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Abstract: We introduce a wild multiplicative bootstrap for M and GMM estimators in nonlinear
models when autocorrelation structures of moment functions are unknown. The implementation of the
bootstrap algorithm does not require any parametric assumptions on the data generating process. After
proving its validity, we also investigate the accuracy of our procedure through Monte Carlo simulations.
The wild bootstrap algorithm always outperforms inference based on standard first-order asymptotic
theory. Moreover, in most cases the accuracy of our procedure is also better and more stable than that
of block bootstrap methods. Finally, we apply the wild bootstrap approach to study the forecast ability
of variance risk premia to predict future stock returns. We consider US equity from 1990 to 2010.
For the period under investigation, our procedure provides significance in favor of predictability. By
contrast, the block bootstrap implies ambiguous conclusions that heavily depend on the selection of
the block size.
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1. Introduction

Extremum estimators, such as M and generalized method of moments (GMM) estimators, have
attained widespread applicability in various statistics and econometrics problems; see, e.g., Huber
(1964) and Hansen (1982). The GMM provides a powerful tool for introducing statistical inference in
several economic and financial models that are specified by some moment conditions; see, e.g., Hall
(2005) for a review of the GMM. Unfortunately, recent research indicates that there are considerable
issues with M and GMM estimators, in particular in their finite sample performance. More precisely,
the asymptotic theory may provide very poor approximations of the sampling distribution of M and
GMM estimators and related test statistics; see, e.g., the special issue of the Journal of Business and
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Economic Statistics (Volume 14 (3), 1996).
To overcome this problem, a common approach consists of applying bootstrap methods. In time

series settings, in the absence of parametric assumptions on the data generating process, the standard
approach to bootstrapping is the block bootstrap; see, e.g., Hall (1985), Carlstein (1986), and Künsch
(1989). Under strong regularity conditions on the data generating process and the general estimating
functions, the block bootstrap may provide asymptotic refinements relative to standard first-order
asymptotic theory; see, e.g., Hall and Horowitz (1996), Götze and Künsch (1996), Lahiri (1996),
Andrews (2002), and Inoue and Shintani (2006). However, the magnitude of these improvements is
not as large as that of the iid bootstrap or the parametric bootstrap. A main issue is that the
independence of the blocks does not correctly mimic the structure of the true data generating process.
Moreover, from a practical point of view, to ensure accurate approximations, the definition of the
block bootstrap also requires an appropriate selection of the block size. The bootstrap literature
proposes several ways of selecting this tuning parameter; see, e.g., Hall et al. (1995). Unfortunately,
many of these approaches rely on asymptotic arguments, and the practical implementation in finite
samples remains unclear.

In this paper, we introduce a wild multiplicative bootstrap for time series settings with unknown
structures of the autocorrelation function that does not require the selection of block sizes, but
depends on a different lag truncation tuning parameter. Unlike conventional bootstrap procedures
proposed in the literature, in our algorithm we do not construct random samples by resampling from
the observations. Rather, we propose to perturbate the general estimating functions using correlated
innovations. More precisely, to generate the covariance matrix of these innovations, we apply the
same kernel function principle adopted for the computation of the heteroskedasticity and
autocorrelation consistent (HAC) covariance matrix in the efficient GMM estimation criterion; see,
e.g., Newey and West (1987) and Andrews (1991) for seminal works on HAC estimation, and Müller
(2014) and Lazarus et al. (2018) for more recent studies on heteroskedasticity and autocorrelation
robust (HAR) inference. By introducing this time series dependence, our approach is able to properly
capture the autocorrelation of the true moments. Similar multiplicative bootstrap procedures have also
been proposed in Minnier et al. (2011), Kline and Santos (2012), and Chernozhukov et al. (2014) in
iid settings. Furthermore, dependent wild bootstrap methods for time series are also developed in
Politis and Romano (1992), Shao (2010), Zhu and Li (2015) and Bücher and Kojadinovic (2016),
among others. In contrast to these studies, instead of generating new random bootstrap observations
by introducing correlated error terms, our bootstrap algorithm fixes the original observations and
perturbates the (nonlinear) general estimating functions of M and GMM estimators.

In the Monte Carlo analysis, our bootstrap method always outperforms inference based on
standard first-order asymptotic theory. Furthermore, the accuracy of our procedure is in general
superior to that of block bootstrap methods, and less sensitive to the selection of tuning parameters.
Finally, we also consider a real data application. Using the wild multiplicative bootstrap and the block
bootstrap, we study the ability of variance risk premia to predict future returns. We consider US
equity data from 1990 to 2010 from Shiller (2000) and Bollerslev et al. (2009). For the period under
investigation, the wild multiplicative bootstrap provides significance in favor of predictability. By
contrast, the block bootstrap implies ambiguous conclusions that heavily depend on the selection of
the block size. The reason for these divergent conclusions could be related to the lack of robustness of
the block bootstrap in the presence of anomalous observations; see, e.g., Singh (1998),
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Salibian-Barrera and Zamar (2002) and Camponovo et al. (2012, 2015) for more details on the
robustness properties of resampling methods. Indeed, the period under investigation is characterized
by several unusual observations, linked to the recent credit crisis, that may easily corrupt inference
based on block bootstrap procedures.

The rest of the paper is organized as follows. In Section 2, we introduce M and GMM estimators.
In Section 3, we present the wild bootstrap algorithm and prove its validity. In Section 4, we study the
accuracy of our approach and block bootstrap procedures through Monte Carlo simulations. In Section
5, we consider the real data application. Finally, Section 6 concludes. A proof and assumptions related
to the main theorem about the bootstrap validity discussed in Section 3 are presented in the Appendix.

2. Extremum estimators

In this section, we introduce M and GMM estimators. As noted in Andrews (2002), M estimators
can be written as GMM estimators. However, because of the different identification conditions, we
prefer to introduce these classes of estimators separately; see, e.g., Andrews (2002).

2.1. M estimators

Let (X1, . . . , Xn) be a sample from a process X = {Xt, t ∈ Z} defined on the probability space
(Ω,F , P), where Xt ∈ R

dx . Furthermore, let θ ∈ Θ ⊂ Rdθ be an unknown parameter. We consider M
estimators θ̂n of θ defined as

θ̂n = arg min
θ∈Θ⊂Rdθ

1
n

n∑
t=1

ρ(Xt, θ), (1)

where ρ : Rdx × Rdθ → R is a known smooth function. Examples of M estimators include maximum
likelihood, quasi-maximum likelihood, and least squares estimators, among others; see, e.g., Andrews
(2002).

Let θ0 denote the true value of the unknown parameter θ. Then, under some regularity conditions,
√

n(θ̂n − θ0) converges weakly to a normally distributed random vector with mean 0 and covariance
matrix V0 = D−1

0 Ω0D−1
0 , where D0 = limn→∞ E

[
1
n

∑n
t=1

∂2

∂θ∂θ′
ρ(Xt, θ0)

]
, and

Ω0 = limn→∞ E
[

1
n

∑n
i=1

∑n
j=1

∂
∂θ
ρ(Xi, θ0) ∂

∂θ
ρ(X j, θ0)′

]
. Therefore, the normal distribution provides valid

approximations of the sampling distribution of
√

n(θ̂n − θ0). Unfortunately, the asymptotic distribution
may work poorly in finite samples. To overcome this problem, in Section 3 we analyze bootstrap
approximations.

2.2. GMM estimators

For simplicity, we adopt the same notation introduced in the previous section. Let (X1, . . . , Xn) be
a sample from a process X = {Xt, t ∈ Z} defined on the probability space (Ω,F , P), where Xt ∈ R

dx .
Consider the moment condition E[g(Xt, θ0)] = 0, where g(·, ·) is an Rdg-valued function with dg ≥ dθ,
and θ0 denotes the true value of the unknown parameter θ ∈ Θ ⊂ Rdθ . We focus on GMM estimators θ̂n

of θ0 defined as

θ̂n = arg min
θ∈Θ⊂Rdθ

1
n

n∑
t=1

g(Xt, θ)

′Wn

1
n

n∑
t=1

g(Xt, θ)

 , (2)
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where Wn is a positive-definite symmetric matrix. Examples of matrix Wn also include the efficient
weighting matrix Wn =

(
Ωn(θ̄n)

)−1
, where θ̄n is a preliminary estimator of θ0,

Ωn(θ) =

n−1∑
i=−(n−1)

k(i/h)Γi(θ), (3)

Γi(θ) =
1
n

n−i∑
t=1

g(Xt, θ)g(Xt+i, θ)′, (4)

k(·) is a kernel function, and h is the lag truncation.
Suppose that Wn converges in probability to a non-random positive-definite symmetric matrix W0.

Then, under some further regularity conditions, the GMM statistic
√

n(θ̂n − θ0) converges weakly to a
normally distributed random vector with mean 0 and covariance matrix
V0 = (D′0W0D0)−1D′0W0Ω0W0D0(D′0W0D0)−1, where D0 = limn→∞ E

[
1
n

∑n
t=1

∂
∂θ

g(Xt, θ0)
]
, and

Ω0 = limn→∞ E
[

1
n

∑n
i=1

∑n
j=1 g(Xi, θ0)g(X j, θ0)′

]
. Therefore, in this case as well the normal distribution

provides valid approximations of the sampling distribution of
√

n(θ̂n − θ0). Alternatively, in the next
section we analyze bootstrap approximations.

3. Bootstrap approximations

In Section 3.1, we briefly present the block bootstrap approach, while in Section 3.2 we introduce
our wild multiplicative bootstrap procedure.

3.1. Block bootstrap

Since in our setting we do not have parametric information on the data generating process, the
standard approach to bootstrapping is the block bootstrap; see, e.g., Carlstein (1986). More precisely,
given the observation sample (X1, . . . , Xn), consider the non-overlapping blocks (Xim+1, . . . , X(i+1)m),
i = 0, . . . , n/m − 1, of size m, where for simplicity we assume n/m = b ∈ N. The non-overlapping
block bootstrap constructs random samples (X?

1 , . . . , X
?
n ) by selecting b non-overlapping blocks with

replacement. Let θ̂?n be the bootstrap M or GMM estimator solution of (1) or (2), respectively, based
on the bootstrap sample (X?

1 , . . . , X
?
n ). Then, the non-overlapping block bootstrap approximates the

sampling distribution of
√

n(θ̂n − θ0) with the conditional distribution of
√

n(θ̂?n − θ̂n) given the
observations (X1, . . . , Xn); see also Künsch (1989) for the definition of block bootstrap
approximations based on overlapping blocks.

Under strong regularity conditions on the data generating process and on the general estimating
functions, the block bootstrap may provide asymptotic refinements relative to standard first-order
asymptotic theory; see, e.g., Inoue and Shintani (2006). However, to ensure accurate approximations
of the sampling distribution of

√
n(θ̂n − θ0), the definition of the block bootstrap also requires an

appropriate selection of the block size. The bootstrap literature proposes several ways of selecting m;
see, e.g., Hall et al. (1995). Unfortunately, many of these approaches rely on asymptotic arguments,
and the practical implementation in finite samples remains unclear. In the next section, we introduce a
wild multiplicative bootstrap approach that does not require the selection of block sizes.
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3.2. Wild multiplicative bootstrap

First, we introduce the wild multiplicative bootstrap algorithm. In a second step, we clarify the key
rationale of our approach. Finally, we prove the validity of the wild bootstrap approximation.

Algorithm 1. Wild Multiplicative Bootstrap.

(i) Compute either the M or the GMM estimators θ̂n defined in (1) and (2), respectively.
(ii) Generate a random sample (e1, . . . , en) of positive correlated observations with following

properties E[et|(X1, . . . , Xn)] = 1 and Cov(et, et+i|(X1, . . . , Xn)) = k(i/h), where k(·) is an
appropriate kernel function, and h is the lag truncation parameter. For t = 1, . . . , n, let

ρ∗(Xt, θ) = ρ(Xt, θ)et (5)

g∗(Xt, θ) =

g(Xt, θ) −
1
n

n∑
i=1

g(Xi, θ̂n)

 et. (6)

(iii) Compute either the wild multiplicative bootstrap M or GMM estimators θ̂∗n defined as,
respectively,

θ̂∗n = arg min
θ∈Θ⊂Rdθ

1
n

n∑
t=1

ρ∗(Xt, θ), (7)

θ̂∗n = arg min
θ∈Θ⊂Rdθ

1
n

n∑
t=1

g∗(Xt, θ)

′Wn

1
n

n∑
t=1

g∗(Xt, θ)

 . (8)

(iv) Repeat steps (ii)-(iii) B times, where B is a large number. The empirical distribution of
√

n(θ̂∗n−θ̂n)
approximates the sampling distribution of

√
n(θ̂n − θ0).

Unlike conventional bootstrap procedures proposed in the literature, in our approach we do not
construct random samples by resampling from the observations. Rather, in step (ii) of Algorithm 1,
we perturbate the general estimating functions using correlated innovations. By introducing this time
series dependence, our bootstrap method is able to properly capture the autocorrelation of the true
moments. In equation (8), we compute the wild multiplicative bootstrap GMM estimator. To this end,
as in Hall and Horowitz (1996) and Andrews (2002), we recenter the bootstrap moment by subtracting
off 1

n

∑n
i=1 g(Xi, θ̂n). The recentering ensures that the bootstrap moment E∗[1

n

∑n
t=1 g∗(Xt, θ)] = 0, when

θ = θ̂n. In the next theorem, we prove the validity of our bootstrap algorithm.

Theorem 3.1. Let Assumptions 6.1-6.3 in the Appendix hold. Then,

(i) For M estimators, the conditional law of
√

n(θ̂∗n − θ̂n) converges weakly to a normal distribution
with mean 0 and covariance matrix V0 = D−1

0 Ω0D−1
0 , as n→ ∞.

(ii) For GMM estimators, the conditional law of
√

n(θ̂∗n−θ̂n) converges weakly to a normal distribution
with mean 0 and covariance matrix V0 = (D′0W0D0)−1D′0W0Ω0W0D0(D′0W0D0)−1, as n→ ∞.

Theorem 3.1 shows that both for M and GMM estimators, the wild multiplicative bootstrap
algorithm provides a valid method for approximating the sampling distribution of

√
n(θ̂n − θ0).
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Remark 1. To verify the validity of the wild bootstrap approximation, in the proof of Theorem 3.1 first
we show that

√
n(θ̂∗n − θ̂n) minimizes a particular random process. Then, we compute the limit of this

random process. To this end, we consider the conditional probability given the sample (X1, . . . , Xn),
and compute the limit by successively conditioning on a sequence of samples, as n→ ∞. Suppose that
1
n

∑n
t=1 g(Xt, θ̂n) = 0. Then, note that

Var

 1
√

n

n∑
t=1

g∗(Xt, θ̂n)
∣∣∣∣∣(X1, . . . , Xn)

 =

n−1∑
i=−(n−1)

k(i/h)Γi(θ̂n) (9)

where Γi(θ) = 1
n

∑n−i
t=1 g(Xt, θ)g(Xt+i, θ)′, which converges in probability to Ω0 under Assumptions

6.1-6.3. Finally, we compute the limit, and apply results in Geyer (1994).

Remark 2. In Algorithm 1, we can observe that the definition of the wild multiplicative bootstrap
does not require the selection of block sizes m. However, the multiplicative bootstrap still requires
the selection of the lag truncation tuning parameter h. As highlighted in our Monte Carlo analysis in
Section 4, the wild multiplicative bootstrap is less sensitive to the selection of the tuning parameter h
than is the block bootstrap to the selection of the block size m, yielding more stable results; see, e.g.,
Shao (2010) for similar empirical findings.

Remark 3. Suppose that in equation (2) we adopt the optimal weighting matrix Wn =
(
Ωn(θ̄n)

)−1
.

Then, the natural selection of the weighting matrix in equation (8) in the wild bootstrap algorithm is
given by Wn =

(
Ω∗n(θ̄∗n)

)−1
, where

Ω∗n(θ) =

n−1∑
i=−(n−1)

k(i/h)Γ∗i (θ), (10)

Γ∗i (θ) =
1
n

n−i∑
t=1

ḡ∗(Xt, θ)ḡ∗(Xt+i, θ)′, (11)

ḡ∗(Xt, θ) =

g(Xt, θ) −
1
n

n∑
i=1

g(Xi, θ̂n)

 (et − 1), (12)

and θ̄∗n is a preliminary bootstrap GMM estimator. Note that since E[et] = 1, in equation (12) we
replace g∗(Xt, θ) with ḡ∗(Xt, θ) =

(
g(Xt, θ) − 1

n

∑n
i=1 g(Xi, θ̂n)

)
(et − 1).

Remark 4. Using similar arguments adopted in the proof of Theorem 3.1, we can show that Ω∗n(θ̄∗n)
converges in conditional probability to Ω0, as n → ∞. Similarly, we can easily introduce consistent
bootstrap estimators of D0. These results indicate that the wild multiplicative bootstrap may also
provide valid approximations of the sampling distribution of asymptotically pivotal statistics such as
t-statistics or J-statistics.

Remark 5. As correctly pointed out by a Referee, in step (iii) of Algorithm 1, instead of re-estimating
the unknown parameter of interest, we could simply perturb the estimating equations and use directly
for the construction of confidence intervals. However, this approach is not investigated in the Monte
Carlo analysis, and left for future research.
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Remark 6. Our wild multiplicate bootstrap has some analogies with the (multiplier) bootstrap methods
proposed in Minnier et al. (2011), Kline and Santos (2012), Chernozhukov et al. (2014), Politis and
Romano (1992), Shao (2010), Zhu and Li (2015), Zhu and Ling (2015), Bcher and Kojadinovic (2016),
and Zhu (2016, 2019). However, it is important to highlight that our approach is conceptually different
from the procedures developed in previous studies, and in particular from the wild dependent bootstrap
introduced in Shao (2010). Specifically, Shao (2010) proposes to generate new random bootstrap
observations by introducing correlated error terms. On the other hand, in our bootstrap algorithm we fix
the original observations, and propose to perturbate the general estimating functions in a multiplicative
way using correlated innovations. Therefore, the wild dependent bootstrap proposed in Shao (2010)
cannot be applied to the simplified version of an asset pricing model proposed in our Section 4.2. On
the other hand, our approach works in this setting as well.

Remark 7. Inference provided by conventional (block) bootstrap procedures may be easily inflated
by a small fraction of anomalous observations in the data; see, e.g., Singh (1998), Salibian-Barrera
and Zamar (2002), and Camponovo et al. (2012, 2015). Intuitively, this feature is explained by the
overly high fraction of anomalous data that is often simulated by conventional block bootstrap
procedures compared to the actual fraction of anomalous observations in the original data. On the
other hand, since the wild multiplicative bootstrap does not construct random samples by resampling
from the observations, our procedure ensures a desirable accuracy and stability even in the presence
of contaminated data. Indeed, preliminary Monte Carlo simulations in the predictive regression
setting of Section 4.1 with a small fraction of additive outlying observations confirm a better stability
of the wild bootstrap with respect to the block bootstrap. We conjecture that using the breakdown
point theory developed in Camponovo et al. (2015), it is possible to establish the superior robustness
properties of the wild multiplicative bootstrap with respect to the moving block bootstrap. A complete
analysis of the robustness properties of the wild bootstrap is left for future research.

4. Monte carlo simulations

In this section, we study through Monte Carlo simulations the accuracy of our wild bootstrap
approach. In Section 4.1, we present the results for a predictive regression model with different form
of heteroskedasticity. Subsequently, in Section 4.2, we consider the simplified version of an asset
pricing model analyzed in Hall and Horowitz (1996). Finally, in Section 4.3, we analyze a regression
model with a time series structure as proposed in Inoue and Shintani (2006).

We use the Parzen kernel in order to construct the covariance matrix of the correlated innovations
in step (ii) of the wild multiplicative bootstrap algorithm. As in other contexts, the choice of the
kernel has only a marginal and negligible impact on the accuracy of the results. The number of
bootstrap replications is B = 999 and the nominal coverage probability is 90%. Unreported Monte
Carlo simulations for other coverage probabilities, e.g. 95%, produced similar results and confirmed
the findings illustrated in the next subsections. For simplicity, in Sections 4.2 and 4.3 we focus on
GMM estimators with identity matrix as the weighting matrix. Furthermore, we construct confidence
intervals for the unknown parameter of interest θ0 using approximations of the sampling distribution
of the non-studentized statistic

√
n(θ̂n − θ0). Unreported empirical results with optimal weighting

matrix and based on studentized statistics are qualitatively very similar. However, in this case the wild
multiplicative bootstrap seems to be slightly more sensitive to the selection of the tuning parameter h.
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The source of this instability may be related to the estimation of the optimal weighting matrix; see,
e.g., Altonji and Segal (1996) for similar computational issues.

Finally, for brevity, we report results only for our bootstrap approach and the non-overlapping
block bootstrap. Monte Carlo investigations with alternative block bootstrap procedures such as the
stationary block bootstrap and the stationary block-of-blocks bootstrap based on the resampling of
the estimating functions using the block bootstrap produce similar results to those shown for the non-
overlapping block bootstrap; robustness checks are available from the authors upon request. These
findings are not too surprising since stationary block bootstrap methods cannot address the problem of
breaking up the dependence structure either and since the block-of-blocks bootstrap also mitigates the
problem only at the break points of the subsamples.

4.1. Predictive regression model

We consider the predictive regression model,

Yt = α + θZt−1 + Ut, (13)
Zt = µ + ρZt−1 + Vt, (14)

where, for t = 1, . . . , n, Yt denotes the dependent variable at time t, and Zt−1 is assumed to predict Yt.
The parameters α ∈ R and µ ∈ R are the unknown intercepts of the linear regression model and the
autoregressive model, respectively, θ ∈ R is the unknown parameter of interest, ρ ∈ R is the unknown
autoregressive coefficient, and Ut ∈ R, Vt ∈ R are error terms.

In the first exercise, we generate 5000 Monte Carlo samples of size n = 180 according to model
(13)–(14), with Ut ∼ N(0, 1), Vt ∼ N(0, 1), α0 = µ0 = 0, ρ0 = 0.3, 0.5, 0.7, and θ0 = 0. We estimate the
unknown parameter of interest through the least squares estimators,

(α̂n, θ̂n) = arg min
(α,θ)

1
n

n−1∑
t=1

(Yt+1 − α − θZt)2. (15)

We construct 90% confidence intervals for θ0 using the block bootstrap with block sizes
m = 2, 5, 10, 15, 20, and the wild multiplicative bootstrap with lag truncation h = 2, 5, 10, 15, 20.
Table 1 reports the empirical coverages.

In Table 1, we can observe that both bootstrap procedures provide empirical coverages quite close
to the nominal coverage probability 90%. However, the wild multiplicative bootstrap seems to be
less sensitive to the selection of the tuning parameter h than the block bootstrap is to the selection of
the block size m. For instance, when ρ0 = 0.3, the empirical coverages of the wild bootstrap range
from 90.6 to 91.4 for h = 5 and h = 20, respectively. On the other hand, in the same setting the
empirical coverages of the block bootstrap range from 91.3 to 87.2 for m = 5 and m = 20, respectively.
In particular, in the lines ”Variation Block” and ”Variation Wild” we report the maximal difference
between empirical coverages implied by the block bootstrap and the wild bootstrap for different values
of the block size and the lag truncation tuning parameter, respectively. We can observe that the variation
for the block bootstrap is always larger than 4.5%. On the other hand, for the wild bootstrap the
difference is below 2.0%.

In the second exercise, we consider the same parameter selection as in the previous study. However,
in this case the error terms are heteroskedastic and correlated. More precisely, let σ2

t = 1
t−1

∑t−1
i=1 Z2

i .
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Table 1. Predictive regression model. Empirical coverage probabilities for the predictive
regression model analyzed in Section 4.1. We consider first-order asymptotic theory, the
block bootstrap with block size m = 2, 5, 10, 15, 20, and the wild multiplicative bootstrap
with lag truncation h = 2, 5, 10, 15, 20. The degree of persistence is ρ0 = 0.3, 0.5, 0.7. The
sample size is n = 180, and the nominal coverage probability is 90%. The error terms are
standard normal distributed. In the lines ”Variation Block” and ”Variation Wild” we report
the maximal difference between empirical coverages implied by the block bootstrap and the
wild bootstrap for different values of the block size and the lag truncation tuning parameter,
respectively.

ρ0 0.3 0.5 0.7
Asymptotic theory 89.1 88.9 88.9
Block m = 2 92.4 92.3 91.9

m = 5 91.3 90.5 90.7
m = 10 89.3 89.1 89.5
m = 15 88.3 88.4 88.4
m = 20 87.2 87.5 86.6

Variation Block 5.2 4.8 5.3
Wild h = 2 90.4 90.3 90.6

h = 5 90.6 90.4 90.8
h = 10 90.8 90.9 91.2
h = 15 91.2 91.8 92.0
h = 20 91.4 92.1 92.5

Variation Wild 1.0 1.8 1.9

Then, for the distribution of the error terms we consider following model,

Vt ∼ N(0, σ2
t ), (16)

Ut = −0.5Vt + Et, (17)

where Et ∼ N(0, 1). In Table 2, we report the empirical coverages using the block bootstrap and
the wild multiplicative bootstrap. Also in this case, we can observe that both bootstrap procedures
provide empirical coverages quite close to the nominal coverage probability 90%. However, the wild
multiplicative bootstrap is again less sensitive to the selection of the tuning parameter h than the block
bootstrap is to the selection of the block size m. Indeed, in the lines ”Variation Block” and ”Variation
Wild” we note that the maximal variation for the block bootstrap is always larger than 5%. On the
other hand, for the wild bootstrap the difference is always below 2.0%.

In the last exercise, we study the power properties of the bootstrap procedures. To this end, we
generate 5000 Monte Carlo samples of size n = 180 according to model (13)–(14), with Ut ∼ N(0, 1),
Vt ∼ N(0, 1), α0 = µ0 = 0, ρ0 = 0.3, 0.5, 0.7, and θ0 ∈ [0, 3/

√
n]. Finally, using the block and the wild

bootstrap, we test the null hypothesis H0 : θ0 = 0 versus H1 : θ0 , 0, for θ0 ∈ [0, 3/
√

n]. Figure 1
reports the power curves for different selections of the block size m and the lag truncation h.

In Figure 1, we can observe that both bootstrap procedures have quite similar power properties.
When θ0 = 0, the empirical rejection frequencies of the null hypothesis are very close to the
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Table 2. Predictive regression model. Empirical coverage probabilities for the predictive
regression model analyzed in Section 4.1. We consider first-order asymptotic theory, the
block bootstrap with block size m = 2, 5, 10, 15, 20, and the wild multiplicative bootstrap
with lag truncation h = 2, 5, 10, 15, 20. The degree of persistence is ρ0 = 0.3, 0.5, 0.7. The
sample size is n = 180, and the nominal coverage probability is 90%. The error terms are
heteroskedastic and correlated. In the lines ”Variation Block” and ”Variation Wild” we report
the maximal difference between empirical coverages implied by the block bootstrap and the
wild bootstrap for different values of the block size and the lag truncation tuning parameter,
respectively.

ρ0 0.3 0.5 0.7
Asymptotic theory 88.4 88.3 88.1
Block m = 2 90.6 90.4 90.5

m = 5 88.8 88.6 88.3
m = 10 87.9 87.8 87.5
m = 15 86.8 86.6 86.5
m = 20 85.3 85.2 85.0

Variation Block 5.3 5.2 5.5
Wild h = 2 89.8 89.8 89.7

h = 5 90.4 90.4 90.5
h = 10 90.6 90.7 91.0
h = 15 91.3 91.4 91.4
h = 20 91.5 91.4 91.6

Variation Wild 1.7 1.6 1.9

significance level 10%. As expected, when θ0 , 0, the empirical rejection frequencies increase.
However, in this case as well we can observe that the wild multiplicative bootstrap seems to be less
sensitive to the selection of the tuning parameter h than the block bootstrap for the selection of the
block size m. Given that power results in the next two settings are perfectly in line with those
presented for predictive regressions, for the sake of brevity we do not report them in detail.

4.2. Hall and horowitz (1996)

We consider the example introduced in Hall and Horowitz (1996), who introduce a simplified
version of an asset pricing model defined by the moment conditions

E[g(X, θ0)] = E
[(

1
X2

) (
exp(µ − θ0(X1 + X2) + 3X2) − 1

)]
= 0, (18)

where X = (X1, X2)′, θ0 = 3 is the parameter of interest, µ is a known normalization constant, and X1,
X2 are independent random scalars. In particular, we consider the case where X1 ∼ N(0, 0.22) and X2

follows a strictly stationary AR(1) process with no intercept, first-order serial correlation coefficient ρ,
and standard normal innovations.

In Table 3, we report empirical coverage probabilities of 90% confidence intervals for parameter θ0

based on 5000 Monte Carlo samples of size n = 48, 96, and 256. For the first-order serial correlation
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Figure 1. Power curves predictive regression model. We plot the proportion of rejections of
the null hypothesis H0 : θ0 = 0 versus H1 : θ0 , 0, for θ0 ∈ [0, 3/

√
n]. In the left panels,

we consider the block bootstrap with block size m = 5 (solid line), m = 10 (dashed line) and
m = 15 (dash-dotted line). In the right panels, we consider the wild multiplicative bootstrap
with lag truncation h = 5 (solid line), h = 10 (dashed line) and h = 15 (dash-dotted line).
From the top to the bottom, the degree of persistence is ρ0 = 0.3, 0.5, 0.7, respectively. The
sample size is n = 180.
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coefficient in the data generating process, we consider the cases ρ0 = 0.3, 0.5, 0.7. We construct the
confidence intervals using first-order asymptotic theory and bootstrap approximations. More precisely,
for the wild bootstrap and the block bootstrap, we consider as lag truncation and block sizes h = m =

2, 4, 6, 8, 10, 12, h = m = 4, 8, 12, 16, 20 and h = m = 4, 8, 16, 24, 32, for n = 48, n = 96, and n = 256,
respectively. The values we consider are similar to those in Hall and Horowitz (1996) who focused on
block sizes m = 5, 10, 20 for n = 50, 100.

The results for ρ0 = 0.3, 0.5, 0.7 are qualitatively very similar. The first observation we make is
that the wild multiplicative bootstrap significantly outperforms inference based on standard first-order
asymptotic theory for all values of h we consider. The second observation is that the accuracy of
both the wild bootstrap and the block bootstrap depends on the choice of the parameters h and m,
respectively. Furthermore, for the same values of h and m, we see that the wild bootstrap is closer to
the nominal coverage probability 90% for most of the settings. Finally, when comparing the wild and
block bootstrap, we also observe that the wild bootstrap is much less sensitive to the choice of h than
the block bootstrap is to the choice of m. Indeed, in the lines ”Variation Block” and ”Variation Wild”
we note that the maximal difference between empirical coverages implied by the block bootstrap is
always larger than 5%. On the other hand, the maximal difference for the wild bootstrap is around
1%. As mentioned above, there is no clear method to determine the block size in finite samples, which
makes this dependence problematic in practice. The higher stability of the wild bootstrap with respect
to the lag truncation h is therefore a major advantage in practice, as the procedure is quite accurate for
a wide range of values, unlike the block bootstrap.

4.3. Inoue and Shintani (2006)

In this section, we consider the linear regression model

Yt = θZt + Ut, (19)

where Yt ∈ R, θ ∈ R, and the disturbance and the regressors are generated according to the following
autoregressive processes with common ρ,

Ut = ρUt−1 + V1t, (20)
Zt = ρZt−1 + V2t, (21)

with Vt = (V1t,V2t)′ ∼ N(0, I2). We generate 5000 samples according to this model with θ0 = 0,
ρ0 = 0.3, 0.5, 0.7, and n = 48, 96, 256. Note that in this setting, the unknown parameter of interest
satisfies the moment conditions

E[g(Xt, θ0)] = E


(Yt − Ztθ0)

(Yt − Ztθ0)Zt

(Yt − Ztθ0)Zt−1

(Yt − Ztθ0)Zt−2

 = 0, (22)

where Xt = (Yt,Zt,Zt−1,Zt−2)′. Again, we construct 90% confidence intervals using first-order
asymptotic theory and bootstrap approximations. More precisely, for the wild bootstrap and the block
bootstrap, we consider as lag truncation and block sizes h = m = 2, 4, 6, 8, 10, 12,
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Table 3. Hall and horowitz (1996). Empirical coverage probabilities of 90% confidence
intervals based on 5000 Monte Carlo samples for three sample sizes n = 48, 96, 256. Results
are reported for the first-order asymptotic theory, the block bootstrap with different values
of the block size parameter m, and our wild bootstrap algorithm with different values of the
lag truncation h. In the lines ”Variation Block” and ”Variation Wild” we report the maximal
difference between empirical coverages implied by the block bootstrap and the wild bootstrap
for different values of the block size and the lag truncation tuning parameter, respectively.

ρ0 0.3 0.5 0.7
n = 48 Asymptotic theory 65.2 67.1 68.2

Block m = 2 90.5 92.3 92.8
m = 4 89.7 91.5 91.8
m = 6 88.0 89.6 91.0
m = 8 85.1 87.8 89.4
m = 10 85.1 87.0 87.9
m = 12 79.8 82.5 84.5

Variation Block 10.7 9.8 8.3
Wild h = 2 92.5 92.8 91.8

h = 4 92.4 92.6 91.6
h = 6 92.4 92.8 92.2
h = 8 92.3 92.6 92.7
h = 10 92.0 92.5 92.6
h = 12 91.8 92.3 92.6

Variation Wild 0.7 0.5 1.0
n = 96 Asymptotic theory 64.2 64.4 67.3

Block m = 4 89.4 90.8 92.3
m = 8 87.6 89.6 91.2
m = 12 84.8 87.3 89.2
m = 16 83.1 84.3 87.8
m = 20 84.0 84.6 87.2

Variation Block 5.4 6.2 5.1
Wild h = 4 90.9 92.2 91.2

h = 8 90.9 92.2 92.0
h = 12 90.9 92.4 92.4
h = 16 91.3 92.2 92.1
h = 20 91.3 92.2 92.0

Variation Wild 0.4 0.2 1.2
n = 256 Asymptotic theory 63.9 63.5 64.0

Block m = 4 90.3 90.4 90.9
m = 8 89.0 88.3 90.0
m = 16 87.8 86.5 88.8
m = 24 87.6 85.9 88.5
m = 32 84.5 83.1 85.3

Variation Block 5.8 7.3 5.6
Wild h = 4 91.0 90.6 90.5

h = 8 91.0 90.5 90.4
h = 16 91.0 89.9 90.6
h = 24 90.9 89.9 90.8
h = 32 90.8 89.9 90.9

Variation Wild 0.2 0.7 0.4
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h = m = 4, 8, 12, 16, 20 and h = m = 4, 8, 16, 24, 32, for n = 48, n = 96, and n = 256, respectively.
The empirical coverage probabilities are summarized in Table 4.

Table 4. Inoue and shintani (2006). Empirical coverage probabilities of 90% confidence
intervals based on 5000 Monte Carlo samples for three sample sizes n = 48, 96, 256. Results
are reported for the first-order asymptotic theory, the block bootstrap with different values
of the block size parameter m, and our wild bootstrap algorithm with different values of the
lag truncation h. In the lines ”Variation Block” and ”Variation Wild” we report the maximal
difference between empirical coverages implied by the block bootstrap and the wild bootstrap
for different values of the block size and the lag truncation tuning parameter, respectively.

ρ0 0.3 0.5 0.7
n = 48 Asymptotic theory 76.2 67.4 55.7

Block m = 2 86.2 83.6 78.2
m = 4 85.6 81.7 76.8
m = 6 84.1 81.0 79.2
m = 8 82.0 79.8 77.7
m = 10 83.0 80.7 79.2
m = 12 76.9 76.1 74.4

Variation Block 9.3 7.5 4.8
Wild h = 2 89.3 85.8 85.9

h = 4 89.3 85.8 85.8
h = 6 90.0 88.2 85.6
h = 8 90.7 89.3 87.8
h = 10 91.3 89.9 89.8
h = 12 91.7 90.7 90.2

Variation Wild 2.4 4.9 4.3
n = 96 Asymptotic theory 79.4 70.4 62.5

Block m = 4 86.5 82.6 79.2
m = 8 84.8 82.1 80.4
m = 12 82.8 80.6 79.7
m = 16 80.6 78.4 78.2
m = 20 81.7 80.3 79.4

Variation Block 5.9 4.2 2.2
Wild h = 4 88.5 86.9 86.3

h = 8 89.8 88.2 87.6
h = 12 90.3 89.2 89.6
h = 16 91.0 90.0 90.9
h = 20 91.2 90.6 91.9

Variation Wild 2.7 3.7 5.6
n = 256 Asymptotic theory 81.8 74.7 67.2

Block m = 4 87.6 86.9 83.7
m = 8 86.8 85.9 82.5
m = 16 85.5 85.0 82.6
m = 24 85.7 85.2 83.1
m = 32 82.5 82.4 80.6

Variation Block 5.1 4.5 3.1
Wild h = 4 88.6 88.7 88.6

h = 8 88.9 89.0 88.5
h = 16 89.0 89.8 88.5
h = 24 89.5 90.5 89.6
h = 32 90.0 91.1 90.7

Variation Wild 1.4 2.4 2.1

In this setting as well, the wild multiplicative bootstrap clearly outperforms inference based on
standard first-order asymptotic theory, regardless of the choice of the lag truncation. The higher
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precision of the wild bootstrap with respect to that of the block bootstrap when using the same
parameter values is even more evident than in the previous setting. Moreover, results again show that
the accuracy of the block bootstrap is much more sensitive to the block size parameter than is that of
the wild bootstrap with respect to the lag truncation parameter, even for quite large samples and low
persistence.

5. Real data application

In this section, we study the forecast ability of variance risk premia to predict future stock returns.
Recently, a large number of studies have investigated whether stock returns can be predicted by
economic variables such as the price-dividend ratio, the interest rate or the variance risk premia; see,
e.g., Rozeff (1984), Fama and French (1988), Campbell and Shiller (1988), Nelson and Kim (1993),
Campbell and Yogo (2006), Jansson and Moreira (2006), Polk et al. (2006), and Bollerslev et al.
(2009).

In this empirical analysis, we consider monthly S&P 500 index data (1871–2010) from Shiller
(2000). We define the one-period real total return as

Rt = (Pt + dt)/Pt−1, (23)

where Pt is the end-of-month real stock price and dt is the real dividends paid during month t. Finally,
we consider the predictive regression model,

1
k

ln(Rt+k,t) = α + θ · VRPt + εt+k,t, (24)

where ln(Rt+k,t) := ln(Rt+1)+· · ·+ln(Rt+k) and the variance risk premium VRPt := IVt−RVt is defined by
the difference between the S&P 500 index option-implied volatility at time t, for one month maturity
options, and the ex-post realized return variation over the period [t − 1, t]. Bollerslev et al. (2009)
show that the variance risk premium is the most significant predictive variable of market returns over a
quarterly horizon. Therefore, we test the predictive regression model (24) for k = 3.

We estimate the unknown parameter of interest through the least squares estimators

(α̂n, θ̂n) = arg min
(α,θ)

1
n

n−3∑
t=1

(
1
3

ln(Rt+3,t) − α − θ · VRPt

)2

. (25)

We are interested in testing the hypothesis of no predictability H0 : θ0 = 0. To this end, using the
block bootstrap and the wild multiplicative bootstrap, we construct 90% confidence intervals for the
unknown parameter of interest θ0. More precisely, we apply the procedures under investigation to
the period 1990–2010, consisting of 240 observations. Table 5 reports our empirical results. For
the period under investigation, our wild bootstrap procedure always provides significance in favor of
predictability. Similarly, inference based on standard first-order asymptotic theory also rejects the null
hypothesis. By contrast, the block bootstrap implies larger and less stable confidence intervals that lead
to ambiguous conclusions depending on the selection of the block size. For instance, for m = 5, 10, 15
the block bootstrap also rejects the hypothesis of no predictability. However, for m = 20, the block
bootstrap does not rejectH0.
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Table 5. Stock return predictability. We report 90% confidence intervals for the parameter
θ0 in model (24). We consider the block bootstrap with block sizes m = 5, 10, 15, 20 and the
wild multiplicative bootstrap with lag truncation h = 5, 10, 15, 20, for the period 1990–2010,
consisting of 240 observations.

Block m = 5 [ 0.1014 ; 0.4819 ]
m = 10 [ 0.0958 ; 0.4866 ]
m = 15 [ 0.0451 ; 0.5373 ]
m = 20 [ -0.0064 ; 0.5888 ]

Wild h = 5 [ 0.1251 ; 0.4573 ]
h = 10 [ 0.1035 ; 0.4789 ]
h = 15 [ 0.0973 ; 0.4851 ]
h = 20 [ 0.0776 ; 0.5048 ]

A possible source of the divergent conclusions could be related to the lack of robustness of the
block bootstrap in the presence of anomalous observations. Indeed, the year 2008 is characterized
by several unusual observations linked to the recent credit crisis. As shown in Camponovo et al.
(2015), inference provided by block bootstrap procedures may be easily inflated by a small fraction
of anomalous observations in the data. Intuitively, this feature is explained by the excessively high
fraction of anomalous data that is often simulated by conventional block bootstrap procedures, when
compared to the actual fraction of anomalous observations in the original data. On the other hand,
since the wild multiplicative bootstrap does not construct random samples by resampling from the
observations, our procedure may preserve a desirable accuracy even in the presence of anomalous
observations.

6. Conclusions

In time series models, in absence of parametric assumptions on the data generating process, the
standard approach to bootstrapping is the block bootstrap. After splitting the original sample into
(non)-overlapping blocks, the block bootstrap constructs random samples by selecting the
(non)-overlapping blocks with replacement. Under strong regularity conditions on the data generating
process and on the estimating functions, the block bootstrap may provide asymptotic refinements
relative to standard first-order asymptotic theory. However, to achieve this objective, the definition of
the block bootstrap and the selection of the block size require some care.

In this paper, we introduce a wild multiplicative bootstrap procedure that does not require the
selection of block sizes but still depends on a less sensitive lag truncation parameter. Unlike
conventional bootstrap procedures proposed in the literature, in our algorithm we do not construct
random samples by resampling from the observations. Instead, we propose perturbating the general
estimating functions using correlated innovations. By introducing this time series dependence, our
bootstrap method is able to properly capture the autocorrelation of the true moments. Moreover,
unlike conventional bootstrap methods, the wild bootstrap may preserve a desirable accuracy and
stability even in the presence of anomalous observations. We prove the validity of our bootstrap
procedure and in a Monte Carlo analysis show that our approach always outperforms inference based
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on standard first-order asymptotic theory. Furthermore, the wild multiplicative bootstrap we propose
also compares favorably with block bootstrap procedures for values of the block size typically
suggested in the literature.

Finally, in a real data application related to the large literature on stock return predictability, we
show the advantages of the proposed procedure for obtaining clear results that are not influenced by
the presence of possible anomalous observations in the data.
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Appendix: Assumptions and Proofs

Before proving Theorem 3.1, let us introduce a set of assumptions in line with Goncalves and White
(2004) and Allen, et al. (2010), for M and GMM estimators, respectively.

Assumption 6.1.
(a) Let (Ω,F , P) be a complete probability space. The observed data are a realization of a stochastic

process Xt : Ω → Rdx , dx ∈ N, with Xt(ω) = Wt(. . . ,Vt−1(ω),Vt(ω),Vt+1(ω), . . . ), Vt : Ω → Rv,
v ∈ N, and Wt :

∏∞
τ=−∞ R

v → Rdx is such that Xt is measurable for all t.
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(b) Either for M estimators, the function ρ : Rd × Θ → R is such that ρ(·, θ) is measurable for
each θ ∈ Θ, a compact subset of Rp, and ρ(Xt, ·) is continuous on Θ a.s. for all t; or for GMM
estimators, the function g : Rdx × Θ → Rdg is such that g(·, θ) is measurable for each θ ∈ Θ, a
compact subset of Rdθ , and g(Xt, ·) is continuous on Θ a.s. for all t.

(c) Either for M estimators: (i) θ0 is the unique minimum of E[1
n

∑n
t=1 ρ(Xt, θ)] over θ ∈ Θ. (ii) θ0 is

an interior point of Θ; or for GMM estimators: (i) θ0 is the unique solution of E[g(Xt, θ)] = 0,
θ ∈ Θ. (ii) θ0 is an interior point of Θ.

(d) Either for M estimators: (i) ρ(Xt, θ) is Lipschitz continuous on Θ, i.e., |ρ(Xt, θ1) − ρ(Xt, θ2)| ≤
Lt|θ1−θ2| a.s. for all θ1, θ2 ∈ Θ, where 1

n

∑n
t=1 E[Lt] = O(1). (ii) ∂2

∂θ∂θ′
ρ(Xt, θ) is Lipschitz continuous

on Θ; or for GMM estimators: (i) g(Xt, θ) is Lipschitz continuous on Θ, i.e., ‖g(Xt, θ1)−g(Xt, θ2)‖ ≤
Lt‖θ1 − θ2‖ a.s. for θ1, θ2 ∈ Θ, where 1

n

∑n
t=1 E[Lt] = O(1). (ii) ∂

∂θ
g(Xt, θ) is Lipschitz continuous

on Θ.
(e) For some r > 2, either for M estimators: (i) ρ(Xt, θ) is r-dominated on Θ uniformly in t, i.e., there

exists Dt such that |ρ(Xt, θ)| ≤ Dt for all θ ∈ Θ, and Dt is measurable such that E[|Dt|
r] < ∞

for all t. (ii) ∂
∂θ
ρ(Xt, θ) is r-dominated on Θ uniformly in t. (iii) ∂2

∂θ∂θ′
ρ(Xt, θ) is r-dominated on Θ

uniformly in t; or for GMM estimators: (i) g(Xt, θ) is r-dominated on Θ uniformly in t, i.e., there
exists Dt such that ‖g(Xt, θ)‖ ≤ Dt for all θ ∈ Θ, and Dt is measurable such that E[‖Dt‖

r] < ∞ for
all t. (ii) ∂

∂θ
g(Xt, θ) is r-dominated on Θ uniformly in t.

(f) {Vt} is an α-mixing sequence of size −2r/(r − 2), with r > 2.
(g) Either for M estimators: the elements of (i) ρ(Xt, θ) are near epoch dependent on {Vt} of size
−1/2. (ii) ∂

∂θ
ρ(Xt, θ) are near epoch dependent on {Vt} of size −1 uniformly on (Θ, f ), where f

is any convenient norm on Rp. (iii) ∂2

∂θ∂θ′
ρ(Xt, θ) are near epoch dependent on {Vt} of size −1/2

uniformly on (Θ, f ); or for GMM estimators: the elements of (i) g(Xt, θ) are near epoch dependent
on {Vt} of size −1 uniformly on (Θ, f ), where f is any convenient norm on Rdg . (ii) ∂

∂θ
g(Xt, θ) are

near epoch dependent on {Vt} of size −1 uniformly on (Θ, f ).
(h) Either for M estimators: (i) ‖ 1

n

∑n
i=1

∑n
j=1 E[ ∂

∂θ
ρ(Xi, θ0) ∂

∂θ
ρ(X j, θ0)′] − Ω0‖ → 0, for some positive

definite matrix Ω0. (ii) ‖ 1
n

∑n
t=1 E[ ∂2

∂θ∂θ′
ρ(Xt, θ0)] − D0‖ → 0, where D0 is of full rank; or for GMM

estimators: (i) ‖ 1
n

∑n
i=1

∑n
j=1 E[g(Xi, θ0)g(X j, θ0)′]−Ω0‖

2 → 0, for some positive definite matrix Ω0.
(ii) ‖ 1

n

∑n
t=1 E[ ∂

∂θ
g(Xt, θ0)] − D0‖

2 → 0, where D0 is of full rank. (iii) Wn converges in probability
to a non-random positive-definite symmetric matrix W0.

(l) (i) The kernel function k(·) is continuous, k(0) = 1, k(x) = k(−x), and
∫ ∞
−∞
|k(x)|dx < ∞. (ii)

Let K(λ) = 1
2π

∫ ∞
−∞

k(x = e−ixλdx, then
∫ ∞
−∞
|K(λ)|dλ < ∞. (iii) The lag truncation h satisfies

1
h + h

√
n → 0, as n→ ∞.

Assumption 6.2.
(a) For some r > 2, either for M estimators: ∂

∂θ
ρ(Xt, θ) is 3r-dominated on Θ uniformly in t; or for

GMM estimators: g(Xt, θ) is 3r-dominated on Θ uniformly in t.
(b) Either for M estimators: (i) For small δ > 0 and some r > 2, the elements of ∂

∂θ
ρ(Xt, θ) are L2+δ

near epoch dependent on {Vt} of size −2(r− 1)/(r− 2) uniformly on (Θ, f ). (ii) {Vt} is α-mixing of
size −r(2 + δ)/(r − 2); or for GMM estimators: (i) For small δ > 0 and some r > 2, the elements
of g(Xt, θ) are L2+δ near epoch dependent on {Vt} of size −2(r− 1)/(r− 2) uniformly on (Θ, f ). (ii)
{Vt} is α-mixing of size −r(2 + δ)/(r − 2).

Assumption 6.3.
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(a) Let (e1, . . . , en) be a sample from a stationary process of positive correlated observations with
E[et|(X1, . . . , Xn)] = 1, Cov(et, et+i|(X1, . . . , Xn)) = k(i/h), E[e4

t |(X1, . . . , Xn)] < ∞ where k(·) is an
appropriate kernel function, and h is the lag truncation parameter.

Assumptions 6.1 and 6.2 are mild conditions typically required for the validity of bootstrap
approximations that are satisfied in several time series settings. In particular, Assumption 6.1 provides
a set of conditions that are typically required for the consistency and asymptotic normality of M and
GMM estimators, whereas in Assumption 6.2, in line with Goncalves and White (2004) and Allen, et
al. (2010), we add conditions necessary for the consistency of the bootstrap approximation. Finally, in
Assumption 6.3, we add conditions for the error terms in the construction of the wild bootstrap
approximation. Unfortunately, these assumptions do not apply to unknown parameters defined
through non-differentiable estimating functions.
Proof of Theorem 3.1: First, we consider the M estimator case, and prove statement (i). To this end,
consider the random process

Rn(u) =

n∑
t=1

ρ∗(Xt, θ̂n + u/
√

n) −
n∑

t=1

ρ∗(Xt, θ̂n). (26)

Note that Rn(u) is minimized at
√

n(θ̂∗n − θ̂n). By considering a Taylor expansion of ρ∗(Xt, θ̂n + u/
√

n)
around θ̂n we have

ρ∗(Xt, θ̂n + u/
√

n) = ρ∗(Xt, θ̂n) +
u′
√

n

(
∂

∂θ
ρ∗(Xt, θ̂n)

)
+

1
2n

u′
(
∂2

∂θ∂θ′
ρ∗(Xt, θ̂n)

)
u + oP(1/n). (27)

Therefore, we can rewrite the random process Rn(u) as

Rn(u) =
1
√

n

n∑
t=1

u′
(
∂

∂θ
ρ∗(Xt, θ̂n)

)
+

1
2n

n∑
t=1

u′
(
∂2

∂θ∂θ′
ρ∗(Xt, θ̂n)

)
u + op(1). (28)

First, consider the second factor 1
2n

∑n
t=1 u′

(
∂2

∂θ∂θ′
ρ∗(Xt, θ̂n)

)
u in the above expansion. By Theorem

20.21 in Davidson (1994), the term 1
n

∑n
t=1

∂2

∂θ∂θ′
ρ∗(Xt, θ̂n) converges in conditional probability to D0.

Furthermore, consider now the first factor 1
√

n

∑n
t=1 u′

(
∂
∂θ
ρ∗(Xt, θ̂n)

)
. By De Jong and Davidson (2000),

and Corollary 24.7 in Davidson (1994), the conditional law of 1
√

n

∑n
t=1

(
∂
∂θ
ρ∗(Xt, θ̂n)

)
converges weakly

to a normal distribution with mean 0 and covariance matrix Ω0.
Therefore, the limit R(u) of Rn(u) is given by

R(u) = u′v0 +
u′D0u

2
. (29)

where v0 ∼ N(0,Ω0). Note that the unique minimum of R(u) is −D−1
0 v0, which is normally distributed

with mean 0 and covariance matrix D−1
0 Ω0D−1

0 . It turns out that by use of the results in Geyer (1994)
the conditional law of

√
n(θ̂∗n − θ̂n) also converges weakly to a normal distribution with mean 0 and the

same covariance matrix.
To prove statement (ii), we adopt the same approach adopted in the proof of statement (i). More

precisely, consider the random process

S n(u) =

 1
√

n

n∑
t=1

g∗(Xt, θ̂n + u/
√

n)

′Wn

 1
√

n

n∑
t=1

g∗(Xt, θ̂n + u
√

n)

 (30)
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−

 1
√

n

n∑
t=1

g∗(Xt, θ̂n)

′Wn

 1
√

n

n∑
t=1

g∗(Xt, θ̂n)

 . (31)

Note that S n(u) is minimized at
√

n(θ̂∗n − θ̂n). By considering a Taylor expansion of the term
1
√

n

∑n
t=1 g∗(Xt, θ̂n + u/

√
n) around θ̂n we have,

1
√

n

n∑
t=1

g∗(Xt, θ̂n + u/
√

n) =
1
√

n

n∑
t=1

g∗(Xt, θ̂n) +

1
n

n∑
t=1

∂

∂θ
g∗(Xt, θ̂n)

 u + op(1). (32)

It turns out that using (32) we can rewrite S n(u) as

S n(u) = u′
1

n

n∑
t=1

∂

∂θ
g∗(Xt, θ̂n)

 Wn

 2
√

n

n∑
t=1

g∗(Xt, θ̂n)

 (33)

+ u′
1

n

n∑
t=1

∂

∂θ
g∗(Xt, θ̂n)

 Wn

1
n

n∑
t=1

∂

∂θ
g∗(Xt, θ̂n)

 u + op(1). (34)

Therefore, by Theorem 20.12 in Davidson (1994), De Jong and Davidson (2000), and Corollary 24.7
in Davidson (1994), the limit S (u) of S n(u) is given by

S (u) = 2u′D0W0v0 + u′D0W0D0u, (35)

where v0 ∼ N(0,Ω0). Note that the unique minimum of S (u) is −(D′0W0D0)−1D′0W0v0, which is
normally distributed with mean 0 and covariance matrix (D′0W0D0)−1D′0W0Ω0W0D0(D′0W0D0)−1. By
the use of the results in Geyer (1994), the conditional law of

√
n(θ̂∗n − θ̂n) also converges weakly to a

normal distribution with mean 0 and the same covariance matrix.
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