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1. Introduction

We consider the asymptotics of ruin probabilities in the renewal risk model with constant force of
interest. In this model the claim sizes, Zk, k = 1, 2, . . ., form a sequence of independent, identically
distributed (i.i.d.), and non-negative random variables with generic random variable Z and common
distribution function B and distribution tail 1 − B, and the inter-occurrence times θk, k = 1, 2, . . .,
form another sequence of i.i.d. positive random variables with generic random variable θ and common
distribution A and distribution tail 1−A. We assume that the sequences {θk, k = 1, 2, . . .} and {Zk, k =

1, 2, . . .} are mutually independent. The arrival times of the successive claims, τn =
∑n

k=1 θk, n =

1, 2, . . ., constitute a renewal counting process

N1(t) = #{n : τn ≤ t} , t ≥ 0 .

Therefore, the compound renewal process S (t) =
∑N1(t)

k=1 Zk represents aggregate claims up to time t ≥ 0,
with S (t) = 0 if N1(t) = 0.

The premium sizes, Yk, k = 1, 2, . . ., form a sequence of non-negative random variables with generic
random variable Y and common distribution function G, and the inter-arrival times ζk, k = 1, 2, . . .,
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form another sequence of i.i.d. positive random variables with generic random variable ζ and common
distribution E. We assume that the sequences {ζk, k = 1, 2, . . .} and {Yk, k = 1, 2, . . .} are mutually
independent. The locations of the successive premiums, σn =

∑n
k=1 ζk, n = 1, 2, . . ., constitute a renewal

counting process
N2(s) = #{n : σn ≤ s} = N(Λs) , s ≥ 0 .

where Λ represents a positive random variable with distribution Q(q) = P(Λ ≤ q) and N(t) denotes a
Poisson counting point process, independent of Λ, with intensity equal to one. Therefore, the
compound renewal process C(s) =

∑N2(s)
k=1 Yk =

∑N(Λs)
k=1 Yk represents aggregate premiums up to time

s ≥ 0, with C(s) = 0 if N2(s) = N(Λs) = 0.
Let x > 0 be the initial surplus of the insurance company, let δ > 0 be the constant force of interest

(i.e. after time t a capital x becomes xeδt). Then the total surplus up to time t, denoted by Ũδ(t), satisfies
the equation

Ũδ(t) = xeδt +

∫ t

0
eδ(t−y)dC(y) −

∫ t

0
eδ(t−x)dS (x) , t ≥ 0 .

Let consider the discounted surplus through the formula

Uδ(t) := Ũδ(t)e−δt = x +

∫ t

0
e−δydC(y) −

∫ t

0
e−δxdS (x) = x +

N(Λt)∑
k=1

Yke−δσk −

N1(t)∑
n=1

Zne−δτn ,

for any t ≥ 0.
Now we introduce a sequence of random variables Y∗k , k = 1, 2, . . ., that are independent from the

sequence Yk, k = 1, 2, . . ., and holds Y∗k
d
= Yk, k = 1, 2, . . .. This means that for every k = 1, 2, . . . the

distributions of Y∗k and Yk are identical and equal to G.
Considering as given, that the premium arrivals are much more frequent in comparison with the

occurrences of claims, we take as basic time cycle the inter-occurrence times. In practical set up, the
premium can be received every week but the claims are expected to occur every year. Let introduce
successively the following random variables

X1 = Z1 −

N(Λτ1)∑
k=1

Y∗k eδ(τ1−σk) = Z1 −

N(Λ θ1)∑
k=1

Y∗k eδ(θ1−σk) ,

X2 = Z2 −

N(Λτ2)∑
k=N(Λτ1)+1

Y∗k eδ(τ2−σk) ,

. . . . . . . . .

Xn = Zn −

N(Λτn)∑
k=N(Λτn−1)+1

Y∗k eδ(τn−σk) , (1.1)

through which we obtain

Uδ(t)
d
= x −

N1(t)∑
n=1

Xne−δτn , (1.2)

for any t ≥ 0.
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In the actuarial literature, the probability of ultimate ruin is defined to be the probability that the
surplus falls below zero. This probability has been extensively investigated.

Let us define the ultimate ruin probability as

ψδ(x) = P
(
inf
s≥0

Uδ(s) < 0
∣∣∣ Uδ(0) = x

)
= P (M∞ > x) , x ≥ 0 , (1.3)

which represents the distribution tail of the supremum

M∞ := sup
m≥1

m∑
n=1

Xn e−δτn = sup
m≥1

S m , (1.4)

with S m =
∑m

k=1 Xk e−δτk .
Here and henceforth, all limit relationships are for x → ∞ unless stated otherwise and the symbol

∼ means that the quotient of both sides tends to 1. The relation a(x) ∼ b(x) means lim a(x)/b(x) = 1,
while the relation a(x) � b(x) stands for 0 < lim inf a(x)/b(x) ≤ lim sup a(x)/b(x) < ∞. The relation
lim sup a(x)/b(x) ≤ 1 is denoted by a(x) . b(x).

A real-valued random variable X with distribution F(x) = P[X ≤ x] is heavy tailed, symbolically
F ∈ K , if for any ε > 0 the following relation holds

E
[
eεX

]
=

∫ ∞

−∞

eεx F(dx) = ∞ .

A distribution F is long tailed, symbolically F ∈ L, if for any fixed y ∈ R the following relation holds

lim
F(x − y)

F(x)
= 1 .

A distribution F concentrated on R+ = [0, ∞) belongs to the subexponential class, symbolically F ∈ S,
if for any integer n ≥ 2 the following relation holds

lim
Fn∗(x)

F(x)
= n ,

where Fn∗(x) denotes the n-fold convolution of F. It is well known that the subexponential distributions
are long tailed (see Chistyakov, 1964). More generally, a distribution F, defined on the whole real line
R, is called subexpoential if the function F(x) 1{x∈R+} is subexpenential, where 1A denotes the indicator
function of A.

A distribution F belongs to the class of dominatedly-varying tails, symbolically F ∈ D, if for any
y ∈ (0, 1) the following relation holds

lim sup
F(x y)

F(x)
< ∞ .

The intersection B = D∩L = D∩S represents a useful subclass of subexponential distributions (see
Goldie, 1978).
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A distribution F belongs to the class of consistently-varying tails, symbolically F ∈ C, if the
following relation holds

lim
y↑1

lim sup
F(x y)

F(x)
= 1 ,

or equivalently the following holds

lim
y↓1

lim sup
F(x y)

F(x)
= 1 .

A distribution F belongs to the class of extended regularly varying tails over the indices (−β, −α),
symbolically F ∈ ERV(−β, −α), with 0 ≤ β ≤ α < ∞ if for any y ≥ 1 the following relation holds

y−α ≤ lim inf
F(x y)

F(x)
≤ lim sup

F(x y)

F(x)
≤ y−β .

A distribution F belongs to the class of regularly varying tails with index −α, symbolically F ∈ R−α,
with α > 0 if for any y > 0 the following relation holds

lim
F(x y)

F(x)
= y−α .

It is well known that

R−α ⊂ ERV(−β, −α) ⊂ C ⊂ B ⊂ S ⊂ L ⊂ K .

For a distribution F let us introduce the lower and upper Matuszewska indices (see Chapter 2.1 from
(Bingham et al., 1987)) as follows

βF = − lim
ln MF(x)

ln x
, αF = − lim

ln MF(x)
ln x

,

where for any x > 0 we denote

MF(x) = lim sup
u→∞

F(x u)

F(u)
, MF(x) = lim sup

u→∞

F(x u)

F(u)
,

If F ∈ ERV(−β, −α) then β ≤ βF ≤ αF ≤ α and if F ∈ R−α then βF = αF = α. By the Potter’s
inequalities (see Proposition 2.2.1 from (Binghan et al., 1987)) if F ∈ D then for any ε > 0 we obtain
x−αF−ε = o

[
F(x)

]
. If F ∈ D then αF < ∞. To secure the inequality βF > 0 we introduce the following

class of extended regular variation.
For a subexponential distribution F we say that its tail F belongs to the class A if for every v > 1

the following holds

lim sup
F(v x)

F(x)
< 1 .

If F ∈ A then βF > 0.
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2. Dependence modelling

Let consider the sequence of real-valued random variables {Xi , i ∈ N}. Following Definition 1.1
from the paper (Chen and Yuen, 2009) we say that the {Xi , i ∈ N} are pairwise quasi-asymptotically
independent, symbolically {X} ∈ pQAI, if for any i , j holds the limit

lim P[|Xi| ∧ X j > x
∣∣∣ Xi ∨ X j > 0] = 0 .

Further following the work (Geluk and Tang, 2009) we say that the {Xi , i ∈ N} are tail asymptotically
independent, symbolically {X} ∈ T AI (or by some authors pairwise strong quasi-asymptotically
independent pS QAI), if for any i , j holds the limit

lim
xi∧x j→∞

P[|Xi| > xi

∣∣∣ X j > x j] = 0 .

We say that the {Xi , i ∈ N} are widely orthant dependent, symbolically {X} ∈ WOD if there exist
two finite real sequences {gU(n)} and {gL(n)} for n ∈ N, such that for any real xk , k = 1, . . . , n both

P
 n⋂

k=1

{Xk ≤ xk}

 ≤ gL(n)
n∏

k=1

P[Xk ≤ xk] ,

P
 n⋂

k=1

{Xk > xk}

 ≤ gU(n)
n∏

k=1

P[Xk > xk] ,

hold. This dependent structure was introduced in (Wang et al., 2003).
We say that the {Xi , i ∈ N} are extended negatively dependent, symbolically {X} ∈ END if there

exists some M > 0 such that for any n ∈ N and any xk , k = 1, . . . , n both

P
 n⋂

k=1

{Xk ≤ xk}

 ≤ M
n∏

k=1

P[Xk ≤ xk] ,

P
 n⋂

k=1

{Xk > xk}

 ≤ M
n∏

k=1

P[Xk > xk] ,

hold. This notion was introduced in (Liu, 2009).
When in these two relations the value of the constant is M = 1 then we say that the {Xi , i ∈ N}

are negatively quadrant dependent, symbolically {X} ∈ NQD (or by some authors negatively orthant
dependent NOD or simply negatively dependent ND).

It is well known the inclusions

NQD ⊂ END ⊂ WOD ⊂ T AI ⊂ pQAI .

Now, we study the asymptotic behaviour of the distribution tail of the discounted sums in (1.1). By
the total probability formula we obtain

P

N(Λ θ1)∑
k=1

Ykeδ(θ1−σk) > x
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=

∫ ∞

0

∫ ∞

0
P

N(qt)∑
k=1

Ykeδ(t−σk) > x
∣∣∣∣ θ1 = t, Λ = q

 Q(dq) A(dt)

=

∫ ∞

0

∫ ∞

0

∞∑
n=1

P
 n∑

k=1

Ykeδ(t−σk) > x
∣∣∣∣ θ1 = t, Λ = q, N(qt) = n

 P(N(qt) = n)

×Q(dq) A(dt) .

Next, we employ Theorem 2.3.1 from (Ross, 1983) to express the conditional distribution of the
random vector (t − σ1, . . . , t − σn), given that N(qt) = n, as distribution of the random vector
(tU(1,n), . . . , tU(n,n)), where by U(1,n) , . . . , U(n,n) denote the order statistics of the n uniformly
distributed over the interval [0, 1] random variables U1, . . . , Un (U(1,n) ≥ · · · ≥ U(n,n)). Furthermore,
since in the sum

∑n
k=1 Yk eδtU(k,n) the vector (Y1, . . . ,Yn) consists of i.i.d. random variables and is

independent of (U(1,n), . . . ,U(n,n)), by rearrangement this sum is equal in distribution to the sum∑n
k=1 Yk eδtUk with Uk representing uniformly distributed random variables over the interval [0, 1],

symbolically Uk ∼ U[0, 1],

P

N(Λ θ1)∑
k=1

Ykeδ(θ1−σk) > x


=

∫ ∞

0

∫ ∞

0

∞∑
n=1

P
 n∑

k=1

YkeδtUk > x
∣∣∣∣ θ1 = t, Λ = q, N(qt) = n

 P(N(qt) = n)

×Q(dq) A(dt) =

∫ ∞

0
P

N(Λt)∑
k=1

YkeδtUk > x
∣∣∣∣ θ1 = t

 A(dt) .

Let us denote µt := E
[
Y eδtU

]
and Λt := Λ t. Next we use Theorem 4.1 (b) from (Chen et al., 2010)

(see further (Schmidli, 1999) and Theorem 3.1 from (Robert and Segers, 2008)) to have the following
result:

Lemma 2.1. If the random variables {Yk , k ≥ 1} is a sequence of END random variables with common
distribution G, mean value µ > 0 and finite exponential moment E[eγ Y] < ∞ for some γ > 0 and the
distribution of Λ Q has regularly varying tail Q ∈ C, for some α > 0, then holds the following relation

P

N(Λt)∑
k=1

YkeδtUk > x

 ∼ P (N(Λt) µt > x) ,

for any t ∈ (0, ∞) and with Uk ∼ U[0, 1] for any k ∈ N.

Proof. We check the conditions of Theorem 4.1 (b) from (Chen et al., 2010). As far the uniform
random variables Uk are bounded and the random premiums Yk are END we see that the products
Yk eδtUk are also END. Indeed, by the fact that eδtUk ≥ 1 and using Lemma 2.2 from (Chen et al., 2010)
we have that for any fixed values of Uk , k = 1, . . . , n the products are also END. Applying a total
probability argument we obtain the case.
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From the fact that the products are non-negative and non-degenerate, we obtain the positive mean
value µt > 0. Further, as far the Y is light tailed, follows that there is some ε ∈ (0, γ) such that
E

[
Yε eεδtU

]
< ∞.

Next, from the fact that Q ∈ C we obtain that the distribution of N(Λt) is consistently varying.
Indeed, by the notation N←(x) := inf{z : N(z) ≥ x} we have N←(0) = 0, N←(∞) = ∞ and for any
y ∈ (0, 1) the asymptotic relation

N←(y x)
N←(x)

→ y ,

from where we get

lim
y↑1

lim sup
P[N(Λt) > y x]
P[N(Λt) > x]

= lim
y↑1

lim sup
P[Λ > N←(y x)/t]
P[Λ > N←(x)/t]

= lim
y↑1

lim sup
P[Λ > y N←(x)/t]
P[Λ > N←(x)/t]

= 1 ,

where the last equality comes from Q ∈ C. Hence, P[N(Λt) > x] ∈ C, but its mean value is finite
E[N(Λt)] < ∞ for any t ∈ (0, ∞). Finally, from the fact that the distribution of Y is light tailed follows
that

P
(
YeδtU > x

)
= o (P [N(Λt) > x]) .

Now we just apply Theorem 4.1 (b) from (Chen et al., 2010) to take the required result. �

We observe that µt < ∞ and the distribution of Λt has a regularly varing tail with index −α, exactly
as the random variable Λ. We also consider successive epochs {σ′k , k ≥ 1} with σ′0 = 0 of the Poisson
point process N(t), with the corresponding inter-arrival times {ζ′k , k ≥ 1}, where ζ′k = σ′k − σ

′
k−1.

Lemma 2.2. In addition to the other conditions of Lemma 2.1, if Q ∈ R−α for some α > 0, then holds
the relation

P

N(Λt)∑
k=1

YkeδtUk > x

 ∼ P
(
Λt >

x
µt

)
,

for any t ∈ (0, ∞) and with and Uk ∼ U[0, 1] for any k ∈ N.

Proof. Following the expression found in Lemma 2.1, for any ε > 0 we can write

P
(
N(Λt) >

x
µt

)
=

∫ ∞

0
P

(
N(q) >

x
µt

∣∣∣∣ Λt = q
)

P(Λt ∈ dq)

=

(∫ x/(µt+ε)

0
+

∫ x/(µt−ε)

x/(µt+ε)
+

∫ ∞

x/(µt−ε)

)
P

(
N(q) >

x
µt

∣∣∣∣ Λt = q
)

P(Λt ∈ dq)

= I1 + I2 + I3 .

Let us observe that the main term is the last one. Indeed, taking into account the SLLN we obtain
the convergence N(t)/t

a.s.
→ 1. So we can write

I3 =

∫ ∞

x/(µt−ε)
P

(
N(q) >

x
µt

∣∣∣∣ Λt = q
)

P(Λt ∈ dq)
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≥

∫ ∞

x/(µt−ε)
P

(
N(q)

q
>
µt − ε

µt

∣∣∣∣ Λt = q
)

P(Λt ∈ dq)

→ P
(
Λt >

x
µt − ε

)
,

as t → ∞. From the other side, the upper bound or the probability gives the same

I3 =

∫ ∞

x/(µt−ε)
P

(
N(q) >

x
µt

∣∣∣∣ Λt = q
)

P(Λt ∈ dq) ≤ P
(
Λt >

x
µt − ε

)
,

so after leaving the ε to tend to zero we finally obtain

I3 ∼ P
(
Λt >

x
µt

)
.

Next, we calculate the asymptotics of I2

I2 =

∫ x/(µt−ε)

x/(µt+ε)
P

(
N(q) >

x
µt

∣∣∣∣ Λt = q
)

P(Λt ∈ dq)

≤ P
(

x
µt + ε

≤ Λt ≤
x

µt − ε

)
= P

(
Λt ≤

x
µt − ε

)
− P

(
Λt ≤

x
µt + ε

)
∼ [(µt + ε)α − (µt − ε)α]P (Λt > x) = o

[
P

(
Λt >

x
µt

)]
,

as ε→ 0. So the second term is negligible.
Next, we consider I1. We remind the well-known relation {N(t) > x} =

{
σ′
bxc ≤ t

}
, so we can write

I1 =

∫ x/(µt+ε)

0
P

(
N(q) >

x
µt

∣∣∣∣ Λt = q
)

P(Λt ∈ dq)

≤ P
[
N

(
x

µt + ε

)
>

x
µt

]
= P

bx/µtc∑
i=1

ζ′i ≤
x

µt + ε

 .
Now for an arbitrarily chosen variable h > 0 we apply standard Chernoff inequality

I1 ≤ exp
{

h
x

µt + ε

}
E

exp

−h
bx/µtc∑

i=1

ζ′i




∼ exp
{

h
x

µt + ε

} (
E

[
e−h ζ′1

])x/µt
∼ exp

{(
h

µt

µt + ε
+ ln E

[
e−h ζ′1

]) x
µt

}
.

Now we choose some positive value for h such that the expression

v(h) := h
µt

µt + ε
+ ln E

(
e−h ζ′1

)
,
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becomes negative. This is possible because for h = 0 we obtain v(0) = 0 and its first derivative becomes
negative for small enough h

v′(h) :=
µt

µt + ε
−

E
(
ζ′1 e−h ζ′1

)
E

(
e−h ζ′1

) ,

due to the fact that E[ζ′1] = 1 by definition of the process N(t). Therefore the term I1 decays with
exponential speed

I1 ∼ exp
{

v(h)
x
µt

}
= o

[
P

(
Λt >

x
µt

)]
,

which makes the first term also negligible. �

3. Ruin probability in infinite horizon

Next, consider the case with regular varying tails of distributions of the random variables Z and Λ

with the same parameter −α, symbolically B, Q ∈ R−α and we examine the tail of the distribution F

F(x) = P[X > x] = P

Z − N(Λθ)∑
k=1

Y∗k eδ(θ−σk) > x

 , (3.1)

From Theorem 3.1 in (Tang and Tsitsiashvili, 2003) we can find easily:

Lemma 3.1. If F ∈ D ∩A, then

F(x) = o(x−β), ∀ β < βF ,

xαF(x)→ ∞, ∀ α > αF ,

0 ≤ βF ≤ αF < ∞,

hold.

Now we assume that the joint distribution of (Λ,Z) follows a multivariate regular variation with
parameter α and measure ν. This means that there exist some 0 < α < ∞, some distribution function B
with B ∈ R−α, and some Radon measure ν on [0,∞]d \ {0} satisfying ν

(
[0,∞]d \ {0}

)
> 0 such that the

following vague convergence holds:

1

B(x)
P

(
(Λ,Z)

x
∈ ·

)
v
→ ν (·) on [0,∞]d \ {0} .

In this case, we write (Λ,Z) ∈ MRV (α, B, ν).
We introduce now the event

Ax, t := {(Z, Λ) : Z − Λt µt > x} =
{
(Z, Λ) : Z − Λ t E

[
Y1 eδtU1

]
> x

}
,

for any x > 0.
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Lemma 3.2. The following asymptotic relation is true

F(x) ∼ B(x)E
[
ν(A1,θ)

]
.

Proof. Through Lemma 3.1 we find that F(x), given in (3.1), has the following asymptotics

F(x) =

∫ ∞

0
P

N(Λθ)∑
m=1

Y∗m eδ(θ−σm) < z − x

 B(dz)

=

∫ ∞

0

1 − ∫ ∞

0
P

N(Λt)∑
m=1

Y∗m eδ t Um ≥ z − x
∣∣∣∣ θ = t

 A(dt)

 B(dz)

∼

∫ ∞

0

(
1 −

∫ ∞

0
P

[
Λt µt ≥ z − x

∣∣∣∣ θ = t
]

A(dt)
)

B(dz)

=

∫ ∞

0
P

[
Λt µt < z − x

∣∣∣∣ θ = t
]

A(dt) B(dz)

=

∫ ∞

0
P

[
Z − Λt µt > x

∣∣∣∣ θ = t
]

A(dt) .

Now we employ the multivariate regular variation of the (Z, Λ) ∈ MRV (α, B, ν) to find

F(x) =

∫ ∞

0
P

 Λθ∑
m=1

Y∗m eδ(θ−σm) < z − x

 B(dz)

∼

∫ ∞

0
B(x) ν

[
A1, t

]
A(dt) = B(x) E

(
ν
[
A1, θ

])
.

�

Proposition 3.3. Let the real-valued random variables {Xn , n = 1, 2, . . .} be pairwise
quasi-asymptotically independent (pQAI) with common distribution F(x) with tail F ∈ C ⊂ D ∩ A,
and independent from the random variables {τn , n = 1, 2, . . .}. Then the asymptotic relation

ψδ(x) ∼
∞∑

n=1

P[e−δτn Xn > x] ,

holds if either of the following conditions are true:
(i) If αF ∈ (0, 1) then for any β ∈ (0, βF) and for any α ∈ (αF , 1) converges the sum

∞∑
n=1

(E[e−α δ τn] + E[e−β δ τn]) < ∞ .

(ii) If αF ≥ 1 then for any β ∈ (0, βF) and for any α > αF converges the sum

∞∑
n=1

(E[e−α δ τn] + E[e−β δ τn])1/α < ∞ .
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Proof. We follow the argument developed in Theorem 2 from (Yi et al., 2011). However, we omit the
condition F(−x) = o[F(x)], inspired by Theorem 2.1 from (Ignataviciute et al., 2018).

We begin with the lower asymptotic bound. For any m ∈ N, under condition (i) we find

ψδ(x) = P[sup
n≥1

n∑
k=1

e−δτk Xk > x] ≥
P[sup1≤n≤m

∑n
k=1 e−δτk Xk > x]∑m

k=1 P[e−δτk Xk > x]

m∑
k=1

P[e−δτk Xk > x]

& lim inf
x→∞

m∑
k=1

P[e−δτk Xk > x]

= lim inf
x→∞

 ∞∑
k=1

P[e−δτk Xk > x] −
∞∑

k=m+1

P[e−δτk Xk > x]


=

∞∑
k=1

P[e−δτk Xk > x]
(
1 − lim sup

x→∞

∑∞
k=m+1 P[e−δτk Xk > x]∑∞

k=1 P[e−δτk Xk > x]

)
,

where in the second line we used Theorem 2.1 from (Ignataviciute et al., 2018) in combination with
Theorem 1 from (Yi et al., 2011). Further by Theorem 3.3 from (Cline and Samorodnitksy, 1994) we
have P[e−δτk Xk > x] � P[Xk > x] and by Lemma 1 from (Yi et al., 2011) we find P[e−δτk Xk > x] ≤
C (E[e−αF δτk] ∨ E[e−βF δτk]) F(x). Hence we apply in the last inequality to obtain

ψδ(x) &
∞∑

k=1

P[e−δτk Xk > x]

1 −C
∞∑

k=m+1

(E[e−αF δτk] ∨ E[e−βF δτk])

 .
Next, letting m to tend to infinity, from condition (i), we have the lower asymptotic bound.

For the upper asymptotic bound we see that for any m ∈ N and v ∈ (0, 1) is true the inequality

ψδ(x) ≤ P
 sup

1≤n≤m

n∑
k=1

e−δτk Xk > (1 − v) x

 + P
 ∞∑

k=m+1

e−δτk X+
k > v x

 = P1 + P2 .

For the first term we find

P1 . lim sup
P

[
sup1≤n≤m

∑n
k=1 e−δτk Xk > (1 − v) x

]∑m
k=1 P

[
e−δτk Xk > (1 − v) x

] ∑m
k=1 P

[
e−δτk Xk > (1 − v) x

]∑m
k=1 P

[
e−δτk Xk > x

]
×

m∑
k=1

P
[
e−δτk Xk > x

]
≤ MF(1 − v)

∞∑
k=1

P
[
e−δτk Xk > x

]
.

For the second term we can obtain

P2 . C MF1(v)
∞∑

k=m+1

(E[e−αF δτk] ∨ E[e−βF δτk])
∞∑

k=1

P
[
e−δτk Xk > x

]
.

Indeed, from the elementary inequality |a + b|r ≤ |a|r + |b|r for any r ∈ (0, 1) and any a, b ∈ R, we can
see due to Lemma 1 and Lemma 2 from (Yi et al., 2011)

Quantitative Finance and Economics Volume 2, Issue 3, 717–732.



728

P2 ≤

∞∑
k=m+1

P
[
e−δτk X+

k > v x
]

+ P
 ∞∑

k=m+1

e−δτk X+
k 1{e−δτk X+

k ≤v x} > v x


≤ C1 F(vx)

∞∑
k=m+1

(E[e−αF δτk] ∨ E[e−βF δτk])

+
1

(v x)α

E  ∞∑
k=m+1

e−δτk X+
k 1{e−δτk X+

k ≤v x}

α

≤ C1 F(vx)
∞∑

k=m+1

(E[e−αF δτk] ∨ E[e−βF δτk])

+
1

(v x)α

∞∑
k=m+1

E
[(

e−δτk X+
k 1{e−δτk X≤k v x}

)α]
≤ C1 F(vx)

∞∑
k=m+1

(E[e−αF δτk] ∨ E[e−βF δτk]) + C2

∞∑
k=m+1

P
[
e−δτk Xk > v x

]
≤ (C1 + C2) F(vx)

∞∑
k=m+1

(E[e−αF δτk] ∨ E[e−βF δτk]) .

Hence, using again the weak equivalence P[e−δτk Xk > x] � P[Xk > x] we get

P2 . (C1 + C2) MF(v)
∞∑

k=m+1

(E[e−αF δτk] ∨ E[e−βF δτk])
∞∑

k=1

P
[
e−δτk Xk > x

]
.

After substitution we have

ψδ(x) .

MF(1 − v) + (C1 + C2) MF(v)
∞∑

k=m+1

(E[e−αF δτk] ∨ E[e−βF δτk])


×

∞∑
k=1

P
[
e−δτk Xk > x

]
.

Now letting m→ ∞ and v ↓ 0 we get the lower asymptotic bound.
Under the condition (ii) we apply Minkowski inequality in evaluation of P2

P2 ≤ C1 F(vx)
∞∑

k=m+1

(E[e−αF δτk] ∨ E[e−βF δτk])

+
1

(v x)α

E  ∞∑
k=m+1

e−δτk X+
k 1{e−δτk X+

k ≤v x}

α

≤ C1 F(vx)
∞∑

k=m+1

(E[e−αF δτk] ∨ E[e−βF δτk])
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+
1

(v x)α

∞∑
k=m+1

E
[(

e−δτk X+
k 1{e−δτk X≤k v x}

)α]
≤ C1 F(vx)

∞∑
k=m+1

(E[e−αF δτk] ∨ E[e−βF δτk]) + C2

∞∑
k=m+1

P
[
e−δτk Xk > v x

]
≤ (C1 + C2) F(vx)

∞∑
k=m+1

(E[e−αF δτk] ∨ E[e−βF δτk]) .

�

Remark 3.4. We observe that given that {τn , n ≥ 1} is a renewal sequence, conditions (i) and (ii) in
Proposition 3.3 are fulfilled. Indeed, in this case we can write

E
[
e−α δ τn

]
=

(
E

[
e−α δ θ1

])n
, E

[
e−β δ τn

]
=

(
E

[
e−β δ θ1

])n
,

and taking into account that E
[
e−α δ θ1

]
< 1 and E

[
e−β δ θ1

]
< 1 we get that the geometric series converge

automatically.

Hence, using the property of class L, we obtain the following simplification of conditions in
Proposition 3.3.

Corollary 3.5. If the sequence {τn} represents a renewal point process and there exists a constant
C < ∞ such that the inequality

N(Λ θn)∑
k=1

e−δσk Y∗k ≤ C , (3.2)

holds almost surely, and the positive random variables {Zn , n = 1, 2, . . .} be pairwise
quasi-asymptotically independent (pQAI) with common distribution B ∈ C then the following
asymptotic relation is true

ψδ(x) ∼
∞∑

n=1

P[e−δτn Zn > x] . (3.3)

Proof. Since we have the sequence {τn} is renewal we can write

e−δ τn Xn = e−δ τn Zn −

N(Λ θn)∑
k=1

e−δσk Y∗k ,

Therefore, from the condition B ∈ C and the inequality (3.2) we find that F ∈ C.
Now from the double inequality Zn −C

∏n
k=1 eδ θn ≤ Xn ≤ Zn we find that the sequence {Xn , n ≥ 1}

is also pQAI with common distribution F ∈ C. So we can apply the Proposition 3.3 to obtain (3.3). �

Now, we are ready to provide the final asymptotic expression for the ruin probability ψ(x).
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Theorem 3.6. Let the random variables {Yk , k ≥ 1} be a sequence of END random variables with
common distribution G, mean value µ > 0 and finite exponential moment E[eγY1] < ∞ for some γ > 0
and the distribution of Λ be of regularly varying tail Q ∈ R−α with α > αF . If {Xk , k ≥ 1} is
independent of {Yk , k ≥ 1} and satisfies the conditions of Proposition 3.3, then holds the relation

ψδ(x) ∼
E

[
e−αδθ

]
1 − E

[
e−αδθ

] E
[
ν
(
A1, θ

)]
B(x) . (3.4)

Proof. From the formulas (1.2) and (1.3) we conclude that

x −
∞∑

n=1

Xn e−δ τn ≤ Ũδ(t) ≤ x −
∞∑

n=1

Xn e−δ τn 1{τn≤t} , (3.5)

and further taking into account the regular variation of the distribution F ∈ R−α, applying Theorem 2.1
from (Resnick and Willekens, 1991) (or Lemma 1 from (Tang, 2005)) we obtain

ψδ(x) ≤ P

 ∞∑
n=1

Xn e−δτn > x

 = F(x)
∞∑

n=1

E
[
Xn e−αδτn

]
= F(x)

E
[
e−αδθ

]
1 − E

[
e−αδθ

] . (3.6)

Next, for the lower bound we find

ψδ(x) ≥ P

sup
t≥0

∞∑
n=1

Xn e−δτn 1{τn≤t} > x

 = P

 ∞∑
n=1

Xn e−δτn > x


∼ F(x)

∞∑
n=1

E
[
e−αδτn

]
= F(x)

E
[
e−αδθ

]
1 − E

[
e−αδθ

] .
So with combination of the previous bounds we have

ψδ(x) ∼ F(x)
E

[
e−αδθ

]
1 − E

[
e−αδθ

] . (3.7)

Finally after substitution from Lemma 3.2 we conclude the result. �

Remark 3.7. For ν
[
A1, θ

]
= 1 we find the asymptotic formula from Theorem 1 in (Tang, 2005).
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