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Abstract: We present a quantitative characterisation of the fluctuations of the annualized growth rate
of the real US GDP per capita at many scales, using a wavelet transform analysis of two data sets,
quarterly data from 1947 to 2015 and annual data from 1800 to 2010. The chosen mother wavelet (first
derivative of the Gaussian function) applied to the logarithm of the real US GDP per capita provides a
robust estimation of the instantaneous growth rate at different scales. Our main finding is that business
cycles appear at all scales and the distribution of GDP growth rates can be well approximated by
a bimodal function associated to a series of switches between regimes of strong growth rate ρhigh

and regimes of low growth rate ρlow. The succession of such two regimes compounds to produce
a remarkably stable long term average real annualized growth rate of 1.6% from 1800 to 2010 and ≈
2.0% since 1950, which is the result of a subtle compensation between the high and low growth regimes
that alternate continuously. Thus, the overall growth dynamics of the US economy is punctuated, with
phases of strong growth that are intrinsically unsustainable, followed by corrections or consolidation
until the next boom starts. We interpret these findings within the theory of “social bubbles” and argue
as a consequence that estimations of the cost of the 2008 crisis may be misleading. We also interpret
the absence of strong recovery since 2008 as a protracted low growth regime ρlow associated with the
exceptional nature of the preceding large growth regime.
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1. Introduction

The dynamics of the growth of GDP (gross domestic product) is arguably the most scrutinised
metric quantifying the overall economic development of an economy. A weak annual growth rate of
GDP, as has been characterising the US and Europe in the years following the financial crisis of 2008,
is interpreted as underperformance, which has called for unorthodox monetary policies attempting to
fix it (Erber, 2012). In contrast, a strong growth of GDP is usually lauded, because it reflects a rise
of living standards and is generally accompanied by decreasing unemployment. But what is meant by
“weak” or “strong” growth? Is there a “natural” growth rate? Does past growth rates of GDP imply
future growth rates? This last question is particularly relevant in the present context of small growth
compared with previous decades in developed countries and the argument by many that we may have
shifted to a “new normal” of slower intrinsic growth (Dabla-Norris et al., 2015).

It is well-known that plotting the logarithm of the real US GDP per capita over the last one
hundred years looks remarkably linear with a slope estimated between 0.019 and 0.02. In other words,
the inflation adjusted GDP per capita exhibits a long term average growth of 1.9 − 2% per year. ∗ The
occurrence of such a near trend-stationary long run growth covering a period with two world wars,
the cold war and its associated proxy wars, the collapse of the Bretton Woods System in 1973, several
large bubbles, crashes and recessions and strong changes in interest rate policies, is truly remarkable.
It entices one to entertain the possibility of an equilibrium or natural growth rate, which then could be
extrapolated in the future. Business cycles would then be viewed as fluctuations around this equilibrium
growth rate.

In this paper, we challenge the standard hypothesis that business cycles are merely fluctuations
(or transient deviations) around a stationary equilibrium growth rate. By analyzing quarterly data of
real US GDP per capita (r-US-GDP-pc) between 1947 until 2015, we find both parametric and non-
parametric evidence that the GDP growth rate density is bimodal, with peaks at a high and a low growth
rate of ρhigh ≈ 3%, and ρlow ≈ 1%, respectively. † This leads to the conclusion that the US economy per
capita is intrinsically composed of alternation between regimes of strong growth rate ρhigh, associated
with booms (or bubbles), and regimes of low growth rate ρlow that include plateaus (and recessions).
Alternations between those two regimes give rise to business cycles. Only when viewed at larger
scales, these two alternating regimes renormalize to an effective long-term growth rate ρlt ≈ 2% that is
between ρlow and ρhigh. ‡

Our findings have important economic and policy implications. The existence of a
well-characterised strong growth regime with average growth rate ρhigh often leads to the misleading
expectations that it is the normal that reflects a well-functioning economy, while the other mode of
low growth ρlow is considered abnormal, often interpreted as due to a surprising shock, bringing
considerable dismay and pain, and leading to policy interventions. Our finding of a robust bimodal
distribution of GDP growth rates over the whole history of the US suggests that this interpretation is
incorrect. Rather than accepting the existence of the long-term growth rate as given and interpreting
the deviations from it as perturbations, the bimodal view of the GDP growth suggests a completely
different picture. In this representation, the long-term growth rate is the result of a subtle

∗ See the dashed linear fitted lines in figure 3 and figure A1.
† Unless stated otherwise, we refer from hereon to the real GDP per capita (r-US-GDP-pc) simply as GDP.
‡ Throughout this article, we stick to quarterly dataset. In Appendix A we show the analysis for annual GDP data from 1800 until

today. The conclusions are similar.
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compensation between the high and low growth regimes that alternate continuously. The overall
growth dynamics that emerges is that the US economy is growing in a punctuated way, as illustrated
in the model developed by Louzoun et al. (2003), following phases of strong growth that are
intrinsically unsustainable, followed by corrections or consolidations until the next boom starts. In
other words, the approximately long-term growth rate reflects an economy that oscillates between
booms and consolidation regimes. Because of the remarkable recurrence of the strong regime and in
view of its short-term beneficial effects, economists and policy makers are tempted (and actually
incentivised) to form their expectations based on it, possibly catalysing or even creating it in a
self-fulfilling prophecy fashion even when the real productivity gains are no more present, as occurred
in the three decades before the 2008 crisis (Sornette and Cauwels, 2014).

We suggest that the transient strong growth regimes can be rationalised within the framework of
the “social bubble hypothesis” (Sornette, 2008; Gisler and Sornette, 2009, 2010; Gisler et al., 2011),
in the sense that they result from collective enthusiasm that are similar to those developing during
financial bubbles, which foster collective attitude towards more risk taking. The social bubble
hypothesis claims that strong social interactions between enthusiastic supporters weave a network of
reinforcing feedbacks that lead to widespread endorsement and extraordinary commitment by those
involved, beyond what would be rationalised by a standard cost-benefit analysis. For a time, the
economy grows faster than its long-term trend, due to a number of factors that reinforce each other,
leading to a phase of creative innovation (e.g. the internet dotcom bubble) or credit based expansion
(e.g. the house boom and financialisation of the decade before 2008). These regimes then unavoidably
metamorphose into a “hangover”, the recovery and strengthening episode until the next upsurge.

Despite the huge attention paid to the analysis of GDP growth rate fluctuations, this work presents,
to the best of our knowledge, for the first time a detailed analysis of the bimodal nature of its density
distribution. In the next section, we first address the question of bimodality from the perspective of
classic, parametric business cycle models. This yields first evidence of a bimodal distribution density.
However, the reported results are susceptible to small changes in parameters and noise. Subsequently,
we thus turn to a non-parametric analysis. The usage of wavelets as adequate tool for this analysis
is motivated in section 3. Section 4 presents the wavelet methodology itself. Results are reported in
5. Section 6 is focused on the evidence supporting the bimodal structure of the distribution of GDP
growth rates and section 7 concludes. Appendix A complements the presentation with annual GDP
data over the past 200 years.

2. Business Cycles as Markov Autoregressive Processes

First introduced by Hamilton (1989), Markov autoregressive processes have become a popular
tool for GDP business cycle analysis. In standardized form, such a process is written as

ρt = µ(S t) +

n∑
i=1

φi · (ρt−i − µ (S t−i)) + εt (1)

with ρt the growth rate at time t, S t describes the regime of the economy at time t, which can take m
different states that are reflected in m different values µ1, . . . , µm for µ(S t). The parameters φ1, . . . , φn

specify the autoregressive characteristics of the process and εt is Gaussian noise with zero mean and
standard deviation σ. The switching from a regime i to a regime j at any time step is determined by a
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matrix of transition probabilities pi j. In the classic Hamilton (1989) model, m = 2 and n = 4 and we
shall stick here to this choice. The main idea is that there are two states of the economy, a boom state
S t = 1 and a recession state S t = 0. From time t to t + 1, the economy switches between these two
states with probabilities p01 and p10, respectively. There is a debate about the nature of the switching
probabilities pi j. Hamilton (1989) assumes that the probabilities are independent of the business cycle
duration whereas others assume that there is a dependence. A famous model of the second type is by
Durland and McCurdy (1994). Duration dependence has been formally tested by Diebold and
Rudebusch (1990), who conclude that Hamilton (1989)’s assumption of duration independence is
legitimate. In own analysis simple, we therefore stick to the model of Hamilton (1989) to keep the
discussion simple.

What is the prediction of these models for the GDP density distribution? In order to answer this
question, we first fit the 9 parameters of the model (1) to the 270 datapoints of quarterly r-US-GDP-pc
from 1947 to 2015. § Using these parameters, we then simulate a synthetic time series over a period of
100, 000 years and extract the asymptotic density distribution from the simulated growth rates.

When fitting (1) to the raw GDP data, using the same data set of initially used by Hamilton
(1989), we recover the same parameters, which are also close to those obtained for the expanded data
from 1947 to 2015. However, the analysis of the GDP density distribution reveals a feature that has
been underestimated, namely the fact that the model anchors on the few large negative outliers present
in the data. Fitted parameters are reported in figure 1. The maximum likelihood algorithm identifies
the few very negative outliers as one regime (µ0 = −1.7, i.e. −1.7% quarterly, or −6.8% yearly growth
rate), and the average 2% yearly growth rate as the second regime (µ1 = 0.5, i.e. 0.5% quarterly
growth). The recession regime is interpreted by the calibration as a rare event (transition probability
from average growth regime to recession regime ≈ 3%) that immediately jumps back to the normal
average growth of roughly 2% yearly growth. This anchoring on the few large negative quarters is
clearly revealed by the synthetic GDP density distribution shown in figure 1c.

To obtain results that are more in line with actual business cycle fluctuations, we discard all
datapoints below −4% and above 8% yearly growth (below −1% and above 2% growth per quarter).
This specific choice for the cut-off range is ad hoc and determined through simple visual inspection.
The results are robust to reasonable variations of these two thresholds. Moreover, we overcome this
arbitrariness with non-parametric estimates in the subsequent sections. Without the outliers, the
maximum likelihood estimates of model (1) converge to more balanced results. The boom and
recession regimes are now identified as 0.8% and 3.2% yearly growth, respectively. As is clearly
visible in figure 1d, the corresponding stationary growth rate distribution is bimodal. This is in good
agreement with non-parametric evidence reported in the subsequent sections. We also observe that the
left (recession) peak is larger than the right (boom) peak, indicating an imbalance between the two.

However, the results of this section have to be interpreted with caution, as there may be multiple
local optima of the likelihood function. An inspection of the likelihood function (not shown here) also
reveals that there are sloppy manifolds in the 9-dimensional parameter space, making the calibration
intrinsically difficult with several degenerate solutions (see (Filimonov et al., 2017) and references
therein). We thus turn our attention to an alternative, parameter free approach in the next section.

§ The following parameters have to be fit: µ0 = µ(S t = 0), µ1 = µ(S t = 1), φ1, φ2, φ3, φ4, p12, p21 and σ.
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Figure 1. Summary of all results discussed in section 2. For easier interpretation, all
quarterly growth rates in this figure have been rescaled to annual values, i.e. multiplied
by a factor of four. The top two figures depict quarterly data of real GDP per capita
and real GNP growth rates, respectively. The red dashed lines in figure (a) indicate
the ad hoc definitions of outliers. For the creation of figure (d), only growth rates
within that band have been fitted to the model (1). The resulting asymptotic growth
rate distribution is clearly bimodal. This is in contrast to figure (c), where no outliers
have been discarded. The bulk of all probability mass forms a unimodal structure, with
a small additional hump around −8% for the negative outlier regime. Figures (e) and (f)
complement the analysis by showing the predictions of Hamilton (1989) and Durland
and McCurdy (1994). While the first distribution is clearly unimodal, the second one
exhibits a bimodal structure.
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The results of this section are summarized in figure 1. For comparison, we also show the density
distribution corresponding to the original fits obtained by Hamilton (1989) and Durland and McCurdy
(1994). Interestingly, the two models differ in their prediction: The Hamilton (1989) model converges
to a unimodal distribution, whereas the model by Durland and McCurdy (1994) yields a more bimodal
structure. It is interesting to see that the two models predict different shapes. One should be cautious in
comparing the results of these two models with ours, since they have analyzed nominal GNP data, and
not real GDP per capita. We use real GDP per capita since it represents a measure for real innovation
and productivity gains. In contrast, the total nominal US GDP contains two additional contributions
to its growth: population growth and inflation, both of which do not represent increased income per
individual.

3. Scale Free Business Cycles

In order to examine further the modal structure of the USD growth rate distribution, we turn
our attention to non-parametric models. The classification of economic growth into phases of booms
and busts has been extensively investigated in the business cycle literature. Seminal papers that use
non-parametric filters are by Hodrick and Prescott (1997) and Baxter and King (1999).

Parametric or non-parametric, the traditional business cycle literature is concerned with pinning
down explicit dates indicating a turning point in an economy. Furthermore, such approaches are often
constrained by a priori imposed minimum or maximum business cycle durations, as specified for
instance by the NBER business cycle committee (Moore and Zarnowitz,1984). Here, we avoid this
approach of preconditioning and let the data decide what are the possible cycles that stand out and
justify the identification of a cycle. A first parameter free approach to this problem is to perform a
spectral analysis. Figure 2 shows the spectral density P( f ) of the ln

(
r-US-GDP-pc

)
for both quarterly

data since 1947 and annual data since 1800. We observe a scale-free continuum of frequencies. There
are no peak selecting a natural frequency. Instead, all frequencies seem to contribute to the overall
GDP dynamics according to a spectral weight following a simple inverse power law function
P( f ) ∼ 1/ f p, where p ≈ 1.8 obtained via a least-squares calibration. In figure 2, we show two lines
PRW( f ) ∼ 1/ f 2 (spectral density of the random walk) and P1/ f ( f ) ∼ 1/ f (1/ f -spectrum) that are often
taken as references. This suggests that the fluctuations of the GDP dynamics are close to that of a
random walk, albeit with some departure making it less volatilite than a genuine random walk and
closer to a stationary (around its long term trend) long-memory process. We stress that this
observation, of a smooth continuous spectrum with no special frequency standing out, casts some
doubt on the reliability of previous findings on business cycle periods. We are particularly concerned
with the procedure consisting in arguing that business cycle periods should be larger than two years,
say, to avoid being contaminated by “noise” at short time scales and should be smaller than ten years,
say, to avoid the influence of secular trends (Burns and Mitchell, 1946). To us, this looks dangerous
because it is obvious that one or two characteristic periods will appear as dominant under these
imposed conditions. From a time signal analysis perspective, this corresponds to distorting the
spectral density by aliasing by a window constraint.

Given this first evidence that all frequencies are important and essentially undistinguishable, we
turn to the wavelet transform as a convenient tool to disentangle frequencies appearing at all scales and
determine their times of occurrence.
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Figure 2. Spectral density of r-US-GDP-pc data. We observe a scale-free continuum of
scales with no clear peaks. A least squares fit determines an exponent of ≈ −1.80 for
both the quarterly and the annual data set, thus classifying the GDP as a long-memory
process.

4. The Wavelet Transform

Originally developed in geophysics to analyze seismic signals (Morlet et al., 1982), the wavelet
transform has proven useful for data analysis in a variety of fields such as image processing (Antonini
et al., 1992), astrophysics (Slezak et al., 1990), and turbulence (Argoul et al., 1989). In economics,
the wavelet transform has many useful applications (Ramsey, 1999; Crowley, 2007), especially in the
context of business cycles (Yogo, 2008; Aguiar-Conraria and Joana Soares, 2014; Ardila and Sornette,
2016).

A ψ-wavelet transform Wψ is simply a projection of a signal X(τ) onto t-translated and s-dilated
versions of ψ (Yiou et al., 2000):

Wψ[X](s, t) =

∞∫
−∞

dτ ψ (τ − t; s) X(τ). (2)

We call s the scale and t the time parameter. The analyzing function ψ, called the wavelet, has to be a
localized function both in time and frequency domain. Depending on the application, the wavelets must
be endowed with several additional properties. See for instance Daubechies (1992) for mathematical
details. For our purposes, it is important for the wavelet to be properly normalized. Assuming that
ψ(t; s) is approximately zero for values of t outside the interval [−s, s], the wavelet transform has
then the following intuitive interpretation: Wψ[X](s, t) is the weighted average of X over the interval
[t − s, t + s]. The wavelet transform can thus be seen as a ‘mathematical microscope’ that resolves
local structures of X (determined by the shape of the wavelet ψ(t; s)) at ‘position’ (time) t and at a
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‘magnification’ (scale) s. Denoting by ∗ the convolution operator, expression (2) can also be written
compactly as Wψ[X](s, t) = [X(τ) ∗ ψ(τ; s)](t), or, for brevity, just X ∗ ψ.

Replacing ψ in (2) by its n-th derivative ψ(n) corresponds to a ψ-analysis of the n-th derivative of
the time series X(t) (up to a normalization factor), as a simple integration by parts derivation shows.
In this context, ψ = ψ(0) is also called the mother wavelet. Arneodo et al. (1993) show that the
overall statistical characterization of complex structures depends only weakly on the choice of the
mother wavelet. We will therefore present here only results for the Gaussian mother wavelet ψ(t; s) =

exp(−t2/2s2)/
√

2πs. We have checked that other real-valued mother wavelets give similar results.
In this article, we use the wavelet transform to quantify the pattern of local slopes (giving the local

growth rates) of the analyzed time series (logarithm of the real US GDP per capita). This amounts to
replacing ψ in (2) by the first derivative ψ(1) of the Gaussian mother wavelet, up to a normalization.
The normalization is chosen such that the wavelet transform of the test signal X(t) = pt with constant
slope p gives exactly its slope p for all times t and all scales s. This leads to the following expression
for our analyzing mother wavelet used in expression in (2):

ψ(1)(t; s) =
t

√
2πs3

exp
(
−

1
2

( t
s

)2
)
. (3)

Note also that, by construction, the wavelet transform performed with ψ(1)(t; s) of a constant signal
is zero, meaning that the wavelet transform is insensitive to the absolute level and only quantifies
precisely the local slope at a scale s.

Our approach uses the wavelet transform to achieve two goals in one stroke: (i) estimate the
growth rates and (ii) analyse them at multiple scales. This is different from the approach of Aguiar-
Conraria and Joana Soares (2014), who first calculated the growth rates by taking the first difference of
the logarithm of GDP, and then applied the wavelet transform with a ψ(0) wavelet to the obtained time
series of growth rates. Our integrated approach is better suited to minimize aliasing and biases.

In the remainder of this article, all figures are the result of the wavelet transform X ∗ ψ(1) with ψ(1)

given by (3). We focus on the quarterly dataset r-US-GDP-pc dataset, and present a similar analysis
for the annual data over the much larger extended period between 1800 and 2010 in Appendix A.

5. Wavelet Analysis of the Growth of Real US GDP Per Capita

Plotting the r-US-GDP-pc in a semi-logarithmic plot (figure 3) shows, to a first approximation, a
remarkably straight line, suggesting that the GDP grows exponentially as exp(ρltt) with t in units of
years and a long-term annual growth rate ρlt ≈ 2% determined by an ordinary least squares (OLS) fit.
This value is often reported in the literature as the average long-term historical growth of real GDP per
capita, e.g. (Fernald and Jones, 2014).

Beyond this long term average growth, one can see deviations that occur again and again.
Moreover, it is interesting to observe that the long-term growth rate ρlt represented by the slope of the
straight dashed line seems to almost never describe the actual local growth rate of the r-US-GDP-pc.
In other words, the average growth rate does not seem to be a good description of the typical growth
rates. To quantify these qualitative observations, we perform a wavelet transform analysis of the
logarithm of the the r-US-GDP-pc at different times t and different scales s to obtain the local growth
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rate at time t, averaged over a time interval [t − s, t + s], defined by

ρ(s, t) = ln(r-US-GDP-pc) ∗ ψ(1) . (4)

Figure 3. Wavelet transform ln(r-US-GDP-pc)∗ψ(1) of the logarithm of the quarterly real
US GDP per capita data measured in chained 2009 US dollar over the period from 1947
to 2015 and represented by the continuous dark line (right vertical axis). An ordinary
least squares fit determines a long-term annualized growth rate ρlt of approximately 2%,
shown as the dashed line. The left vertical axis plots the scale s of the wavelet analysis,
corresponding to an interval of analysis approximately equal to 2s. The color scale
encodes the value of the local annualized growth rates at different times and scales. The
nonlinear conical shape of the envelop is due to edge-effects in the wavelet transform.
The quarterly growth rates have been rescaled to annual values.

The results are encoded with the color scale for the annualized growth rates in figure 3 over the
period from 1947 to 2015 shown on the horizontal axis. The left vertical axis plots the scale s of the
wavelet analysis, corresponding to an interval of analysis approximately equal to 2s. For scales at and
lower than s ≈ 4 years (i.e. averaged over approximately 8 years), one can first observe a hierarchy of
branches associated with alternating warm (low or negative growth rates) and cold (positive and strong
growth rates) colors. As one goes to smaller and smaller time scales, more fine structures of alternating
colors (growth rates) can be seen. At the larger scales, s > 4 years, the color settles to the green value,
recovering the known, and also directly determined by OLS, long term growth ρlt ≈ 2%.

Because the continuous wavelet transform (2) contains a lot of redundant information (a function
X(t) of one variable t is transformed into a function Wψ[X](s, t) of two variables s and t), it is standard
to compress the wavelet map shown in figure 3 into a so-called “skeleton”. The skeleton of Wψ[X](s, t)
is the set of all local maxima and minima of Wψ[X](s, t) considered as a function of t, for fixed scale
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s. The skeleton forms a set of connected curves in the time-scale space, called the extrema lines.
Geometrically, each such skeleton line corresponds to either a crest or valley bottom of the three-
dimensional representation of the wavelet function Wψ[X](s, t). A crest can be viewed as the typical
value of the growth rate of a locally surging r-US-GDP-pc. The bottom of a valley is similarly the
typical value of the growth rate of a locally slowing down or contracting r-US-GDP-pc. The skeleton
structure thus serves as a proxy of (half-) business cycles.

Figure 4. Skeleton structure of the wavelet transform ln(r-GDP-pc) ∗ ψ(1) for quarterly
real US GDP per capita data measured in chained 2009 US dollar corresponding to
figure 3.

As is clearly visible in figure 4, business cycles are emerging at all scales. There is thus no such
thing as “the” business cycle, but rather a continous hierarchy of overlaid business cycle fluctuations.
One can observe clearly the hierarchy of alternating growth regimes, which combine into an overall
growth of ≈ 2% at large scales. Written along each skeleton line in the figure, we give the values of
the local annualized growth rates at four scale levels, 3 months, 6 months, 18 months and 3 years. The
structure of the skeleton lines, their colors and the values of the local annualized growth rates confirm
the existence of ubiquitous shifting regimes of slow and strong growths. In economics, it has been
popular to detrend a time series for its long term growth rate. Our results make this detrending appear
somewhat arbitrary, as there is no discrete distinction between short-, medium- and long-term growth.

6. Evidence for a Robust Bimodal Structure of Distributions of US GDP Growth Rates

The nature of the shifting regimes of slow and strong growths can be quantified further by
constructing the probability density distributions (pdf) of annualized GDP growth rates at different
fixed scales, both from the entire wavelet transform (figure 3) and from the skeleton structure (figure
4). The obtained pdf’s for four different scales (6, 9, 15 and 30 months) are depicted in figure 5. They
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have been obtained using a Gaussian kernel estimations with width equal to 0.002. We have checked
the robustness of these pdf’s by changing the width of the kernels within a factor of two.
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Figure 5. Gaussian kernel estimations (with width equal to 0.002) of the probability
density distributions (pdf) of the local annualized growth rates of r-US-GDP-pc at four
different scales indicated in the inset in the top-left. The main panel represents the
distributions extracted from the wavelet transform shown in figure 3, while the top-
right inset shows the pdf’s obtained from the skeleton values shown in figure 4.

The pdf’s extracted from the wavelet transform shown in figure 3 and from the skeleton values
shown in figure 4 exhibit the same structures. First, the pdf’s at the largest scale of 30 months peak at
the annualized growth rate of ≈ 2%, recovering the OLS value reported above (shown as the dashed
line in figure 3). Second, as we go down to smaller scales, already at the scale of 15 months, and more
pronounced at the scale of 9 and 6 months, a clear bimodal structure emerges (decorated by higher
frequency structures, associated with the width of the estimating kernel). Denoting the two main peaks
of the bimodal density extracted from the full wavelet transform (the skeleton gives similar results) at
scale s by ρlow(s) and ρhigh(s) respectively, we obtain

ρlow(6 months) ≈ 1% . ρlow(9 months) ≈ 1.1% . ρlow(15 months) ≈ 1.5% . ρlt ≈ 2% (5)

and

ρhigh(6 months) ≈ 3.1% & ρhigh(9 months) ≈ 2.8% ≈ ρhigh(15 months) ≈ 2.8% & ρlt ≈ 2%. (6)

The pleasant stability for the estimates ρlow(6 months) ≈ ρlow(9 months) and
ρhigh(6 months) ≈ ρhigh(9 months) ≈ ρhigh(15 months) suggests that real US GDP per capita can be
modelled as an alternation of slow growth around a typical value of 1% and strong growth around a
typical value of 3%, which bracket the long-term average growth rate ρlt ≈ 2%. This bimodality and
the appearance of business cycles at all scales constitute the main results of our article.

Quantitative Finance and Economics Volume 1, Issue 1, 26-43



37

Table 1. p-values for Silverman test, applied to quarterly growth rate
distributions at different scales.

6 months scale 9 months scale 15 months scale 30 months scale
H1 0.05 0.16 0.22 0.94
H2 0.31 0.62 0.47 0.09

Finally, we examine the significance of our results from a statistical point of view. How reliable is
the observed bimodality, considering that there are only 270 datapoints? How likely is it to observe a
bimodal structure, when sampling 270 datapoints from a unimodal density? What is the probability of
observing a tri-or multi-modal structure, when sampling from a bimodal density? These questions are
formally addressed in the statistical test developed by Silverman (1981). This allows us to test the null
hypothesis, Hk, that the density underlying the data has k modes, against the alternative that the density
has more than k modes. Here, we test the quarterly growth rates obtained from the wavelet analysis for
both unimodality (k = 1) and bimodality (k = 2). The p-value associated with Hk gives the probability
of observing such a sample distribution, assuming that underlying density is truly k-modal. Large p-
values for test Hk indicate thus strong statistical evidence for k-modality. The p-values, summarized in
table 1, are in good agreement with our expectations. At smaller scales, the bimodality hypothesis H2

is clearly preferred over a unimodal distribution. At larger scales, this relationship tips over in favor
for the unimodal hypothesis H1.

In conclusion, we have presented evidence that the real US GDP per capita growth rate distribution
exhibits a bimodal structure. This is, to the best of our knowledge, the first time that the bimodal
character of this distribution has been analyzed explicitly. We stress again the subtle, but very important
distinction between the interpretation of business cycles when the GDP distribution is unimodal versus
bimodal. A unimodal distribution peaked at 2% represents the case where a 2% growth is the norm,
in the sense that the bulk of probability mass is concentrated there. In contrast, a bimodal distribution
represents the case where a 2% growth rate is uncommon, in the sense of small probability mass in that
regime.

Appendix A presents the wavelet transform, skeleton structure and growth rate distributions for
annual r-US-GDP-pc data starting in 1800 till 2010. The important conclusion is that the previous
observations presented above for quarterly data from 1950 to 2015 are broadly confirmed when using
annual data over this much longer period.

7. Discussion

We have presented a quantitative characterisation of the fluctuations of the annualized growth rate
of the real US GDP per capita growth at many scales, using a wavelet transform analysis of two data
sets, quarterly data from 1947 to 2015 and annual data from 1800 to 2010. We stress that our use of the
chosen mother wavelet (first derivative of the Gaussian function) applied to the logarithm of the real
US GDP per capita provides a robust estimation of the instantaneous growth rate at different scales.
Our main finding is that business cycles appear at all scales and the distribution of GDP growth rates
can be well approximated by a bimodal function associated to a series of switches between regimes of
strong growth rate ρhigh and regimes of low growth rate ρlow. The succession of alternations of these
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two regimes compounds to produce a remarkably stable long term average real annualized growth rate
of 1.6% from 1800 to 2010 and ≈ 2.0% since 1950.

We thus infer that the robust constant growth rate since 1950 cannot be taken as evidence for
a purely exogenous “natural” rate of innovations and productivity growth. It is rather a remarkable
output of the succession of booms and corrections that punctuate the economic history of the US since
more than 200 years. Our results suggest that alternating growth regimes are intrinsic to the dynamics
of the US economy and appear at all scales. These alternating regimes can be identified as generalized
business cycles, occurring at the scale of the whole economy.

Such business cycles may be briefly rationalised as follows. During the high growth regime, a
number of positive feedback loops are in operation, such as deregulation, enhanced credit creation, the
belief in a “new economy” and so on. This creates a transient boom, perhaps accelerating itself and
leading to financial and social bubbles (Geraskin, 2013; Sornette, 2014; Yukalov, 2015; Sornette, 2008;
Gisler, 2009; Gisler, 2011). This over heating of the economy then turns out not to be sustainable and
leads to a correction and consolidation phase, the low growth regime. Then, the next strong growth
regime starts and so on.

Our findings suggest that strong growth cannot be dissociated from periods of recessions,
corrections or plateaus, which serve as a consolidation phase before the next boom starts. However,
because of the remarkable recurrence of the strong regime and in view of its short-term beneficial
effects, economists and policy makers tend to form expectations of strong continuous growth. Such
way of thinking may lead to conclusions that, we argue, may have little merit. Consider the estimation
of the US Federal Reserve Bank of Dallas (Atkinson et al., 2013) that the cost of the 2008 crisis,
assuming output eventually returning to its pre-crisis trend path, is an output loss of $6 trillion to $14
trillion US dollars. These enormous numbers are based on the integration of the difference between
the extrapolation of hypothetical GDP trajectories expected from a typical return to pre-crisis growth
compared with the realised GDP per capita. In the light of our findings, we argue that it is incorrect to
extrapolate to the pre-crisis growth rate, which is by construction abnormally high, and much higher
than the long term growth rate. In addition, one should take into account the fact that the base rate
after a crisis should be low or even negative, for the consolidation to work. Moreover, the duration of
the boom years may have direct impact on that of the recovery period. In this vein,Sornette (2014)
have argued that this 2008 crisis is special, as it is the culmination of a 30 year trend of accelerating
financialization, deregulation and debt growth. Our present results impel the reader to ponder what is
the “natural” growth rate and avoid naive extrapolations.

Using a simple generic agent-based model of growth, Louzoun et al. (2003) have identified the
existence of a trade off between either low and steady growth or large growth associated with high
volatility. Translating this insight to the US economy and combining with the reported empirical
evidence, the observed growth features shown in the present paper seem to reveal a remarkable stable
relationship between growth and its fluctuations over many decades, if not centuries. Perhaps, this is
anchored in the political institutions as well as in the psychology of policy makers and business
leaders over the long term that transcend the short-term vagaries of political power sharing and
geopolitics. It is however important to include in these considerations the fact that the US is unique
compared with other developed countries, having benefitted enormously from the two world wars in
particular (compared with the destruction of the French, Japanese and UK empires and the demise of
the economic dominance of European powers).
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Appendix A. Analysis of annual US GDP data

In this appendix, we present wavelet transform, skeleton structure and growth rate distributions
for annual r-US-GDP-pc data starting in 1800 till 2010. The important conclusion is that the previous
observations presented in the main text for quarterly data from 1950 to 2015 are broadly confirmed
when using annual data over this much longer period.

Figure A1. Wavelet transform ln(r-US-GDP-pc)∗ψ(1) of the logarithm of the annual real US GDP
per capita data measured in 1990 Geary-Khamis dollar and represented by the continuous dark
line (right vertical axis). An ordinary least squares fit determines a long-term annualized growth
rate ρlt of approximately 1.6%.

Figure A1 shows the wavelet transform ln(r-US-GDP-pc) ∗ ψ(1) of the logarithm of the annual
real US GDP per capita data measured in 1990 Geary-Khamis dollar from 1800 to 2010 and
represented by the continuous dark line (right vertical axis). An ordinary least squares fit determines a
long-term annualized growth rate ρlt of approximately 1.6%. This value is smaller than the average
growth rate of 2% determined for the period from 1950 to 2015. This smaller value is a compromise,
given the rather clear long term upward curvature presented by the continuous curve shown in figure
A1, expressing a tendency for the growth rate to grow itself (Johanssen and Sornette, 2001). Indeed,
one can see that ln(r-US-GDP-pc) departs more and more from the dashed straight line with a larger
slope after 1950, in line with the observations shown in figure 3. Figure A2 depicts the skeleton
structure extracted from figure A1 and figure A3 plots the distribution of growth rates of the
r-US-GDP-pc extracted from annual real US GDP per capita data since 1800. As for the quarterly
GDP data, the long term growth rate of ≈ 1.5% is recovered as the peak of the distribution at the 8
year scale. The bimodal structure is less clean, due to the fact that annual sampling of GDP growth
rates is bound to average over the time scales during which the transitions between the different
regimes occur. Nevertheless, one can observe two main peaks, except for the largest time scale of 8
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Figure A2. Skeleton structure of ln(r-GDP-pc) ∗ ψ(1) for annual real US GDP per capita data
measured in 1990 Geary-Khamis dollar corresponding to figure A1.

−4% −2% 0% 2% 4% 6% 8%
annual growth rate

0

10

20

30

40

50

60

70

p
ro

b
ab

il
it

y
d

en
si

ty

scale:

1 year

2 years

4 years

8 years

−4% −2% 0% 2% 4% 6% 8%
0

10

20

30

40

50

60

70

80

Figure A3. Gaussian kernel estimations (with width equal to 0.002) of the probability density
distributions (pdf) of the local annualized growth rates of r-US-GDP-pc sampled annually from
1800 to 2010 at four different scales indicated in the inset in the top-left. The main panel
represents the distributions extracted from the wavelet transform shown in figure A1, while the
top-right inset shows the pdf’s obtained from the skeleton values shown in figure A2.
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Table A1. p-values for Silverman test, applied to annual growth rate
distributions at different scales.

6 months scale 9 months scale 15 months scale 30 months scale
H1 0.08 0.05 0.00 0.36
H2 0.19 0.13 0.38 0.12

years. Moreover, both at the 1 and 2 year scales, the estimated probability density functions (pdf)
exhibit a positive skewness, with an asymmetric tail to the right side of large positive growth rates.
This means that a considerable part of the probability mass is concentrated at high growth regimes
above ρlt. Quantitatively, the values of the growth rates corresponding to the two main peaks of the
pdf’s are: ρlow(1, 2, 4 years) = 0.2%, 1%, 1.2% and ρhigh(1, 2, 4years) = 1.4%, 1.9%, 1.8%. The rather
low value ρhigh(1year) = 1.4% should be considered together with the evidence of the strong positive
skewness noted above: at the annual sampling rate, the granularity of the data is too coarse to recover
the clean picture of the quarterly data due to overlapping intervals. However, we find that the
50%-quantile growth rate is 1.3%, while the expectation value of the growth rates conditional on
growth rates above 1.3% is equal to 3.3%, much larger than ρlt. The results are thus in broad
agreement with those presented in figure 5 for quarterly data. The p-values obtained from the
Silverman (1981) test, reported in table A1, furthermore support the bimodality hypothesis.
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