/j.bbi.2004.02.001 |
[161] | Irwin M, Mascovich A, Gillin JC, et al. (1994) Partial sleep deprivation reduces natural killer cell activity in humans. Psychosom Med 56: 493-498. doi: 10.1097/00006842-199411000-00004 |
[162] | Irwin M, McClintick J, Costlow C, et al. (1996) Partial night sleep deprivation reduces natural killer and cellular immune responses in humans. Faseb j 10: 643-653. |
[163] | Vgontzas AN, Pejovic S, Zoumakis E, et al. (2007) Daytime napping after a night of sleep loss decreases sleepiness, improves performance, and causes beneficial changes in cortisol and interleukin-6 secretion. Am J Physiol Endocrinol Metab 292: E253-261. |
[164] | Faraut B, Nakib S, Drogou C, et al. (2015) Napping reverses the salivary interleukin-6 and urinary norepinephrine changes induced by sleep restriction. J Clin Endocrinol Metab 100: E416-426. doi: 10.1210/jc.2014-2566 |
[165] | Chaput JP, Despres JP, Bouchard C, et al. (2008) The association between sleep duration and weight gain in adults: a 6-year prospective study from the Quebec Family Study. Sleep 31: 517-523. |
[166] | Patel SR, Malhotra A, White DP, et al. (2006) Association between reduced sleep and weight gain in women. Am J Epidemiol 164: 947-954. doi: 10.1093/aje/kwj280 |
[167] | Cappuccio FP, D'Elia L, Strazzullo P, et al. (2010) Quantity and quality of sleep and incidence of type 2 diabetes: a systematic review and meta-analysis. Diabetes Care 33: 414-420. doi: 10.2337/dc09-1124 |
[168] | Cooper AJ, Westgate K, Brage S, et al. (2015) Sleep duration and cardiometabolic risk factors among individuals with type 2 diabetes. Sleep Med 16: 119-125. doi: 10.1016/j.sleep.2014.10.006 |
[169] | Lou P, Qin Y, Zhang P, et al. (2015) Association of sleep quality and quality of life in type 2 diabetes mellitus: A cross-sectional study in China. Diabetes Res Clin Pract 107: 69-76. doi: 10.1016/j.diabres.2014.09.060 |
[170] | Spiegel K, Tasali E, Penev P, et al. (2004) Brief communication: Sleep curtailment in healthy young men is associated with decreased leptin levels, elevated ghrelin levels, and increased hunger and appetite. Ann Intern Med 141: 846-850. doi: 10.7326/0003-4819-141-11-200412070-00008 |
[171] | Spiegel K, Leproult R, Van Cauter E (1999) Impact of sleep debt on metabolic and endocrine function. Lancet 354: 1435-1439. doi: 10.1016/S0140-6736(99)01376-8 |
[172] | Conlon M, Lightfoot N, Kreiger N (2007) Rotating shift work and risk of prostate cancer. Epidemiology 18: 182-183. doi: 10.1097/01.ede.0000249519.33978.31 |
[173] | Kubo T, Ozasa K, Mikami K, et al. (2006) Prospective cohort study of the risk of prostate cancer among rotating-shift workers: findings from the Japan collaborative cohort study. Am J Epidemiol 164: 549-555. doi: 10.1093/aje/kwj232 |
[174] | Kubo T, Oyama I, Nakamura T, et al. (2011) Retrospective cohort study of the risk of obesity among shift workers: findings from the Industry-based Shift Workers' Health study, Japan. Occup Environ Med 68: 327-331. doi: 10.1136/oem.2009.054445 |
[175] | Parent ME, El-Zein M, Rousseau MC, et al. (2012) Night work and the risk of cancer among men. Am J Epidemiol 176: 751-759. doi: 10.1093/aje/kws318 |
[176] | Schwartzbaum J, Ahlbom A, Feychting M (2007) Cohort study of cancer risk among male and female shift workers. Scand J Work Environ Health 33: 336-343. doi: 10.5271/sjweh.1150 |
[177] | Haus EL, Smolensky MH (2013) Shift work and cancer risk: potential mechanistic roles of circadian disruption, light at night, and sleep deprivation. Sleep Med Rev 17: 273-284. doi: 10.1016/j.smrv.2012.08.003 |
[178] | von Ruesten A, Weikert C, Fietze I, et al. (2012) Association of sleep duration with chronic diseases in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam study. PLoS One 7: e30972. doi: 10.1371/journal.pone.0030972 |
[179] | Jiao L, Duan Z, Sangi-Haghpeykar H, et al. (2013) Sleep duration and incidence of colorectal cancer in postmenopausal women. Br J Cancer 108: 213-221. doi: 10.1038/bjc.2012.561 |
[180] | Zhang X, Giovannucci EL, Wu K, et al. (2013) Associations of self-reported sleep duration and snoring with colorectal cancer risk in men and women. Sleep 36: 681-688. |
[181] | Bishop D (2008) An applied research model for the sport sciences. Sports Med 38: 253-263. doi: 10.2165/00007256-200838030-00005 |
[182] | Drust B, Waterhouse J, Atkinson G, et al. (2005) Circadian rhythms in sports performance--an update. Chronobiol Int 22: 21-44. doi: 10.1081/CBI-200041039 |
[183] | Fullagar HH, Skorski S, Duffield R, et al. (2015) Sleep and Athletic Performance: The Effects of Sleep Loss on Exercise Performance, and Physiological and Cognitive Responses to Exercise. Sports Med 45(2):161-86. |
[184] | Hausswirth C, Louis J, Aubry A, et al. (2014) Evidence of disturbed sleep and increased illness in overreached endurance athletes. Med Sci Sports Exerc 46: 1036-1045. doi: 10.1249/MSS.0000000000000177 |
[185] | Gleeson M (2007) Immune function in sport and exercise. J Appl Physiol (1985) 103: 693-699. doi: 10.1152/japplphysiol.00008.2007 |
[186] | Samuels C (2008) Sleep, recovery, and performance: the new frontier in high-performance athletics. Neurol Clin 26: 169-180; ix-x. doi: 10.1016/j.ncl.2007.11.012 |
[187] | Durmer JS, Dinges DF (2005) Neurocognitive consequences of sleep deprivation. Semin Neurol 25: 117-129. doi: 10.1055/s-2005-867080 |
[188] | Venter RE (2014) Perceptions of team athletes on the importance of recovery modalities. Eur J Sport Sci 14 Suppl 1: S69-76. |
[189] | Erlacher D, Ehrlenspiel F, Adegbesan OA, et al. (2011) Sleep habits in German athletes before important competitions or games. J Sports Sci 29: 859-866. doi: 10.1080/02640414.2011.565782 |
[190] | Juliff LE, Halson SL, Peiffer JJ (2015) Understanding sleep disturbance in athletes prior to important competitions. J Sci Med Sport 18: 13-18. doi: 10.1016/j.jsams.2014.02.007 |
[191] | Hanton S, Fletcher D, Coughlan G (2005) Stress in elite sport performers: a comparative study of competitive and organizational stressors. J Sports Sci 23: 1129-1141. doi: 10.1080/02640410500131480 |
[192] | Chen JC, Brunner RL, Ren H, et al. (2008) Sleep duration and risk of ischemic stroke in postmenopausal women. Stroke 39: 3185-3192. doi: 10.1161/STROKEAHA.108.521773 |
[193] | Chien KL, Chen PC, Hsu HC, et al. (2010) Habitual sleep duration and insomnia and the risk of cardiovascular events and all-cause death: report from a community-based cohort. Sleep 33: 177-184. |
[194] | Gangwisch JE, Malaspina D, Boden-Albala B, et al. (2005) Inadequate sleep as a risk factor for obesity: analyses of the NHANES I. Sleep 28: 1289-1296. |
[195] | Cappuccio FP, D'Elia L, Strazzullo P, et al. (2010) Sleep duration and all-cause mortality: a systematic review and meta-analysis of prospective studies. Sleep 33: 585-592. |
[196] | Machado RM, Koike MK (2014) Circadian rhythm, sleep pattern, and metabolic consequences: an overview on cardiovascular risk factors. Horm Mol Biol Clin Investig 18: 47-52. |
[197] | Petrov ME, Lichstein KL (2015) Differences in sleep between black and white adults: an update and future directions. Sleep Med Jan 23, in press. |