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Abstract: This paper studies cyclical patterns in risk indicators based on TARGET2 transaction data.
These indicators provide information on network properties, operational aspects and links to ancillary
systems. We compare the performance of two different ARIMA dummy models to the TBATS state
space model. The results show that the forecasts of the ARIMA dummy models perform better than
the TBATS model. We also find that there is no clear difference between the performances of the two
ARIMA dummy models. The model with the fewest explanatory variables is therefore preferred.
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1. Introduction

Financial market infrastructures (FMIs) play a crucial in the well-functioning of the economy.
They facilitate the clearing, settlement, and recording of monetary and other financial transactions.
Disruptions to or outages of these systems can seriously damage the economy, as this means financial
actors cannot fulfil their obligations in time. Therefore, these infrastructures have to meet high
standards defined by Principles for Financial Market Infrastructures (PFMIs, CPSS, 2012). FMI
transaction data can provide relevant information on the well-being of these FMIs and the financial
actors in these FMIs. This information can be useful 1) to overseers and operators who have an
interest in the well-functioning of the FMI itself, to 2) prudential supervisors who are interested in the
well-being of a single financial institution (e.g. commercial bank or insurance company), 3) to
financial stability experts who have an interest in the well-being of the financial system as a whole
and 4) monetary policy experts who are interested in the well-functioning of the money markets.
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Good examples of how FMI transaction data has been used are (Berndsen and Heijmans, 2017).
They explained how TARGET2 transactions can be converted into risk indicators, where a risk
indicator is defined as a pair of variables (Observation, Benchmark), where Observation is the
particular value of the risk indicator at some point in time examined, whereas the Benchmark value
indicates normal value of the indicator.∗ If the Observation deviates far enough from the Benchmark
we have a signal. explained how TARGET2 transactions can be converted into risk indicators, where
a risk indicator is defined as a pair of variables (Observation, Benchmark), where Observation is the
particular value of the risk indicator at some point in time examined, whereas the Benchmark value
indicates normal value of the indicator. If the Observation deviates far enough from the Benchmark
we have a signal. Furthermore, the risk indicators must follow two general requirements, as they
should be: 1) easy to explain to an end-user, and 2) relevant and scientifically correct. The reason why
they have to be easy to explain is that end-users, e.g. managers, regulators or policy advisors, are the
intended recipients of this type of information. Otherwise, those indicators are likely to stay unused.
Arciero et al. (2016) who identify unsecured interbank money market loans from TARGET2 and
Baek et al. (2014) who define network indicators for monitoring intraday liquidity in the Korean large
value payment system (BoK-wire).

Indicators or time series based on transaction level data often contain cyclical patterns, which have
to be corrected for. This paper studies the performance of different models to extract cyclical patterns
from time series based on transaction data.† By extracting patterns from the times series, we
distinguish between normal patterns over time and potential stressful or notable patterns. We
investigate two different ARIMA models with dummies and a state space model, which is a more
advanced method. The dummy variables we include in the ARIMA models relate to the day of the
week, months and decision by the Governing Council (with respect to the reserve maintenance
period). The state space models are introduced by De Livera et al. (2011) and Hyndman and
Athanasopoulos (2013). They study forecasting time series with complex seasonal patterns using
exponential smoothing. The time series we investigate in this paper are based on daily figures of
network indicators, operational indicators and indicators providing information on liquidity flows
between TARGET2 and other FMIs. We first fit three different models to the first part of the data
(train data). Then we produce forecasts for the last part of the data (test data). By comparing the
forecasts we determine which model performs best. Our paper is closely related to earlier work of
Van Ark and Heijmans (2016). They compare the performance of a state space model to a Fourier
ARIMA model and ARIMA dummy models for data that is aggregated per 10 minutes and per hour.
They find that the state space model outperforms the ARIMA models. Our paper adds to the literature
by setting up a model to correct for cyclicality in indicators based on FMI transaction level data.
Triepels et al. (2017) provides a completely different method of looking at patterns or features in the
data by using a machine learning technique.

Massarenti et al. (2012) study the timing of TARGET2 payments. They find that most value is
transferred in the last business hour of the day. This implies that a disruption at this time can have
serious consequences: 1) as the value is large, a disruption can seriously harm liquidity flows, 2) as it
is the last hour of the business day, there is little time to solve the disruption and fulfill payment
obligations. Baek et al. (2014) describe the network properties of the Korean interbank payment

∗TARGET2 is the most important euro-denominated large-value payment system.
†These time series are the basis of the risk indicator development by Berndsen and Heijmans (2017).

Quantitative Finance and Economics Volume 2, Issue 3, 615–636.



617

system BOK-Wire+. They apply existing methodologies for identifying systemically important banks
and develop a new intraday liquidity indicator that compares banks’ expected resources for settling
payments in the remainder of the day with their expected liquidity requirements. Squartini et al.
(2013) show early-warning signals for topological collapse in interbank networks. They study
quarterly interbank exposures among Dutch banks between 1998 and 2008. The outcome of their
research is relevant for bank regulators. One of their findings is a well-defined core-periphery
structure. In contrast to our paper they use highly aggregated data instead of granular data.

The outline of this research is as follows. Section 2 provides a description of the studied data.
Section 3 explains the models which have been tested for their forecast performance. The results of
model performance are presented in section 4. Section 5 concludes.

2. Data

This section describes the transaction data and the time series that are used for this research. Section
2.1 provides general information on the most important euro denominated large value payment system
(TARGET2). Section 2.2 describes the types of transactions that are settled in TARGET2. The time
series that are used in this research are described in section 2.3.

2.1. TARGET2

TARGET2 is the real-time gross settlement (RTGS) system for euro-denominated payments,
which is owned and operated by the Eurosystem.‡ It is one of the largest RTGS systems in the world.
Payment transactions in TARGET2 are settled individually (gross) on a continuous real-time basis, in
central bank money with immediate finality. TARGET2 settles approximately 350,000 transactions
with a corresponding value of EUR 2,000 billion. In 2014 TARGET2 had approximately 1000 direct
participants and ± 800 indirect participants.§ Most of the participants are commercial banks located in
the euro area. Besides commercial banks, central banks of the European Union and Ancillary Systems
(AS) also participate in TARGET2. Ancillary Systems are systems that process clearing and
settlement of payments. Non-EU banks acting through a subsidiary in the EU can also obtain direct
access to TARGET2.¶

2.2. Transaction data

The data consist of settled transactions in the range of June 2008 to December 2015. TARGET2
transactions can be divided into four main categories, see Table 2 in Appendix B. Category 1 are the
transactions between commercial banks. Category 2 consists of transactions in which national central
banks (NCB) are involved on the receiving and/or submitting side (or both) of the transaction. The
third category consists of transactions that are submitted to TARGET2 by Ancillary Systems (ASs).
Category 4 transactions are transactions that are related to liquidity transfers. Transactions of sub-
category 4.4 (so called technical transfer) are excluded in our research as these are transfers of liquidity
between accounts of the same legal entity.

‡TARGET2 stands for Trans-European Automated Real-Time Gross settlement Express Transfer system.
§https://www.ecb.europa.eu/paym/t2/html/index.en.html
¶For a complete overview of TARGET2 access criteria, see the TARGET2 guideline https://www.ecb.europa.eu/ecb/legal/

1003/1349/html/index.en.html
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2.3. Time series

We investigate the performance of our models on different types of time series derived from
TARGET2 transaction data. Table 1 provides an overview of investigated time series. Each time
series defines a different measure of a characteristic of the networks of payments on a certain day. The
time series are divided into 4 groups: A) operational, B) network properties, C) links to other
ancillary systems and D) HHIs. A common factor is that they are all daily aggregates. An example of
one of the time series is shown in Figure 1.

Figure 1. Example of one of the used time series: Throughput at 12.00 which indicates the
percentage of the total volume of transactions that is settled at noon for each day.

2.3.1. A: operational

The time series with respect to operational aspects are relatively straightforward. We look at 1) the
relative usage of the system and 2) on the throughput of liquidity at certain times of the business day.
The relative usage is measured by dividing the actual number of transactions settled on a given day by
the amount guaranteed by the service level agreement of the payment system. This guaranteed amount
has been laid down in the service level agreement.

The throughput guidelines look at the cumulative value settled over the day. These guidelines are
intraday deadlines by which individual banks are required to send a predefined proportion of the value
of their daily payments. CHAPS, the UK large value payment system, enforces these guidelines, see
Ball et al. (2011).

The throughput guidelines set up by CHAPS for each participants are as follows:

Transferred value before 14.30 <= 75% (1)

Transferred value before 12.00 <= 50% (2)

It is of course possible to set different percentages and cut off times.

Quantitative Finance and Economics Volume 2, Issue 3, 615–636.
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Table 1. Time series based on TARGET2 transaction data.

Time series number Description
A Operational indicators

1 Relative performance TARGET2
2 Throughput at 12.00
3 Throughput at 14.30
B Network properties

4 Edge density undirected
5 Edege density directed
6 Degree
7 Reciprocity
8 Transitity
9 Eigenvector centrality
10 Hub centrality
11 Authority centrality
C Links to AS

12 Turnover to AS (absolute)
13 Turnover to AS (relative)
D HHI

14 HHI turnover
15 HHI degree
16 HHI Eigenvector centr
17 HHI Hub centr.
18 HHI Authority centr.

2.4. B: network properties

The literature describes the use of many network properties for payment systems, see e.g. Pröpper
et al. (2013) or Soramäki et al. (2007). Edge density (which is also known as connectivity) is the ratio
of number of actual links and total number of possible links between nodes, see Appendix A.1. Degree
is the number of links of each node per day, see Appendix A.2. Reciprocity is the fraction of links with
a link in the opposite direction, see Appendix A.3. Transitivity (also known as clustering coefficient)
measures the probability that neighbors of a node are also connected to each other, see Appendix A.4.

Eigenvector centrality captures the importance of connected nodes and elaborates the concept of
degree, see Appendix A.5 for a definition. The eigenvector centrality not only captures the amount
of links for each node (like degree), but also captures how important each connected node is. This
means that a node can have links to many other nodes (high degree), but in order to also have a high
eigenvector centrality, the connected nodes must also have many connections to other nodes. Hub and
authority centrality show whether the in- and outgoing links of nodes are going to or coming from
important nodes. Hub nodes are nodes that point to many useful (high authority) nodes and nodes with

Quantitative Finance and Economics Volume 2, Issue 3, 615–636.
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high authority scores are nodes pointed to by nodes with high hub scores.
The literature often also looks at the diameter of the network. This number is very stable (between

5 and 7) over time. Therefore, we do not investigate this indicator further.

2.4.1. C: links to ancillary systems

TARGET2 settles many transactions going from and to other FMIs (also called ancillary systems
in the context of TARGET2). Therefore, there is a liquidity dependency between TARGET2 and these
Ancillary systems (ASs). Time series number 12 describes the development of the absolute turnover
of ancillary systems in TARGET2. Series 13 gives the relative development of the ancillary system
turnover relative to the total turnover of TARGET2.

2.4.2. D: HHI

The normalized Herfindahl-Hirschman Index (HHI) denotes the distribution of relative turnover of
participants. If there is one large bank with all turnover of the whole market then the normalized HHI
is 1. When turnover is equally distributed amongst participants, this number is zero. The normalized
HHI is calculated by using the following formula:

HHInormalized =

∑N
i=1 M2

i − 1/N
1 − 1/N

(3)

for N > 1, where Mi is the market share of bank N.
We apply the HHI not only to the outgoing turnover of banks but also to the network properties degree,
eigenvector centrality, hub centrality and authority centrality. The HHI is a measure that in contrast to
the median takes the distribution of each node (bank) into account. However, the largest node has the
largest contribution to the HHI.

3. Method

We compare three different models that can capture cyclical variation. The first two models are
based on the simple ARIMA model:

Yt =

p∑
i=1

ϕiYt−i +

q∑
i=1

θiεt−i + εt (4)

The optimal number of included lags of the Auto Regressive parts p and Moving Average parts q are
found based on the minimization of the Akaike Information Criterion (AIC). To detect seasonality, the
simple ARIMA model is often extended by Fourier’s series, as explained in Hyndman and
Athanasopoulos (2013). The main idea of this method is to write a periodic function as a combination
of sines and cosines. However, this method requires equal cycle lengths. Since the number of business
days differs across months, this model is not suitable for detecting monthly seasonality. This paper
considers the following models to detect cyclicality:

1. ARIMA with dummy variables for days of the week and first, middle and last three days of the
month (Dummy model 1).

Quantitative Finance and Economics Volume 2, Issue 3, 615–636.
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2. ARIMA with the dummy variables as used in the first dummy model extended by governing
council meetings decisions (Dummy model 2).

3. TBATS: Trigonometric, Box-Cox transformation, ARMA errors, Trend and Seasonality.

3.1. Dummy model 1: DM1

Dummy Model 1 extends the standard ARIMA model by adding dummy variables for the day of
the week and month:

Yt = µ +

M∑
i=1

Pi−1∑
j=1

γi, jDi, j,t +

p∑
i=1

ϕiYt−i +

q∑
i=1

θiεt−i + εt (5)

where Di, j,t is a matrix containing the dummy variables for the day of the week and month. This means
that for each business day of the week and month a dummy variable is created.‖ As it was found that
the Tuesdays usually did not show any significant changes in payment behavior, this day is the omitted
variable to avoid the dummy variable trap. Figure 2 shows how the monthly dummy variables are
constructed for months with 20 business days.

Figure 2. Dummy variable construction for a month with 20 business days.

Irrespective of the length of the month we always use the first five, last five, and middle five business
days. The first five dummy variables correspond to the first five business days of the month, and are
referred to as ‘Start1,..., Start5’ in Figure 2. The last and middle five days are referred to as ‘End1, ...
,End5’ and ‘Middle1, ... , Middle5’ respectively. If the middle number is not an integer, it is rounded
up to the nearest integer number. We look at the first, middle and last days of the month to investigate
where seasonality is the strongest.

We find that for the dummy model, the optimum number of first, middle and last days of the month
to include is three, which means that we include nine dummy variables for day of the month.
Furthermore, this model includes dummy variables for the business days of the week (except
Tuesday). Hence in total 13 dummy variables are used. This model will be referred to as DM1.∗∗

Since parsimonious models are preferred, we determine whether the week and/or month dummy
variables could be omitted without significantly lowering the performance of Dummy model 1 by
applying the Likelihood Ratio (LR) test:

‖For example one column in the Di, j,t matrix is the Monday dummy variable, which is equal to one for each Monday and zero
otherwise. Another column in Di, j,t is for example the ‘Last day of the month’ variable, which is equal to 1 for each last day of the
month, and zero otherwise. The length of these columns is equal to the total number of business days in the full dataset.
∗∗We also applied a model that includes all week and all monthly dummy variables. However, even though many variables are added

to the model, it did not improve the fit or forecast. Therefore, the model that includes all monthly dummy variables is not discussed
further in this paper.

Quantitative Finance and Economics Volume 2, Issue 3, 615–636.
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LR = −2[L(θ̃) − L(θ̂)] (6)

where L(θ̃) is the log-likelihood of the restricted model (fewer variables) and L(θ̂) the
log-likelihood of the more unrestricted model (more variables). Under the null hypothesis, the
Likelihood Ratio statistic follows approximately a χ2

n distribution (see Wilks, 1938) where degrees of
freedom n is equal to the difference of the estimated parameters between the two nested models. H0 is
rejected in case LR ≥ χ2

n;1−α which means that the unrestricted (full) model fits the data significantly
better than the model with fewer variables, corrected for the fact that adding more variables should
always lead to a better fit. In case the LR test concludes that the month or week dummy variables do
not significantly improve the model, these variables are excluded from Di, j,t. ††

3.2. Dummy model 2: DM2

The decisions by the Eurosystem’s Governing Council may affect behavior of market participants.
The second model extends Dummy model 1 by including the Governing Council meetings, which have
an impact on the Reserve Maintenance Period (RMP). Besides the week and month dummies as used
in DM1, we also include the first and last three business days of the Reserve Maintenance Periods.
Therefore, DM2 includes six more dummy variables than DM1. This version of the ARIMA-dummy
model will be referred to as (DM2, or Dummy model 2). Both DM1 and DM2 are estimated by
Maximum Likelihood Estimation (MLE).

3.3. TBATS

The last model is a state space model with a level component lt and is extended with M
trigonometric seasonal cycles si

t and ARIMA errors dt. The TBATS model is introduced by De Livera
et al. (2011) as an extension of conventional Innovation State Space Models in order to include less
restricted cyclical patterns and to deal with correlated errors. The TBATS model uses a transformation
of the data Y (ω)

t , which is the Box-Cox transformed data Yt, in order to allow for some types of
nonlinearity. As extensively discussed in De Livera et al. (2011) the TBATS model is defined by:

Y (ω)
t = `t−1 + φbt−1 +

T∑
i=1

s(i)
t−1 + dt (7a)

`t = `t−1 + φbt−1 + αdt (7b)
bt = (1 − φ)b + φbt−1 + βdt (7c)

s(i)
t =

ki∑
j=1

s(i)
j,t (7d)

s(i)
j,t = s(i)

j,t−1 cos
(
2π jt
mi

)
+ s∗(i)j,t−1 sin

(
2π jt
mi

)
+ γ(i)

1 dt (7e)

s∗(i)j,t = −s(i)
j,t−1 sin

(
2π jt
mi

)
+ s∗(i)j,t−1 cos

(
2π jt
mi

)
+ γ(i)

2 dt (7f)

††This changes the number of columns in Di, j,t from 13 to 4 or 9 respectively
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623

From line 7a it can be seen that the data is decomposed into level, trend and seasonal components. The
ith seasonal component has (possible non-integer) length mi and is written as a sum of k harmonics.
The stochastic level of the ith seasonal component is denoted by s(i)

j,t, and the stochastic growth in the
level of the ith seasonal component allows the seasonal periods to slightly change over time, and is
denoted by s∗(i)j,t .

De Livera et al. (2011) state that estimation of the TBATS model is done by minimizing equation (8)
with respect to θ which is a vector that contains the Box-Cox parameter ω, the smoothing parameters
and ARMA coefficients:

L∗ = n log(SSE∗) − 2(ω − 1)
n∑

t=1

logYt (8)

where L∗ is the optimal log-likelihood and S S E∗ is the sum of squared errors that is optimized for
given parameter values.

The advantage of the ARIMA dummy model is that the model itself is quite intuitive and if the
dummy variables are constructed in the proposed way it does not matter whether lengths of periods are
varying. Contrary to the periods in the TBATS model, the end of the month can be always taken into
account in the ARIMA dummy model, irrespective of the length of the month. The TBATS model on
the other hand has an outcome that is very intuitive since this model decomposes the time series into
different components such as level, trend and seasons, which easily results in a visual output.

3.4. Model comparison

3.4.1. Out-of-sample fit

We assume that the model with the best out-of-sample fit is also the model that captures cyclical
variation best. In order to avoid over-fitting of the data, model performance of the TBATS and ARIMA
dummy models is compared based on out-of-sample fit. The model estimation is based on July 2008–
June 2014 and the fit of each model is based on July 2014–Dec 2015, which are the train data and the
test data respectively. The output of the estimation that is based on the train data is used to determine
forecasts for the test period. Two different forecasts are produced; 5 and 20 period(s) ahead, which
means that for each forecast it is assumed that all data up until 5 or 20 days ago is known. Reason for
this is that 5 periods correspond to a week and 20 periods correspond approximately to a month.

3.4.2. RMSE

For each forecast (5 and 20 periods ahead for each risk indicator) the out-of-sample Root Mean
Square Error (RMSE) is calculated, which indicates the magnitude of the difference between the
predicted observations and the real observations. Contrary to most accuracy measures, the RMSE
penalizes the error for forecasted observations that deviate considerably from the actual data while
penalizing overestimations and underestimations equally. However, since the RMSE is not scale
invariant it cannot be used to compare the fit across different indicators. An accuracy measure that can
be used across risk indicators is the Mean Average Percentage Error (MAPE). However, since the
MAPE penalizes overestimations more than underestimations, the RMSE is a more appropriate
measure to determine the fit of each forecast.

Quantitative Finance and Economics Volume 2, Issue 3, 615–636.
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4. Results

4.1. Cyclical patterns

For each risk indicator we determine whether cyclical patterns (month and/or week) are present. We
assume that cyclical patterns are detected more accurately if the fitted values of the forecast are closer
to the actual values, which is measured by RMSE. We conclude that for the 1.1 and 1.2 transactions
combined all risk indicators contain significant week and month patterns, except for the turnover to
AS (time series 12 and 13 in Table 1) for which the TBATS model cannot recognize a month or week
pattern.‡‡ However, when all transactions (except 4.4) are included, the ARIMA dummy models still
determines significant cyclical patterns, but the TBATS model does not recognize any cyclical pattern
for the relative turnover to AS, the HHI eigenvector and hub centrality. Table 3 in Appendix C provides
an overview of cyclical variations for the dummy model and the TBATS model.

4.2. Forecast accuracy

The out-of-sample fit is compared based on the RMSEs of the 5 and 20 periods ahead forecasts.
Since the absolute value of the RMSE depends on the scale of the risk indicator, it is hard to interpret
the magnitude. In order to provide some referential framework to the RMSE of the Dummy and TBATS
models, they are compared to the RMSEs of naive models. The 5 periods ahead forecasts are compared
to the naive model where each value at time t is set equal to the value at time t − 5. The 20 periods
ahead forecasts are compared to the naive model where each value at time t is set equal to the value
at time t − 20. For each risk indicator we normalized the RMSE with respect to the naive model and
subtracted 1. Therefore, a positive value means that the forecast of a certain model performs better
than the naive forecasts, and a negative value implies that the forecast of a certain model performs
worse than the naive forecasts. Since the RMSEs are normalized, the magnitudes can be interpreted as
a percentage increase or decrease with respect to the naive model. For example a value of 0.3 implies
that the RMSE of a model is 30 % lower (better) than the RMSE of the naive model.

Figure 3 and 4 show the normalized RMSE for 5 and 20 days ahead forecasting for the 1.1 and 1.2
transactions. For nearly all indicators, the ARIMA dummy and TBATS model perform better than the
naive model as virtually all bars are positive. Also, ARIMA dummy models produce more accurate
forecasts than the TBATS model.

We expect that this difference between the ARIMA dummy models and the TBATS model is due to
the varying month lengths. Even though the TBATS model can capture cycles that change slightly, we
expect that the month lengths vary too much across months. From Figure 3 and 4 we can also conclude
that the difference in performance between DM1 and DM2 is very small. This implies that adding the
governing council decisions does not significantly improve the model, and therefore we conclude that
the RMP effect is not significant. Figure 7 and 8 in Appendix D show the normalized RMSE for 5 and
20 days ahead forecasting for all transactions.

‡‡We also modeled 1.1 and 1.2 transactions separately, however, we did not find significant differences compared to the patterns that
are found when both 1.1 and 1.2 transactions are included.
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Figure 3. Out-of-sample fit of all indicators for 1.1 and 1.2 transactions with respect to the
naive model. A negative value indicates that a certain forecast/fit is worse than the naive
model.
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Figure 4. Out-of-sample fit of all indicators for 1.1 and 1.2 transactions with respect to
the naive model.A negative value indicates that a certain forecast/fit is worse than the naive
model.
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4.3. Visualized forecasts

Figure 6 visualizes the 20 days (roughly 1 calendar month) ahead forecasting of the reciprocity
indicator. The figure shows the difference between the predicted values (dashed red line) and the actual
observations (solid blue line) for the degree indicator, using dummy model 1. The light, medium and
dark gray area correspond to the 90, 95 and 99% confidence intervals, respectively. The errors can be
approximated by a normal distribution. Figure 5 shows an example of the error distribution compared
to the normal distribution.

Figure 5. Histogram of errors of Throughput at 12.00 indicator of 1.1 and 1.2 transactions,
produced by Dummy model 1.

The errors, however, have fatter tails than a normal distribution. As a result the number of times the
predicted value lies outside e.g. the 99% interval is more than 1%.

To signal the existence of a problem, the so called ‘traffic light’ approach (green, yellow, red) is
adopted in Berndsen and Heijmans (2017). In case of green light, there is no problem with a certain
indicator relative to the Benchmark. A yellow light shows a moderate change and a red light shows a
substantial change in the indicator relative to the Benchmark. This is a very intuitive way to signal the
potential risks linked to the time evolution of a particular indicator.

FMI experts monitoring indicators often use a signaling for automatically identifying changes that
should be considered abnormal. For signaling there is a tradeoff between giving alarms too often
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(false positive) or too few (false negative). Depending on the preference of the expert, the confidence
intervals outside of which alarms should be given can be chosen to be wider or narrower. Also, experts
can adjust the number of times they are warned by changing the threshold for the number of times the
real value lies outside the prediction interval in a given month.

Figure 6. 20 days ahead forecast example: Reciprocity predicted 20 periods ahead by
Dummy model 1.

5. Conclusions

This paper examined cyclical patterns in FMI risk indicators using TARGET2 transaction data
ranging from 2008 up to 2015. We investigate three different cyclical patterns as input to the models;
1) week, 2) month and 3) reserve maintenance period. All three models are able to detect multiple
cyclical patterns. The ARIMA dummy models are flexible in varying period lengths. The ARIMA
models can generally handle cycle length better than the TBATS model, which is an important feature
for the month pattern since the number of business days in a month varies between 19 and 23. On the
other hand, the output of the TBATS model is more intuitive. This output visualizes the amplitude of
each cycle (i.e. week and month) individually and combined.

Significant cyclical patterns are found by both the ARIMA models and the TBATS models for nearly
all risk indicators based on interbank (1.1 and 1.2) transactions. When all transactions (excluding
technical transfers, category 4.4) are included in the risk indicators, the TBATS model does not find
significant cyclical patterns in some (3 out of 18) risk indicators. We find that the forecasts from the
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ARIMA dummy models are more accurate than the TBATS forecasts. Moreover, there is not much
difference between the RMSEs of the two ARIMA dummy models. Hence, we do not include the
governing council decision in our model. FMI or central bank experts, such as policy advisors, FMI
overseers and financial stability experts, could use our forecasting method to determine whether a risk
indicator deviates significantly from the normal pattern.

Our method can be used by financial market infrastructure operators or overseers in their monitoring
and assessment of the system. The indicators developed by [4] and also other (future) indicators that
are based on their own history, benefit from our threshold method to set a mathematically justified
level for medium or high risk. The finetuning of the threshold, however, needs to be done with the
expert in charge and may depend on the different application. The indicators and threshold method
have been used in the Eurosystem to develop a monitoring dashboard for the system overseers. In fact,
the development and finetuning of this dashboard has been done in very close cooperation with the
overseers.

Acknowledgments

The authors would like to thank Ron Berndsen and the anonymous referees of Quantiative Finance
and Economics for providing useful feedback on earlier drafts of this paper. They also would like to
thank the participants of the 4th joint Payments Canada and Bank of Canada-Bank symposium for their
feedback.

Conflict of interest

Heijmans is a member of one of the user groups with access to TARGET2 data in accordance with
Article 1 (2) of Decision ECB/2010/9 of 29 July 2010 on access to and use of certain TARGET2 data.
DNB and the PSSC have checked the paper against the rules for guaranteeing the confidentiality of
transaction-level data imposed by the PSSC pursuant to Article 1 (4) of the above-mentioned issue.
The views expressed in the paper are solely those of the authors and do not necessarily represent the
views of the Eurosystem or De Nederlandsche Bank.

References

Arciero L, Heijmans R, Heuver R, et al. (2016) How to Measure the Unsecured Money Market? The
Eurosystem’s Implementation and Validation using TARGET2 Data. Int J Central Bank, 247–280.
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Appendix

A. Time series explanation

A.1. Edge density

The edge density is calculated in the following way:

c =

∑N
i=1

∑N
j=1 ai j

N(N − 1)
(9)

where ai j is the adjacency matrix that contains a 1 if two nodes have a link on a day and zero
otherwise. Edge density is also known as connectivity and measures the connectivity of the network
by determining the ratio of number of actual links and the total number of possible links between
nodes. The edge density of the 50th quantile is around 0.05 which means that an average participant is
connected to only 5 % of all other participants in the network.
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A.2. Degree

Degree is the number of links of each node per day and is calculated by the following formula:

ki =

N∑
j=1

ai j (10)

where ai j is as defined in A.1.
The average degree is defined as follows:

kavg =

∑N
i=1

∑N
j=1 ai j

N
(11)

The average degree in the sample is around 24, which means that the average participant in the network
has links with 24 other participants.

A.3. Reciprocity

Reciprocity is the fraction of links with a link in the opposite direction. Garlaschelli and Loffredo
(2004) define it as follows:

ρ =

∑
i, j(ai j − c)(a ji − c)∑

i, j(ai j − c)2 (12)

where ai j and c are as defined in equation (9). Reciprocity measures how likely it is that if there is a
link from A to B, that there is also a link from B to A. The average reciprocity in our sample is 0.5,
which means that on average half of the in-going links are also out-going.

A.4. Transitivity

The transitivity for each single node is calculated as follows:

Trani =
2zi

ki(ki − 1)
(13)

where ki refers to the degree as defined in equation (10) and zi denotes the number of links between
neighbors of node i. Note that the maximum number of possible connections that the neighbors of
node i can have is equal to (ki ∗ (ki − 1))/2
The transitivity for the whole network is the average of the transitivity of the nodes in the full network,
which is shown in the following formula:

Tranavg =

∑N
i=1 Trani

N
(14)

Transitivity is also known as clustering coefficient and measures the probability that neighbors of a
node are also connected to each other and therefore indicates how well connected the nodes around a
certain node are. The average transitivity in our sample is 0.35 which indicates that on average 35 %
of the neighbors of a node are connected to each other.
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A.5. Eigenvector centrality

The eigenvector centrality of node vi can be written as a function of the eigenvector centrality of its
neighbors (ce(v j)) in the following way, as explained by Zafarani et al. (2014).

ce(vi) =
1
λ

n∑
j=1

A j,ice(v j) (15)

where A j,i denotes the transpose of adjacency matrix A and λ corresponds to an eigenvalue of A j,i. The
eigenvector centrality of all nodes can be written as Ce = (Ce(v1),Ce(v2), ...,Ce(v + n))T so equation
(15) can be written in matrix notation as follows:

λCe = AT Ce (16)

where Ce is an eigenvector of adjacency matrix AT and λ the eigenvalue corresponding to Ce. Note
that AT is equal to A for all undirected networks. Eigenvector centrality captures not only the amount
of links for each node, but also how important each connected node is. Eigenvector centrality increases
if a node has more connected nodes that have many connections to other nodes.

A.6. Hub and authority centrality

The equation for hub centrality are as follows:

hi =
∑
i→ j

a j =
∑

j

Ai j ∗ a j = A ∗ a (17)

ai =
∑
j→i

h j =
∑

j

A ji ∗ h j = AT h

where a and h denote the vector of the authority and hub scores of all nodes, Ai j denotes the adjacency
matrix and A ji the transpose of the adjacency matrix. Hence, h = (AAT )h and a = (AT A)a are the
eigenvectors corresponding to eigenvalues of AAT and AT A respectively. Hub and authority centrality
show whether the in- and out-going links of nodes are going to or coming from well-connected nodes.

A.6.1. Interdependency indicator

n. Turnover relative to AS
This turnover relative to AS indicator measures liquidity in the whole system and calculates the
percentage of the liquidity that originates from Ancillary Systems.
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B. Transaction categories in TARGET2

Table 2. Categories of transactions in TARGET2.

Risk indicator 1.1 and 1.2 transactions All transactions
ARIMA TBATS ARIMA TBATS

Operational indicators
Relative performance TARGET2 Y Y Y Y
Throughput at 12.00 Y Y Y Y
Throughput at 14.30 Y Y Y Y
Network properties
Edge density undirected Y Y Y Y
Edge density directed Y Y Y Y
Degree Y Y Y Y
Reciprocity Y Y Y Y
Transitivity Y Y Y Y
Eigenvector centrality Y Y Y Y
Hub centrality Y Y Y Y
Authority centrality Y Y Y Y
links to AS
Turnover to AS (absolute) Y Y Y Y
Turnover to AS (relative) Y N Y N
HHI
HHI turnover Y Y Y Y
HHI degree Y Y Y Y
HHI eigenvector centrality Y Y Y N
HHI Hub centrality Y Y Y N
HHI authority centrality Y Y Y Y

Note: ‘Y’ indicates that the model recognizes a significant pattern. The identified
patterns are the same for week and month.
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C. Cyclical variation

Table 3. Cyclical variation presence.

Risk indicator 1.1 and 1.2 transactions All transactions
ARIMA TBATS ARIMA TBATS

Operational indicators
Relative performance TARGET2 Y Y Y Y
Throughput at 12.00 Y Y Y Y
Throughput at 14.30 Y Y Y Y
Network properties
Edge density undirected Y Y Y Y
Edge density directed Y Y Y Y
Degree Y Y Y Y
Reciprocity Y Y Y Y
Transitivity Y Y Y Y
Eigenvector centrality Y Y Y Y
Hub centrality Y Y Y Y
Authority centrality Y Y Y Y
links to AS
Turnover to AS (absolute) Y Y Y Y
Turnover to AS (relative) Y N Y N
HHI
HHI turnover Y Y Y Y
HHI degree Y Y Y Y
HHI eigenvector centrality Y Y Y N
HHI Hub centrality Y Y Y N
HHI authority centrality Y Y Y Y

Note: ‘Y’ indicates that the model recognizes a significant pattern. The identified
patterns are the same for week and month.
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D. RMSE forecasting all transactions

Figure 7. Out-of-sample fit of all indicators for all transactions (except category 4.4) with
respect to the naive model.
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Figure 8. Out-of-sample fit of all indicators for all transactions (except category 4.4) with
respect to the naive model.
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