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Abstract: In this paper, we introduce a class of stochastic interest model driven by a compound
Poisson process and a Brownian motion, in which the jumping times of force of interest obeys
compound Poisson process and the continuous tiny fluctuations are described by Brownian motion, and
the adjustment in each jump of interest force is assumed to be random. Based on the proposed interest
model, we discuss the expected discounted function, the validity of the model and actuarial present
values of life annuities and life insurances under different parameters and distribution settings. Our
numerical results show actuarial values could be sensitive to the parameters and distribution settings,
which shows the importance of introducing this kind interest model.
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1. Introduction

The randomness of interest rates deeply influences the accuracy of actuarial values of life insurances
and life annuities, especially for long-term policies. Hence it is important to consider stochastic interest
models in actuarial science. So far, there are numerous papers which have investigated stochastic
interest models and their applications in actuarial science. Bellhouse and Panjer Bellhouse and Panjer
(1980, 1981) computed the moments of insurance and annuity functions based on AR(1) stochastic
interest models. Li et al. (2017) also used AR(1) interest models in the survivorship life insurance
portfolios. Dhaene (1989) modeled the force of interest as an ARIMA(p,d,q) process in the analysis
of the moments of present value functions. Cai and Dickson (2004) used a Markov process to model
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the interest rates in the research of ruin probability. Beekman and Fuelling (1990, 1991) modeled
the accumulated force of interest as an Ornstein-Uhlenbeck process and a Wiener process respectively
in the study of continuous-time life annuity. Later, Hoedemakrs et al. (2005) and Dufresne (2007)
discussed the distribution of life annuity under Beekman and Fuelling’s methods. Zhao et al. (2007)
and Zhao and Zhang (2012) expressed the accumulated force of interest by a Wiener Process and a
Poisson Process in the research of optimal dividend and pricing perpetual options respectively.

Generally, stochastic interest models based on time series methods require the assumption that the
interest rate in one year is fixed, which does not always fit in with market interest rates. The methods
by modeling the accumulated force of interest bring convenience to both theoretical analysis and
calculation, but the behavior of the force of interest can’t be indicated distinctly. So Parker (1994a,
1994b) studied the first three moments of homogeneous portfolios of life insurance and endowment
policies by modeling the force of interest directly based on a Wiener process or an
Ornstein-Uhlenbeck process. Especially, the modeling method based on Ornstein-Uhlenbeck process
is also called as Vasicek model in finance, and has been applied extensively (such as Boulier et al.,
2001; Liang et al., 2017, etc.). Parker (1994c) further compared the randomness of annuity of the
models describing the accumulated force of interest with that of the ones describing the force of
interest directly. Considering stochastic jumps of the force of interest in financial markets, Li et al.
(2017) modeled the force of interest directly by a compound Poisson process.

Considering the change of yield rate in insurance company, the following two aspects are involved:
stochastic continuous fluctuation from risk-free investments of insurance companies and stochastic
jumps from adjustments of market interest rate (epically official rate of interest). So we might
combine these two parts together to aim to introduce a class of interest models, in which the force of
interest is expressed by a compound Poisson process and a Brownian motion. Our model is a
generalization of Parker (1994a, 1994b, 1994c) and Li et al. (2017). It not only considers discrete and
continuous changes simultaneously, but also assumes random adjustment range in each jump about
the force of interest. These characters can interpret random changes of interest on financial market. In
literature, stochastic interest models with jumps have been studied by stochastic differential equation,
for example, Brigo and Mercurio (2006), Deng (2015), Li et al. (2016) and Hu and Chen (2016) etc.
But the modeling thinking-way and research method are different from the one presented in this paper.

The paper is organized as follows. In Section 2, we introduce the stochastic interest model driven by
a compound Poisson process and a Brownian motion. In Section 3, we give an explicit formula of the
expected discounted functions of the proposed model under general circumstances, discuss the validity
of this model and investigate their properties under different parameter and distribution settings through
analytical and numerical analysis. In Section 4, we give actuarial present values of life annuities in
discrete and continuous conditions. Lastly, we end this paper with a conclusion.

2. Stochastic interest models driven by compound Poisson process and Brownian motion

Assume that all random variables and stochastic processes under consideration are defined on an
appropriate probability space (Ω, P,F ) and are integrable. In this section, we construct a class of
stochastic interest models including a discrete part and a continuous part.

For the discrete part, we follow and generalize the idea of Li et al. (2017), and the following three
assumptions are satisfied:
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(1) The jumping number of the force of interest can be expressed by a Poisson process;
(2) The adjustment direction (rise or fall) of interest rates in every jump of the force of interest is
independent of each other; and
(3) The adjustment ranges of interest rates in all jumps are independent and identically distributed.

For the continuous part, Brownian motion is usually used to describe stochastic tiny fluctuations of
all kinds of financial assets. Due to the excellent mathematical properties of Brownian motion and the
consistency between the change rules of finance assets and stochastic fluctuations of Brownian motion,
we choose Brownian motion to describe continuous tiny fluctuations of the force of interest.

So the force of interest δt, t ≥ 0 is expressed by

δt = δ0 +

N(t)∑
i=0

Yi + σB(t), t ∈ [0,+∞)}. (1)

where {N(t), t ≥ 0} is a Poisson process with parameter λ and denotes the jumping number of the force
of interest on interval [0, t]. {Yi}

+∞
i=1 are independent and identically distributed random variables and

each Yi expresses the jumping range of the i-th jump of the force of interest. So
∑N(t)

i=1 Yi, t > 0, is a
compound Poisson process. The stochastic process {B(t), t ≥ 0} is a standard Brownian motion which
describes the stochastic fluctuations of the force of interest and the constant σ represents the fluctuation
intensity.

The jumping range of the force of interest Yi can be further written as

Yi = Ii · Zi,

where Ii(i = 1, 2, 3, ...) is the direction of the i-th jump of the force of interest with {Ii = 1} for a rise
and {Ii = −1} for a fall. The random variable Ii(i = 1, 2, 3, ...) obeys P(Ii = 1) = 1 − P(Ii = −1) =

p(0 ≤ p ≤ 1), in which p is called the up-jumping probability of the force of interest. The random
variable Zi(i = 1, 2, 3...) is non-negative and can be interpreted as the adjustment range of the i-th
jump of the force of interest with identical distribution F(z) = P(Zi ≤ z). Both of {Ii(i = 1, 2, 3, ...)}
and {Zi(i = 1, 2, 3, ...)} are independent and identically distributed sequences of random variables.
Furthermore, the random sequences {Ii(i = 1, 2, 3, ...)}, {Zi(i = 1, 2, 3, ...)}, {N(t), t ≥ 0} and {B(t), t ≥ 0}
are independent of each other.

Remark 1. If P(Zi = 0) = 1, or P(Zi = α) = 1 and σ = 0, our interest model will be reduced to one in
Parker (1994c) and Li et al. (2017) respectively.

Here, we give an important property (refer to Ross (1996)) on Poisson process which will be used
in the following analysis.

Lemma 1. For a Poisson process, if the occur times of all the events are considered as unordered
random variables under the condition N(t) = n , these random variables are distributed independently
and uniformly on the time interval [0, t].

3. Expected discounted function under stochastic interest model

In this section, we will study the accumulated interest force function and the expected discounted
function of the stochastic interest model (1).
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3.1. Expected discounted function

The accumulated interest force on the time interval [0, t] can be expressed as

Jt
0 =

∫ t

0
δsds =

∫ t

0

δ0 +

N(s)∑
i=1

Yi + σB(s)

 ds

= δ0 · t +

∫ t

0

N(s)∑
i=1

Yi

 ds + σ

∫ t

0
B(s)ds = δ0 · t + H1(t) + H2(t).

(2)

(a) In formula (2), by changing the integral direction (refer to Section 2.2 in Li et al. (2017)), we obtain

H1 =

N(t)∑
i=1

Yi(t − Ti) =

N(t)∑
i=1

Ii · Zi(t − Ti), (3)

where Ti (i = 1, 2, 3, ...) denotes the i-th jumping time of the force of interest.
(b) Through stochastic calculus (see Klebaner (2005)), we know

H2 ∼ N(0, σ2t3/3). (4)

So from formulas (2), (3) and (4), we have

Jt
0 = δ0 · t +

N(t)∑
i=1

Ii · Zi(t − Ti) + H2. (5)

The discounted function, which is the random present value of one-unit payment at time t, can be
expressed as

exp
(
−Jt

0
)

= exp (− (δ0 · t + H2 (t)))
N(t)∏
i=1

exp(−Ii · Zi(t − Ti)). (6)

From formula (4) and Section 2 in Parker (1994c), we have,

E
[
exp (− (δ0 · t + H2 (t)))

]
= exp

((
−δ0 + t2σ2/6

)
t
)
. (7)

Moreover, it can be obtained from the law of total expectation that

E

N(t)∏
i=1

exp(−Ii · Zi(t − Ti))

 = E

E
N(t)∏

i=1

exp (−Ii · Zi(t − Ti)) |N(t)


 . (8)
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By Lemma 1 and the independent assumptions in Section 2, we have

E

N(t)∏
i=1

exp(−Ii · Zi(t − Ti))|N(t))


= E

N(t)∏
i=1

exp(−Ii · Zi(t − Ui))


=

N(t)∏
i=1

E
[
exp(−Ii · Zi(t − Ui))

]
=

N(t)∏
i=1

(
E

[
exp (−Zi(t − Ui))

]
p + E

[
exp (Zi(t − Ui))

]
(1 − p)

)
=

N(t)∏
i=1

(
p
t

∫ +∞

0

∫ t

0
exp (−z(t − u)) dudF(z) +

1 − p
t

∫ +∞

0

∫ t

0
exp (z(t − u)) dudF(z)

)
= βN(t)

t ,

(9)

where the random variables, U1,U2, ...,UN(t) are independent and identically distributed on the time
interval [0, t] and

βt =
1
t

∫ +∞

0

1
z
((

p(1 − exp(−zt)
)

+ (1 − p)
(
exp(zt) − 1)

))
dF(z).

Based on the foregoing analysis, we obtain the following theorem.

Theorem 1. Under the stochastic interest model (1), the expected discounted function can be
expressed as

E
[
exp

(
−Jt

0
)]

= exp
((
−δ0 + t2σ2/6 + λ(βt − 1)

)
t
)
. (10)

Proof. See the Appendix. �

Remark 2. From equation (10) and βt in formula (9), we can prove that the expected discounted
function is an increasing function of σ and a decreasing function of p. We will further demonstrate
this property in Section 3.2 through numerical analysis.

In practice, the jump sizes of interest rate are relatively fixed, for examples, the Federal reserve rate
and the Chinas central bank benchmark interest rate etc. In addition, the jump sizes of interest rate
are not too big. Hence, we give three special distributions about the jump size as special cases in the
following corollary.

Corollary 1. The expected discounted function E[exp(−Jt
0)] is influenced by the distribution function

F(z) and the up-jumping probability p. There are some special cases of F(z) and p as follows,
(1) If P(Zi = α) = 1 (i = 1, 2, 3, ...) for a positive constant α, the result of βt is consistent with that

in Li et al. (2017) which is generalized further in this paper, we obtain that

βt =
1
αt

(
p
(
1 − exp(−αt)

)
+ (1 − p)

(
exp(αt) − 1

))
.
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(2) If P(Zi = α1) = q = 1 − P(Zi = α2) (i = 1, 2, 3, ...) for two positive constants α1 and α2, that is,
Zi(i = 1, 2, 3, ...) obeys a two-point distribution, we have that

βt =
q
(
1 − exp(−α1t)

)
α1t

(
p + (1 − p) exp(α1t)

)
+

(1 − q)(1 − exp(−α2t))
α2t

(p + (1 − p) exp (α2t)) .

(3) If F(z) = z/θ for z ∈ [0, θ], that is, the random variable Zi(i = 1, 2, 3, ...) is uniformly distributed
on the time interval [0, θ], we have that

βt =
1
θt

(
p
∫ θ

0

1
z
(
1 − exp(−zt)

)
dz + (1 − p)

∫ θ

0

1
z
(
exp(zt) − 1

)
dz

)
.

(4) If p = 0, the market interest will always jump down at the moments when interest rates jump.
Because exp(zt) − 1 > zt, we have that

βt =

∫ ∞

0

1
zt

(
exp(zt) − 1

)
dF(z) >

∫ ∞

0
dF(z) = 1.

In this case, the interest rate might be negative if the jumping number of the interest rates on the time
interval [0, t] is sufficiently large.

(5) If p = 1, the market interest will always jump up at the moments when the interest rates jump.
Because 1 − exp(−zt) < zt, we have that

βt =

∫ ∞

0

1
zt

(
1 − exp(−zt)

)
dF(z) <

∫ ∞

0
dF(z) = 1.

In this case, the larger the jumping number of interest rates is, the smaller the expected discounted
function is.

Table 1. Values of expected discounted functions when F(z) is an one-point distribution.

α

Values of expected discounted functions

p = 0.4 p = 0.4 p = 0.5 p = 0.5 p = 0.6 p = 0.6 p = 0.7 p = 0.7
σ = 0.01 σ = 0.02 σ = 0.01 σ = 0.02 σ = 0.01 σ = 0.02 σ = 0.01 σ = 0.02

0.0030 0.7259 0.7631 0.6836 0.7187 0.6438 0.6768 0.6063 0.6374
0.0028 0.7227 0.7598 0.6834 0.7184 0.6462 0.6793 0.6110 0.6423
0.0026 0.7196 0.7565 0.6831 0.7181 0.6485 0.6818 0.6156 0.6472
0.0024 0.7165 0.7532 0.6829 0.7179 0.6509 0.6843 0.6204 0.6522
0.0022 0.7134 0.7500 0.6827 0.7177 0.6533 0.6868 0.6252 0.6572
0.0020 0.7103 0.7468 0.6825 0.7175 0.6557 0.6894 0.6300 0.6623

3.2. Analysis of validity of Stochastic Interest Model

As a general rule, the accumulated interest force function should be increasing with respect to time
t which means that the expected discounted function in formula (10) is decreasing. This property is
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Figure 1. Curves of expected discounted
functions for different p and α when F(z)
is an one-point distribution.
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Figure 2. Curves of expected discounted
functions for different p and λ when F(z)
is an one-point distribution.

called the validity of stochastic interest model which will be analyzed in this section. Now, we will
discuss how to restrict the value of the future time t in order to ensure this validity.

Let f (t) = (δ0 + λ)t − σ2t3/6 + λβtt, and we should ensure this function is increasing. Obviously,
the derivative function of f (t) exists if the function f (t) is finite. In fact, we can find that limt→0+ βt = 1
and βt ≤

∫ +∞

0
exp zt−1

zt dF(z) t ∈ (0,+∞). Hence, if F(·) is a light-tailed distribution, βt is finite for any
t ∈ [0,+∞), and so is the function f (t).

Under the condition of light-tailed distribution, the derivative function can be expressed as

f ′(t) = (δ0 + λ) − σ2t2/2 − λ
∫ ∞

0

(
pe−zt + (1 − p)ezt) dF(z).

We can find that f ′(0) = λ0 > 0 and limt→+∞ f ′(t) < 0, then there is at least one critical value in
interval (0,+∞) which satisfies f ′(t) = 0 and the first one is denoted as t∗. Hence, this model is valid
if time t ∈ [0, t∗]. Now, we will try to find the values of t∗ under various cases of the probability
distribution of Zi, F(·) given in Corollary 1 respectively.

(1) In case that P(Zi = α) = 1 (i = 1, 2, 3, ...) for a positive constant α, we have

f ′(t) = (δ0 + λ) − σ2t2/2 − λ
(
pe−αt + (1 − p)eαt) .

(2) In case that P(Zi = α1) = q = 1 − P(Zi = α2) (i = 1, 2, 3, ...) for two positive constants α1 and α2,
we have

f ′(t) = (δ0 + λ) − σ2t2/2 − λ
[
q
(
pe−α1t + (1 − p)eα1t) + (1 − q)

(
pe−α2t + (1 − p)eα2t)] .

(3) In case that F(z) = z/θ for z ∈ [0, θ], we have that

f ′(t) = (δ0 + λ) − σ2t2/2 −
λ

θt

[
p
(
1 − e−θt

)
+ (1 − p)

(
eθt − 1

)]
.
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For each case above, since there are exponential functions part and power function part in equation
f ′(t) = 0, it is very difficult to solve this equation directly. However, we can obtain the value of t∗ by
numerical approach and then can use the interest model in formula (1) when t ∈ (0, t∗). For instance, if
δ0 = 0.04, λ = 2, σ = 0.01, α = 0.0025 and p = 0.6 under case (1), we can obtain t∗ = 37.01; and if
δ0 = 0.04, λ = 2, σ = 0.01, θ = 0.004 and p = 0.6 under case (3), we can obtain t∗ = 35.08.

3.3. Numerical analysis

In this subsection, we analyze the changes of the expected discounted function under different
assumptions in Corollary 1. We consider three types of distribution function F(z), including one-point
distributions, two-point distributions and uniform distributions. The parameter δ0 is assumed to be
0.04. Firstly, we suppose λ = 2 and t = 10 to calculate the values of the expected discounted functions,
shown in Tables 1–3. In addition, the range of the parameters of F(z) is chosen based on the condition
of jump amplitudes of major market interest rates (such as the Federal reserve rate and the China’s
central bank benchmark interest rate).

Table 2. Values of expected discounted functions when F(z) is a two-point distribution.

α1 α2 q
Values of expected discounted functions

p = 0.4 p = 0.5 p = 0.5 p = 0.6 p = 0.6 p = 0.7
σ = 0.01 σ = 0.01 σ = 0.02 σ = 0.01 σ = 0.02 σ = 0.02

0.001 0.003 0.40 0.7136 0.6829 0.7179 0.6535 0.6870 0.6157
0.001 0.003 0.50 0.7106 0.6827 0.7177 0.6560 0.6896 0.6625
0.001 0.003 0.60 0.7076 0.6825 0.7175 0.6584 0.6922 0.6677

0.001 0.004 0.40 0.7233 0.6839 0.7189 0.6466 0.6798 0.6427
0.001 0.004 0.50 0.7186 0.6835 0.7186 0.6502 0.6835 0.6502
0.001 0.004 0.60 0.7139 0.6832 0.7182 0.6538 0.6873 0.6577

0.002 0.003 0.40 0.7196 0.6832 0.7182 0.6486 0.6818 0.6473
0.002 0.003 0.50 0.7181 0.6831 0.7181 0.6497 0.6831 0.6497
0.002 0.003 0.60 0.7165 0.6830 0.7180 0.6509 0.6843 0.6522

0.002 0.004 0.40 0.7294 0.6841 0.7192 0.6417 0.6746 0.6328
0.002 0.004 0.50 0.7262 0.6839 0.7189 0.6440 0.6771 0.6376
0.002 0.004 0.60 0.7230 0.6836 0.7186 0.6464 0.6795 0.6425

It can be observed from Table 1, Table 2 and Table 3 that the values of the expected discounted
functions become larger with increasing σ or decreasing p under three distribution assumptions. This
result verifies Remark 2. Furthermore, we can obtain that the values of the expected discounted
functions become larger with increasing α under the assumption P(Zi = α) = 1, or with increasing q,
decreasing both α1 and α2 under the two-point distribution assumption for Zi, or with decreasing θ

under the uniform distribution assumption for Zi if p ≤ 0.5. The values change in the opposite
direction if p ≥ 0.6.
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Figure 3. Curves of expected discounted
functions for different p and q when F(z)
is a two-point distribution.
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Figure 4. Curves of expected discounted
functions for different p and λ when F(z)
is a two-point distribution.

Table 3. Values of expected discounted functions when F(z) is an uniform distribution.

θ

Values of expected discounted functions

p = 0.4 p = 0.4 p = 0.5 p = 0.5 p = 0.6 p = 0.6 p = 0.7 p = 0.7
σ = 0.01 σ = 0.02 σ = 0.01 σ = 0.02 σ = 0.01 σ = 0.02 σ = 0.01 σ = 0.02

0.0040 0.7107 0.7471 0.6828 0.7178 0.6560 0.6897 0.6303 0.6626
0.0035 0.7068 0.7431 0.6825 0.7175 0.6590 0.6928 0.6364 0.6690
0.0030 0.7030 0.7391 0.6823 0.7172 0.6621 0.6960 0.6425 0.6755
0.0025 0.6993 0.7352 0.6821 0.7170 0.6652 0.6993 0.6488 0.6821
0.0020 0.6957 0.7313 0.6819 0.7168 0.6684 0.7027 0.6552 0.6887

Remark 3. In the above tables, we only display partial results due to limited space. We also find that
there is an equilibrium up-jumping probability p∗ under any one of these three assumptions when the
time t = 10, which satisfies 0.5 < p∗ < 0.6. The change regulation for p < p∗ and p > p∗ is similar
to that when p = 0.5 and p = 0.6 respectively. In fact, p∗ is the solution of equation βt = 1 which is
related to F(z) and t. So it can be expressed as p∗(F(z), t).

In Figures 1–6, we present the expected discounted functions as functions of time under different
settings. In Figure 1, the upper five curves show the expected discounted functions for α = 0.0028,
0.0026, 0.0024, 0.0022 and 0.0020 from top to bottom under the one-point distribution assumption
when p = 0.5, while the lower five curves show those functions from bottom to top when p = 0.6; in
Figure 3, the upper five curves show the expected discounted functions for q = 0.40, 0.45, 0.50, 0.55
and 0.60 from top to bottom under the two-point distribution assumption when p = 0.5, while the lower
five curves show those functions from bottom to top when p = 0.6; in Figure 5, the upper five curves
show the expected discounted functions for θ = 0.0040, 0.0035, 0.0030, 0.0025 and 0.0020 from top
to bottom under the uniform distribution assumption when p = 0.5, while the lower five curves show
those functions from bottom to top when p = 0.6; and in Figure 2, Figure 4 and Figure 6, every upper
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Figure 5. Curves of expected discounted
functions for different p and θ when F(z)
is an uniform distribution.
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Figure 6. Curves of expected discounted
functions for different p and λ when F(z)
is an uniform distribution.

five curves show the expected discounted functions from bottom to top for λ = 0.5, 1, 1.5, 2 and 2.5
with other parameters keep constant respectively when p = 0.5 under three distribution assumptions
respectively and the lower five curves show the corresponding expected discounted functions from
bottom to top respectively when p = 0.6.

From Figures 1–6, we further observe that the differences between the values of expected discounted
functions under different settings become significantly large as the parameter p or the time t increases.
This implies that the expected discounted functions is sensitive to F(z) and λ for large p and t. Hence,
more emphasis is required on the selection of parameters in the up-cycle of interest rate.

4. Application in life contingencies

In this section, we will apply the proposed stochastic interest model (1) to discrete life annuity and
continuous life annuity, life insurance payable at the end of the year of death and life insurance payable
at the moment of death. The actuarial present values (APVs) for these life annuities and life insuriance
will be shown under different stochastic interest assumptions.

Following Bowers et al. (1997), the symbol (x) denotes a life-age-x. The future lifetime and the
curate-future-lifetime of (x) are indicated by T (x) and K(x) respectively.

4.1. APVs of life annuities

In insurance science, there are two types of discrete life annuities which are discrete life annuity-
due and discrete life annuity-immediate. Without loss of generality, we only consider the former. In
the nomenclature, an n-year temporary life annuity-due of one per year is the one that pays one unit
amount at the beginning of each year while the annuitant (x) survives during the next n years and the
actuarial present value of this life annuity is denoted by äx:n|.

Referring to Chapter 5 in Bowers et al. (1997), the actuarial present value of this life annuity äx:n|
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can be expressed as

äx:n| = E

 n−1∑
k=0

exp
(
−

∫ k

0
δtdt

)
P(K(x) ≥ k)

 =

n−1∑
k=0

E
[
exp

(
−

∫ k

0
δtdt

)]
k px, (11)

where k px is the probability that the annuitant (x) will attain age x + k. Combining (11) with (10), we
obtain

äx:n| =

n−1∑
k=0

exp
((
−δ0 + k2σ2/6 + λ(βk − 1)

)
k
)

k px. (12)

Next, we consider the n-year temporary continuous life annuity for the annuitant (x), and the
corresponding actuarial present value is denoted by ax:n|. From Chapter 5 in Bowers et al. (1997), we
have that

ax:n| =

∫ n

0
at|dFT (x)(t) + an| · n px

and

at| = E
[∫ t

0
exp(−Ju

0)du
]

=

∫ t

0
E

[
exp(−Ju

0)
]
du.

So, we obtain the expression of ax:n| though Fubini’s theorem as follows,

ax:n| =

∫ +∞

0
exp

((
−δ0 + t2σ2/6 + λ(βt − 1)

)
t
)

t pxdt. (13)

Table 4. APVs of discrete life annuity when F(z) is an one-point distribution.

α

actuarial present value

p = 0.5 p = 0.5 p = 0.6 p = 0.6
σ = 0.01 σ = 0.02 σ = 0.01 σ = 0.02

0.0030 14.4406 15.6128 13.6018 14.6124
0.0028 14.4325 15.6028 13.6474 14.6663
0.0026 14.4249 15.5935 13.6937 14.7212
0.0024 14.4179 15.5848 13.7409 14.7772
0.0022 14.4114 15.5769 13.7889 14.8341
0.0020 14.4056 15.5697 13.8378 14.8921

4.2. APVs of continuous life insurances

In this section, we analyse the APVs of life insurances by taking two whole life insurances for
example which are the whole life insurance paying one unit at the end of the year of death and the one
paying one unit at the moment of death for some insured (x). Following standard symbols in Bowers
et al. (1997), Ax denotes the actuarial present value of the whole life insurance payable at the end of
the year of death and Ax denotes the one of payable at the moment of death.

Firstly, we discuss the expression of Ax.
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Ax = E
[
exp

(
−

∫ K(x)+1

0
δtdt

)]
=

+∞∑
k=0

E
(
−

∫ k+1

0
δtdt

)
· P(K(x) = k)

=

+∞∑
k=0

exp
((
−δ0 + (k + 1)2σ2/6 + λ(βk+1 − 1)

)
(k + 1)

)
· k px · px+k.

Secondly, we show the expression of Ax under our stochastic interest model.

Ax = E
[
exp

(
−

∫ T (x)

0
δtdt

)]
=

∫ +∞

0
E

(
−

∫ u

0
δtdt

)
dFT (x)(u)

=

∫ +∞

u
exp

((
−δ0 + u2σ2/6 + λ(βu − 1)

)
u
)
· fT (x)(u)du.

Table 5. APVs of discrete life annuity when F(z) is a two-point distribution.

α1 α2 q
actuarial present values

p = 0.5 p = 0.5 p = 0.6 p = 0.6
σ = 0.01 σ = 0.02 σ = 0.01 σ = 0.01

0.001 0.003 0.40 14.4182 15.5852 13.7949 14.8415
0.001 0.003 0.50 14.4126 15.5783 13.8441 14.8999
0.001 0.003 0.60 14.4070 15.5714 13.8937 14.9587

0.001 0.004 0.40 14.4477 15.6215 13.6606 14.6825
0.001 0.004 0.50 14.4371 15.6085 13.7311 14.7661
0.001 0.004 0.60 14.4266 15.5955 13.8025 14.8507

0.002 0.003 0.40 14.4265 15.5955 13.6952 14.7231
0.002 0.003 0.50 14.4230 15.5912 13.7188 14.7510
0.002 0.003 0.60 14.4196 15.5869 13.7424 14.7790

0.002 0.004 0.40 14.4562 15.6319 13.5628 14.5666
0.002 0.004 0.50 14.4477 15.6215 13.6079 14.6199
0.002 0.004 0.60 14.4392 15.6111 13.6532 14.6735

4.3. Numerical analysis

In this section, under different parameter and distribution settings, we calculate the APVs of the 20-
year temporary discrete life annuity-due under the one-point distribution and the two-point distribution
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Table 6. APVs of continuous life annuity when F(z) is an uniform distribution.

θ

actuarial present values

p = 0.5 p = 0.5 p = 0.6 p = 0.6
σ = 0.01 σ = 0.02 σ = 0.01 σ = 0.02

0.0040 14.1057 15.3728 13.5084 14.6499
0.0035 14.0963 15.3610 13.5716 14.7259
0.0030 14.0881 15.3508 13.6365 14.8040
0.0025 14.0812 15.3422 13.7032 14.8844
0.0020 14.0757 15.3351 13.7718 14.9671

assumption and the APVs of the 20-year temporary continuous life annuity for the annuitant (30) under
the uniform distribution of death assumption (refer to Section 3.7 in Bowers et al. (1997)). Note that
the numerical analysis on life insurances will not be given because of the similarity. The mortality
rate is from China Life Insurance Mortality Table (2010-2013) (CL5, Pension life table for male). The
results are shown in Tables 4–6. Comparing Tables 4–6 with Tables 1–3, we find that the APVs of
life annuity change about parameters following the same law of the values of expected discounted
functions in Section 3.3. This is an inevitable conclusion from the relation between the APVs of life
annuities and the values of expected discounted functions.

5. Conclusions

In this paper, we introduce a new stochastic interest model in which the force of interest is
expressed by a compound Poisson process and a Brownian motion. The advantage of this model is
that the random jumping behavior and the continuous tiny random fluctuations are described
simultaneously and the adjustment ranges of the force of interest in the random jump part of the
proposed model are governed by a random variable sequence, which generalizes the modeling
methods in Parker (1994a, 1994b, 1994c) and Li et al. (2017). In addition, we derive the expected
discounted functions of the proposed model in general circumstances and further discuss the cases
under the one point distribution, the two-point distribution and the uniform distribution assumption on
random jumping amplitudes Zi respectively. We also use the proposed model to study two types of
common life annuities. Our numerical analysis shows that both the values of expected discounted
functions and the APVs of life annuities are influenced distinctly by the change of the interest model
parameters under different distribution assumptions of Zi. Especially when the up-jumping probability
p is sufficiently large, the influence of parameters in discrete part of interest model is totally opposite
to that when the up-jumping probability p is sufficiently small.
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Appendix

Proof of Theorem 1
Based on the law of total expectation, substituting (9) into (8) yields that

E

N(t)∏
i=1

exp(−Ii · Zi(t − Ti))

 = E
[
βN(t)

t

]
=

+∞∑
n=0

βn
t
exp(−λt)(λt)n

n!

= exp(−λt)
+∞∑
n=0

(βtλt)n

n!

= exp (λt(βt − 1)) .

From (6), (7) and the above formula, we have

E
[
exp(−Jt

0)
]

= exp
(
(−δ0 + t2σ2/6)t

)
· exp (λt(βt − 1)) = exp

((
−δ0 + t2σ2/6 + λ(βt − 1)

)
t
)
.
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