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Abstract: To present, there has been much research on prescribed-time stability (PTS) of uncertain 
systems, but the significant impulse factor has not been considered. Therefore, in this paper, the 
stability control problem of a class of impulsive systems with uncertainties within the prescribed time 
was studied by the Lyapunov functional approach. The comparison lemma was utilized and iteration 
was carried out for each impulsive interval to prove the PTS theorem for general impulsive systems 
with uncertainties. In addition, a time-varying adaptive controller in combination with the 
backstepping method was constructed for PTS of special impulsive strict-feedback systems with 
uncertainties, breaking through the dependence of traditional methods on uncertain parameters. Finally, 
a simulation example was used to verify the effectiveness and feasibility of the proposed method. 
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1. Introduction 

Stability, as a core attribute, determines the reliability and controllability of system behavior. 
Finite-time stability (FTS) had garnered increasing attention from researchers due to its capability of 
achieving convergence within a bounded time frame [1]. Studies [2–4] extended the theory and 
application of FTS and provided novel control methods for complex systems. For FTS, convergence 
time remains dependent on initial conditions, making it impossible to precisely schedule system 
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behavior in practical engineering applications. To solve this, fixed-time stability (FxTS) was 
introduced to guarantee that a system will attain or maintain a stable state within a settling time 
frame [5–8]. For instance, [8] investigated the achievement of FxTS for unstable impulsive systems, 
proposing novel FxTS criteria and delivering more precise estimates of the settling time. Nevertheless, 
FxTS guarantees a fixed upper bound for the settling time, where this upper bound depends on the 
system parameters. 

For the aforementioned limitations of FTS and FxTS, prescribed-time stability (PTS) has emerged. 
In contrast to FTS and FxTS, PTS ensures that the system can achieve a stable state within a precisely 
predetermined time, demonstrating stronger flexibility and more promising engineering application 
potential. In recent years, numerous scholars have achieved a series of remarkable outcomes for 
PTS [9–13]. For instance, reference [14] investigated an effective PTS strategy based on an extended 
state observer. Reference [15] studied the PTS impulsive control for nonlinear systems, where impulses 
can instantaneously adjust the system states at specific moments. The above studies on PTS do not 
consider the uncertainty factor. For uncertain systems, some works have been reported on PTS [16–19]. 
Here, we particularly emphasize [19]. Specifically speaking, rooted in the Lyapunov functional approach, 
reference [19] investigated the PTS adaptive control for nonlinear systems with unknown parameters, 
where uncertain terms can more realistically reflect various unknown factors for practical systems and 
enhance system robustness. However, [19] did not take into account the impact of the impulsive factor. 
As known, the impulsive phenomenon, as a significant factor, is vital for system stability∕instability. 
Therefore, one may ask: Can PTS assertions be achieved for impulsive differential systems with 
uncertainties (IDSUs) rooted in the Lyapunov functional approach? Giving a clear answer to this 
question constitutes the foremost motivation for this research. 

Strict-feedback systems (SFSs) are a class of nonlinear systems with a lower triangular structure, 
which establishes a systematic framework for complex systems, particularly for those involving 
unknown parameters [20–24]. Reference [25] proposed a smooth control method for uncertain 
nonlinear SFSs with state constraints, achieving tracking control within a finite time. Reference [26] 
solved FxTS of SFSs. Reference [27] investigated the PTS of nonlinear SFSs and proposed a new 
non-scaling design method. Furthermore, there are some works [28,29] on impulsive SFSs. However, 
as far as we know, research on achieving PTS for impulsive SFSs has not been reported so far. 
Therefore, filling this gap constitutes the second motivation for conducting this research. 

Inspired by the aforementioned insights, this paper aims to investigate PTS for impulsive systems 
with uncertainties and apply the obtained assertion to impulsive SFSs by using the backstepping 
method to handle uncertainties. Compared with existing works, the main contributions are as follows: 

(1) Rooted in the Lyapunov functional approach, we propose a PTS assertion for nonlinear 
systems with impulsive effects and uncertainties, establishing explicit theoretical conditions for state 
convergence, thereby opening up new avenues for PTS analysis of such systems. 

(2) For impulsive SFSs with uncertainties (ISFSUs), a time-varying adaptive controller is adopted 
by the backstepping approach to achieve PTS, effectively enhancing the reliability and stability of the 
system in complex environments. 
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Table 1. Notation list. 

Notation Meaning 𝒵ା Collection of positive integers. ℝା Collection of non-negative real numbers. ℝ௥×௥ Collection of 𝑟 × 𝑟 real matrices. 𝒯଴ Collection of {𝑧௞, 𝑘 ∈ 𝒵ା} (short for {𝑧௞}) satisfying 0 < 𝑧ଵ < ⋯ < 𝑧௞ → +∞, 𝑘 → +∞. 𝕂 𝕂 = {𝛼 ∈ ℂ (ℝା, ℝା)|𝛼(0) = 0, 𝛼(𝑠) > 0 for 𝑠 > 0 and 𝛼 is strictly increasing in 𝑠}. 𝕂ஶ 𝕂ஶ = {𝛼 ∈ 𝕂: 𝛼(𝑠) → ∞ as 𝑠 → ∞}. ℳ > 0 Matrix ℳ is positive definite. ‖∙‖ Norm of a vector. 𝐶ଵ(ℝ; ℝ) Collection of real-value functions Β(𝑟) on ℝ being once continuously differentiable on 𝑟. 𝜆min(Γିଵ) Minimum eigenvalue of matrix Γିଵ. 𝜆max(Γିଵ) Maximum eigenvalue of matrix Γିଵ. 

2. Preliminaries 

Consider a nonlinear IDSU 

 ቐ𝑟ሶ(𝑧) = ℋ(𝑧, 𝑟(𝑧), η(𝑧), 𝛿), 𝑧 ≠ 𝑧௞, 𝑧 ≥ 0𝑟(𝑧) = 𝒲൫𝑟(𝑧ି)൯, 𝑧 = 𝑧௞𝑟(0) = 𝑟଴  (1) 

where 𝑟(𝑧) ∈ ℝ௡, 𝑟ሶ(𝑧) denotes the right-hand derivative of 𝑟(𝑧), η(𝑧) ∈ ℝ௠ is the control input 
vector, 𝛿 ∈ ℝ௥  is the uncertain parameter vector, {𝑧௞} ∈ 𝒯଴  stands for the sequence of impulse 
instants; ℋ(∙) : ℝା × ℝ௡ × ℝ௠ × ℝ௥ → ℝ௡  is Lipschitz with respect to (w.r.t.) 𝑟  and continuous 
w.r.t. 𝑧 with ℋ(𝑧, 0, 0, 𝛿) = 0; and 𝒲(∙): ℝ௡ → ℝ௡ is continuous satisfying 𝒲(𝑟) = 0 if 𝑟 = 0. 
The other suitable conditions are assumed to be satisfied to ensure solution 𝑟(𝑧) of IDSU (1) uniquely 
exists. In addition, the right-continuous property and the left limit property hold for 𝑟(𝑧). 
Definition 1. [19] For 𝑟(0) ∈ ℝ௡, if a time-varying adaptive controller 

 η(𝑧) = η ቀ𝑧, 𝑟(𝑧), Δ෡൫𝑧, 𝑟(𝑧)൯ቁ , η ቀ𝑧, 0, Δ෡(𝑧, 0)ቁ = 0 (2) 

 Δ෡ሶ (𝑧) = 𝜑 ቀ𝑧, 𝑟(𝑧), Δ෡൫𝑧, 𝑟(𝑧)൯ቁ , 𝜑 ቀ𝑧, 0, Δ෡(𝑧, 0)ቁ = 0 (3) 

exists such that 𝑟(𝑧)  of IDSU (1) and Δ෡(𝑧)  are bounded, and 𝑟(𝑧) = 0, ∀𝑧 ≥ ℤ௣ , ℤ௣ > 0 , then 
IDSU (1) is globally prescribed-time stable (ℤ௣-GPTS), where Δ෡(𝑧) is the estimated value of the 
uncertain parameter vector Δ  which depends on 𝛿 . Δ෡(0) = Δ෡଴  and Δ෩(𝑧) = Δ(𝑧) − Δ෡(𝑧)  is the 
estimation error. 
Lemma 1. [30] Let 𝒢(𝕪) ≥ 0 be continuous on [𝔪, 𝔫) with a singularity 𝔫. If lim𝕪→𝔫ష(𝔫 − 𝕪)𝒢(𝕪) =𝒟, where 𝒟 > 0 or 𝒟 = +∞, then ׬ 𝒢(𝕪)𝔫𝔪 𝑑𝕪 = +∞. 
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Lemma 2. [31] If 𝕋ሶ (𝑦) = −ℚ(𝑦)𝕋(𝑦) + 𝕃(𝑦), then 𝕋(𝑦) = 𝕋(0)𝑒ି ׬ ℚ(௦)ௗ௦೤బ + 𝑒ି ׬ ℚ(௦)ௗ௦೤బ ׬ 𝕃(𝑠)௬଴ 𝑒׬ ℚ(௭)ௗ௭ೞబ 𝑑𝑠. 

Definition 2. [19] If function 𝛽(𝑧)  is continuous, 𝛽(𝑧) > 0 , ∀𝑧 ∈ [0, ℤ௣),  and lim௭→ℤ೛ష൫ℤ௣ −𝑧൯𝛽(𝑧) = 𝒬,  where 𝒬 > 0  or +∞ , then 𝛽(𝑧)  is referred to as a prescribed-time adjustment 
(ℤ௣-PTA) function. 
Remark 1. By Definition 2, one can derive lim௭→ℤ೛ష 𝛽(𝑧) = +∞. Furthermore, by leveraging Lemma 1, 

it becomes evident that when 𝛽(𝑧)  is a ℤ௣- PTA function, and under the assumption of lim௭→ℤ೛ష൫ℤ௣ − 𝑧൯𝛽(𝑧) = +∞, it follows that ׬ 𝛽(𝑧)𝑑𝑧 = +∞ℤ೛଴ . In addition, the ℤ௣-PTA function can 

be regarded as a special case of the ℤ௣-finite-time stable function [32]. This is because, on the basis of 
ensuring FTS, it further provides the capability for precise control and adjustment of the settling time. 

Theorem 1. For given ℤ௣ > 0, if there exist functions Βଵ(𝑟(𝑧)), Βଶ ቀΔ෩(𝑧)ቁ ∈ 𝐶ଵ(ℝ; ℝ), and 𝜛௜ ∈𝕂ஶ (𝑖 = 1, 2, 3, 4), such that (C1) Β(𝑧) = Βଵ൫𝑟(𝑧)൯ + Βଶ ቀΔ෩(𝑧)ቁ , ∀𝑟 ∈ ℝ௡, (C2) 𝜛ଵ(∥ 𝑟 ∥) ≤ Βଵ(𝑟) ≤ 𝜛ଶ(∥ 𝑟 ∥), ∀𝑟 ∈ ℝ௡, (C3) 𝜛ଷ൫∥ Δ෩ ∥൯ ≤ Βଶ൫Δ෩൯ ≤ 𝜛ସ൫∥ Δ෩ ∥൯, 

(C4) Βሶ (𝑧) ≤ −ℂ𝛽(𝑧)Βଵ൫𝑟(𝑧)൯, 𝑧 ≠ 𝑧௞, 

(C5) Βଵ൫𝒲(𝑟)൯ ≤ 𝒥Βଵ(𝑟), 

where constants ℂ > 0, 0 < 𝒥 < 1, and 𝛽(𝑧) is a ℤ௣-PTA function, then IDSU (1) under controller 
(2) is ℤ௣-GPTS. 
Proof. The proof is divided into two parts: (Α°) We will prove that 𝑟(𝑧) and Δ෡(𝑧) are bounded. (Β°) We will show that IDSU (1) converges to zero within ℤ௣. For ℤ௣ > 0, an integer 𝑄 exists for 𝑧ொ ≤ ℤ௣ < 𝑧ொାଵ. 

Part Α°: When 𝑧 ≠ 𝑧௞, from (C4), Βሶ (𝑧) ≤ 0; when 𝑧 = 𝑧௞, from (C5), one has 

 
Β(𝑧௞) ≤ 𝒥Βଵ൫𝑟(𝑧௞ି )൯ + Βଶ ቀΔ෩(𝑧௞)ቁ≤ Βଵ൫𝑟(𝑧௞ି )൯ + Βଶ ቀΔ෩(𝑧௞)ቁ= Β(𝑧௞ି ).  (4) 

Therefore, Β(𝑧) is monotonically decreasing for 𝑧 ∈ [0, + ∞). 
From (C1), one can easily obtain that 

 Βଵ൫𝑟(𝑧)൯ ≤ Β(𝑧) ≤ Β(0), Βଶ ቀΔ෩(𝑧)ቁ ≤ Β(𝑧) ≤ Β(0). (5) 
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From Eq (5) and (C2), (C3), one has ∥ 𝑟(𝑧) ∥ ≤ 𝜛ଵି ଵ ቀΒଵ൫𝑟(𝑧)൯ቁ ≤ 𝜛ଵି ଵ൫Β(0)൯, 

∥ Δ෩(𝑧) ∥ ≤ 𝜛ଷି ଵ ൬Βଶ ቀΔ෩(𝑧)ቁ൰ ≤ 𝜛ଷି ଵ൫Β(0)൯, 

so, both 𝑟(𝑧) and Δ෩(𝑧) are bounded. Since Δ෩(𝑧) = Δ − Δ෡(𝑧), it follows that Δ෡(𝑧) is also bounded. 
Part Β°: According to (C1) and (C4), one can easily calculate that 

 Βሶ (𝑧) ≤ −ℂ𝛽(𝑧) ൬Β(𝑧) − Βଶ ቀΔ෩(𝑧)ቁ൰ = −ℂ𝛽(𝑧)Β(𝑧) + ℂ𝛽(𝑧)Βଶ ቀΔ෩(𝑧)ቁ . (6) 

When “=” holds, Eq (6) is recast as a first-order linear differential equation. When 𝑧 ∈ [0, 𝑧ଵ), 
by Lemma 2, one has 

 Β(𝑧) = Β(0)𝑒ିℂ ׬ ఉ(௦)೥బ ௗ௦ + 𝑒ିℂ ׬ ఉ(௦)೥బ ௗ௦ ׬ ℂ𝛽(𝑠)Βଶ ቀΔ෩(𝑠)ቁ௭଴ 𝑒ℂ ׬ ఉ(ఔ)ೞబ ௗఔ𝑑𝑠. (7) 

By the comparison lemma, we have 

 Β(𝑧) ≤ Β(0)𝑒ିℂ ׬ ఉ(௦)೥బ ௗ௦ + 𝑒ିℂ ׬ ఉ(௦)೥బ ௗ௦ ׬ ℂ𝛽(𝑠)Βଶ ቀΔ෩(𝑠)ቁ௭଴ 𝑒ℂ ׬ ఉ(ఔ)ೞబ ௗఔ𝑑𝑠. (8) 

Assume that Eq (8) also holds on 𝑧 ∈ [𝑧௞ିଵ, 𝑧௞). Then when 𝑧 ∈ [𝑧௞, 𝑧௞ାଵ), from Eq (4), we have 

 
Β(𝑧௞) ≤ Β(𝑧௞ି )≤ Β(0)𝑒ିℂ ׬ ఉ(௦)೥ೖబ ௗ௦ + 𝑒ିℂ ׬ ఉ(௦)೥ೖబ ௗ௦ ׬ ℂ𝛽(𝑠)Βଶ ቀΔ෩(𝑠)ቁ௭ೖ଴ 𝑒ℂ ׬ ఉ(ఔ)ೞబ ௗఔ𝑑𝑠. (9) 

From (C4), we can get 

 

Β(𝑧) ≤ Β(𝑧௞)𝑒ିℂ ׬ ఉ(௦)೥೥ೖ ௗ௦ + 𝑒ିℂ ׬ ఉ(௦)೥೥ೖ ௗ௦ ׬ ℂ𝛽(𝑠)Βଶ ቀΔ෩(𝑠)ቁ௭௭ೖ 𝑒ℂ ׬ ఉ(ఔ)ೞ೥ೖ ௗఔ𝑑𝑠≤ ቂΒ(0)𝑒ିℂ ׬ ఉ(௦)೥ೖబ ௗ௦ + 𝑒ିℂ ׬ ఉ(௦)೥ೖబ ௗ௦ ׬ ℂ𝛽(𝑠)Βଶ ቀΔ෩(𝑠)ቁ௭ೖ଴ 𝑒ℂ ׬ ఉ(ఔ)ೞబ ௗఔ𝑑𝑠ቃ 𝑒ିℂ ׬ ఉ(௦)೥೥ೖ ௗ௦
+𝑒ିℂ ׬ ఉ(௦)೥೥ೖ ௗ௦ ׬ ℂ𝛽(𝑠)Βଶ ቀΔ෩(𝑠)ቁ௭௭ೖ 𝑒ℂ ׬ ఉ(ఔ)ೞ೥ೖ ௗఔ𝑑𝑠≤ Β(0)𝑒ିℂ ׬ ఉ(௦)೥బ ௗ௦ + 𝑒ିℂ ׬ ఉ(௦)೥బ ௗ௦ ׬ ℂ𝛽(𝑠)Βଶ ቀΔ෩(𝑠)ቁ௭ೖ଴ 𝑒ℂ ׬ ఉ(ఔ)ೞబ ௗఔ𝑑𝑠+𝑒ିℂ ׬ ఉ(௦)೥೥ೖ ௗ௦ ׬ ℂ𝛽(𝑠)Βଶ ቀΔ෩(𝑠)ቁ௭௭ೖ 𝑒ℂ ׬ ఉ(ఔ)ೞ೥ೖ ௗఔ𝑑𝑠≤ Β(0)𝑒ିℂ ׬ ఉ(௦)೥బ ௗ௦ + 𝑒ିℂ ׬ ఉ(௦)೥బ ௗ௦ ׬ ℂ𝛽(𝑠)Βଶ ቀΔ෩(𝑠)ቁ௭ೖ଴ 𝑒ℂ ׬ ఉ(ఔ)ೞబ ௗఔ𝑑𝑠
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+𝑒ିℂ ׬ ఉ(௦)೥బ ௗ௦ ∙ 𝑒ℂ ׬ ఉ(௦)೥ೖబ ௗ௦ ׬ ℂ𝛽(𝑠)Βଶ ቀΔ෩(𝑠)ቁ௭௭ೖ 𝑒ℂ ׬ ఉ(ఔ)ೞ೥ೖ ௗఔ𝑑𝑠≤ Β(0)𝑒ିℂ ׬ ఉ(௦)೥బ ௗ௦ + 𝑒ିℂ ׬ ఉ(௦)೥బ ௗ௦ ׬ ℂ𝛽(𝑠)Βଶ ቀΔ෩(𝑠)ቁ௭ೖ଴ 𝑒ℂ ׬ ఉ(ఔ)ೞబ ௗఔ𝑑𝑠+ 𝑒ିℂ ׬ ఉ(௦)೥బ ௗ௦ ׬ ℂ𝛽(𝑠)Βଶ ቀΔ෩(𝑠)ቁ௭௭ೖ 𝑒ℂ ׬ ఉ(ఔ)ೞబ ௗఔ𝑑𝑠≤ Β(0)𝑒ିℂ ׬ ఉ(௦)೥బ ௗ௦ + 𝑒ିℂ ׬ ఉ(௦)೥బ ௗ௦ ቂ׬ ℂ𝛽(𝑠)Βଶ ቀΔ෩(𝑠)ቁ௭ೖ଴ 𝑒ℂ ׬ ఉ(ఔ)ೞబ ௗఔ𝑑𝑠+ ׬ ℂ𝛽(𝑠)Βଶ ቀΔ෩(𝑠)ቁ௭௭ೖ 𝑒ℂ ׬ ఉ(ఔ)ೞబ ௗఔ𝑑𝑠ቃ≤ Β(0)𝑒ିℂ ׬ ఉ(௦)೥బ ௗ௦ + 𝑒ିℂ ׬ ఉ(௦)೥బ ௗ௦ ׬ ℂ𝛽(𝑠)Βଶ ቀΔ෩(𝑠)ቁ௭଴ 𝑒ℂ ׬ ఉ(ఔ)ೞబ ௗఔ𝑑𝑠.
 (10) 

Therefore, Eq (8) holds ∀𝑧 ∈ [0, + ∞). 
By Definition 2 and Lemma 1, lim௭→ℤ೛ష ׬ 𝛽(𝑣)𝑑𝑣௭଴ = +∞. Further, it is easy to obtain that 

 

lim௭→ℤ೛ష Β(𝑧) = lim௭→ℤ೛ష ൬Βଵ൫𝑟(𝑧)൯ + Βଶ ቀΔ෩(𝑧)ቁ൰
≤ lim௭→ℤ೛ష ׬ ℂఉ(௦)୺మቀ୼෩(௦)ቁ೥బ ௘ℂ ׬ ഁ(ഌ)ೞబ ೏ഌௗ௦௘ℂ ׬ ഁ(ೞ)೥బ ೏ೞ= lim௭→ℤ೛ష ℂఉ(௭)୺మቀ୼෩(௭)ቁ௘ℂ ׬ ഁ(ഌ)೥బ ೏ഌௗ௦ℂఉ(௭)௘ℂ ׬ ഁ(ೞ)೥బ ೏ೞ= lim௭→ℤ೛షΒଶ ቀΔ෩(𝑧)ቁ .

 (11) 

Consequently, we obtain lim௭→ℤ೛షΒଵ൫𝑟(𝑧)൯ = 0 and lim௭→ℤ೛ష 𝑟(𝑧) = 0. 

When ℤ௣ ≠ 𝑧ொ, by the continuity of 𝑟(𝑧) at ℤ௣, 𝑟൫ℤ௣൯ = 0; when ℤ௣ = 𝑧ொ, by the continuity 

of Βଵ(𝑟)  and 𝒲(𝑟) , from (C5) , Βଵ ቀ𝑟൫ℤ௣൯ቁ = Βଵ ൬𝒲 ቀ𝑟൫ℤ௣ି ൯ቁ൰ = Βଵ ቌ𝒲 ൭ lim௭→ℤ೛ష𝑟(𝑧)൱ቍ =
Βଵ ൭ lim௭→ℤ೛ష𝒲൫𝑟(𝑧)൯൱ = lim௭→ℤ೛షΒଵ ቀ𝒲൫𝑟(𝑧)൯ቁ ≤ lim௭→ℤ೛ష𝒥Βଵ൫𝑟(𝑧)൯ = 0.  Thus, 𝑟൫ℤ௣൯ = 0  can be 

concluded. From Eq (2), it follows that η൫ℤ௣൯ = 0. 
Further, since 𝑟(𝑧) = 0 is an equilibrium point of IDSU (1), ℋ(𝑧, 0, 0, 𝛿) = 0, and 𝒲(0) = 0, 

we have 𝑟(𝑧) = 0, η(𝑧) = 0, ∀𝑧 ≥ ℤ௣. Therefore, Δ෡(𝑧) = Δ෡൫ℤ௣൯ and Δ෩(𝑧) = Δ෩൫ℤ௣൯ for ∀𝑧 ≥ ℤ௣. 
Based on Parts A° and Β°, IDSU (1) is ℤ௣-GPTS. This completes the proof. 

Remark 2. Compared with [19], our Theorem 1 focuses on the impulsive factor. Based on the 
Lyapunov functional and combined with the comparison lemma, we conduct a piecewise recursive 
proof for each impulsive interval. Furthermore, we rigorously address the particular scenario of 
whether ℤ௣ coincides with an impulsive point. 
Remark 3. Unlike [16,17], which use parameterized Lyapunov equations to handle uncertain 
parameters, this paper is based on the general Lyapunov functional approach. This method does not 
rely on parametric design, but uses traditional tools such as inequality scaling and the comparison 
lemma to handle the influence of unknown parameters, which avoids excessive reliance on parametric 
design and offers broader applicability and stronger robustness. 
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Remark 4. [33] employed matrix-valued Lyapunov functions and the comparison principle to analyze 
the stability of IDSUs. [34] integrated fractional-order calculus with almost periodicity theory to 
address the existence and robust stability of almost periodic solutions of IDSUs. In contrast, this paper 
constructs a general Lyapunov functional approach by introducing the ℤ௣ -PTA function, and 
subsequently proposes a PTS theorem. 
Remark 5. In the proof of Theorem 1, 𝑧ொ is introduced to address whether ℤ௣ coincides with an 
impulsive point or not. Specifically, for fixed value ℤ௣  and monotonically increasing impulsive 
sequence {𝑧௞}, there must exist an integer 𝑄 such that 𝑧ொ ≤ ℤ௣ < 𝑧ொାଵ. Then, we categorize and 
discuss: When ℤ௣ ≠ 𝑧ொ, it follows that 𝑟൫ℤ௣൯ = 0; when ℤ௣ = 𝑧ொ, 𝑟൫ℤ௣൯ = 0 holds as well. Thus, 𝑟൫ℤ௣൯ = 0 holds, which provides rigorous logical support for establishing PTS in Theorem 1. 

3. Main results 

An ISFSU is considered: 

 ൞𝑟ሶ௜(𝑧) = 𝑟௜ାଵ(𝑧) + 𝛿்ℋ௜൫𝑟̅௜(𝑧)൯, 𝑖 = 1, 2, … , 𝑛 − 1, 𝑧 ≠ 𝑧௞𝑟ሶ௡(𝑧) = η + 𝛿்ℋ௡൫𝑟̅௡(𝑧)൯, 𝑧 ≠ 𝑧௞𝑟(𝑧) = 𝒲൫𝑟(𝑧ି)൯, 𝑧 = 𝑧௞  (12) 

where 𝑟௝ ∈ ℝ, η ∈ ℝ, and 𝛿 ∈ ℝ௥ are the system state, control input, and uncertain parameter vector, 
respectively; 𝑟̅௜ = [𝑟ଵ, ⋯, 𝑟௜]் ∈ ℝ௜ ; 𝑟(𝑧) = 𝑟̅௡(𝑧) ; and ℋ௜: ℝ௜ → ℝ௥  are known smooth functions 
with ℋ௜(0) = 0, 𝑖 = 1, ⋯, 𝑛. 
Theorem 2. For given ℤ௣ > 0 and impulsive ISFSU (12) with condition (C6), (C6) ‖𝒲(𝑟)‖ଶ ≤ 𝒥‖𝑟‖ଶ, 

one can employ a continuous time-varying adaptive controller 

 
η = −𝛿መ்ℋ௡ + Ξ,𝛿መሶ = Γ𝜉௡, 0 ≤ 𝑧 < ℤ௣ (13) 

such that ISFSU (12) is ℤ௣ -GPTS, where 𝛿መ  is the estimated value of 𝛿 , Γ > 0 ∈ ℝ௥×௥ , 𝜉௡ =𝜉௡ିଵ + 𝜀௡ ൬ℋ௡ − ∑ డ஀೙షభడ௥ೕ ℋ௝௡ିଵ௝ୀଵ ൰ , Ξ = ൬ℋ௡ − ∑ డ஀೙షభడ௥ೕ ℋ௝௡ିଵ௝ୀଵ ൰ Γ ∑ డ஀ೕషభడఋ෡ 𝜀௝௡ିଵ௝ୀଶ + డ஀೙షభడఋ෡ Γ𝜉௡ −ఙ೙ℤ೛ି௭ 𝜀௡ − 𝜀௡ିଵ + డ஀೙షభడ௭ + ∑ ൫𝑟௝ାଵ + 𝛿መ்ℋ௝൯௡ିଵ௝ୀଵ  , 𝜎௡ > 1  is to be designed, and for Θ௡ିଵ , 𝜀௡ିଵ, 𝜀௡ 

refer to its proof. 

Proof. Choose Β(𝑧) = Βଵ൫𝜀(𝑧)൯ + Βଶ ቀ𝛿ሚ(𝑧)ቁ ,  Βଵ൫𝜀(𝑧)൯ = 𝜀்(𝑧)𝜀(𝑧) , Βଶ ቀ𝛿ሚ(𝑧)ቁ =𝛿ሚ்(𝑧)Γିଵ𝛿ሚ(𝑧) , 𝜀(𝑧) = ൫𝜀ଵ(𝑧), 𝜀ଶ(𝑧), ⋯ , 𝜀௡(𝑧)൯் , 𝛿ሚ = 𝛿 − 𝛿መ . Hence, conditions (C1–C3), in 

Theorem 1 hold with 𝜛ଵ(∥ 𝜀 ∥) = 𝜛ଶ(∥ 𝜀 ∥) =∥ 𝜀 ∥ଶ, 𝜛ଷ൫∥ 𝛿ሚ ∥൯ = 𝜆min(Γିଵ) ∥ 𝛿ሚ ∥ଶ, 𝜛ସ൫∥ 𝛿ሚ ∥൯ =𝜆max(Γିଵ) ∥ 𝛿ሚ ∥ଶ. 
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When 𝑧 ≠ 𝑧௞ ൫0 ≤ 𝑧 < ℤ௣൯, set 

 ൜𝜀ଵ = 𝑟ଵ,𝜀௜ = 𝑟௜ − Θ௜ିଵ, 𝑖 = 2, ⋯, 𝑛 (14) 

where Θ௜ିଵ refers to the virtual controller designed later. 
Next, we will design a prescribed-time controller by means of the backstepping method. The 

design consists of n steps. 
Step 1: From Eq (14), yield 

 𝜀ሶଵ = 𝑟ሶଵ = 𝑟ଶ + 𝛿்ℋଵ = Θଵ + 𝜀ଶ + 𝛿்ℋଵ. (15) 

Design Θଵ as 

 Θଵ = − ఙభℤ೛ି௭ 𝜀ଵ − 𝛿መ்ℋଵ, (16) 

where 𝜎ଵ > 𝑛. Then, from Eqs (15) and (16), 

 
𝜀ሶଵ = − ఙభℤ೛ି௭ 𝜀ଵ − 𝛿መ்ℋଵ + 𝜀ଶ + 𝛿்ℋଵ= − ఙభℤ೛ି௭ 𝜀ଵ + Λଵ,

 (17) 

where Λଵ = 𝛿ሚ்ℋଵ + 𝜀ଶ. 
Define ℛଵ = ‖𝜀ଵ‖ଶ + Βଶ, and get 

 

ℛሶ ଵ = 2𝜀ଵ𝜀ሶଵ + 2𝛿ሚ்Γିଵ𝛿ሚሶ= 2𝜀ଵ ൬− ఙభℤ೛ି௭ 𝜀ଵ + 𝛿ሚ்ℋଵ + 𝜀ଶ൰ − 2𝛿ሚ்Γିଵ𝛿መሶ= −2 ఙభℤ೛ି௭ ‖𝜀ଵ‖ଶ + 2𝜀ଵ𝜀ଶ + 2𝜀ଵ𝛿ሚ்ℋଵ − 2𝛿ሚ்Γିଵ𝛿መሶ= −2 ఙభℤ೛ି௭ ‖𝜀ଵ‖ଶ + 2𝜀ଵ𝜀ଶ + 2𝛿ሚ் ቀ𝜉ଵ − Γିଵ𝛿መሶቁ ,

 (18) 

where 𝜉ଵ = 𝜀ଵℋଵ. 
Step 2: From Eq (14), we have 

 
𝜀ሶଶ = 𝑟ଷ + 𝛿்ℋଶ − Θሶ ଵ= Θଶ + 𝜀ଷ + 𝛿்ℋଶ − డ஀భడఋ෡ 𝛿መሶ − డ஀భడ௥భ (𝑟ଶ + 𝛿்ℋଵ) − డ஀భడ௭ . (19) 

Then Θଶ is designed as 

 Θଶ = − ఙమℤ೛ି௭ 𝜀ଶ − 𝜀ଵ − 𝛿መ்ℋଶ + డ஀భడఋ෡ Γ𝜉ଶ + డ஀భడ௥భ ൫𝑟ଶ + 𝛿መ்ℋଵ൯ + డ஀భడ௭ , (20) 

where 𝜎ଶ > 𝑛 − 1 and 𝜉ଶ = 𝜉ଵ + 𝜀ଶ ቀℋଶ − డ஀భడ௥భ ℋଵቁ. From Eqs (19) and (20), 
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𝜀ሶଶ = − ఙమℤ೛ି௭ 𝜀ଶ − 𝜀ଵ − 𝛿መ்ℋଶ + డ஀భడఋ෡ Γ𝜉ଶ + డ஀భడ௥భ ൫𝑟ଶ + 𝛿መ்ℋଵ൯ + డ஀భడ௭ + 𝜀ଷ + 𝛿்ℋଶ − డ஀భడఋ෡ 𝛿መሶ− డ஀భడ௥భ (𝑟ଶ + 𝛿்ℋଵ) − డ஀భడ௭= − ఙమℤ೛ି௭ 𝜀ଶ + Λଶ,

 (21) 

where Λଶ = 𝜀ଷ − 𝜀ଵ + 𝛿ሚ்ℋଶ + డ஀భడఋ෡ ቀΓ𝜉ଶ − 𝛿መሶቁ − డ஀భడ௥భ 𝛿ሚ்ℋଵ. 

Define ℛଶ = ℛଵ + ‖𝜀ଶ‖ଶ, and get 

 

ℛሶ ଶ = ℛሶ ଵ + 2𝜀ଶ𝜀ሶଶ= −2 ఙభℤ೛ି௭ ‖𝜀ଵ‖ଶ + 2𝜀ଵ𝜀ଶ + 2𝛿ሚ் ቀ𝜉ଵ − Γିଵ𝛿መሶቁ + 2𝜀ଶ ൤− ఙమℤ೛ି௭ 𝜀ଶ + 𝜀ଷ − 𝜀ଵ + 𝛿ሚ்ℋଶ+ డ஀భడఋ෡ ቀΓ𝜉ଶ − 𝛿መሶቁ − డ஀భడ௥భ 𝛿ሚ்ℋଵቃ= −2 ఙభℤ೛ି௭ ‖𝜀ଵ‖ଶ + 2𝜀ଵ𝜀ଶ + 2𝛿ሚ் ቀ𝜉ଵ − Γିଵ𝛿መሶቁ − 2 ఙమℤ೛ି௭ ‖𝜀ଶ‖ଶ + 2𝜀ଶ𝜀ଷ − 2𝜀ଵ𝜀ଶ+ 2𝜀ଶ𝛿ሚ்ℋଶ + 2𝜀ଶ డ஀భడఋ෡ ቀΓ𝜉ଶ − 𝛿መሶቁ − 2𝜀ଶ డ஀భడ௥భ 𝛿ሚ்ℋଵ= − ଶℤ೛ି௭ ∑ 𝜎௝ଶ௝ୀଵ ฮ𝜀௝ฮଶ + 2𝛿ሚ் ቀ𝜉ଶ − Γିଵ𝛿መሶቁ + 2𝜀ଶ𝜀ଷ + 2𝜀ଶ డ஀భడఋ෡ ቀΓ𝜉ଶ − 𝛿መሶቁ .
 (22) 

Step 𝑖(𝑖 = 3, ⋯ , 𝑛 − 1): From Eq (14), we have 

 𝜀ሶ௜ = 𝜀௜ାଵ + Θ௜ + 𝛿்ℋ௜ − డ஀೔షభడ௭ − డ஀೔షభడఋ෡ 𝛿መሶ − ∑ డ஀೔షభడ௥ೕ ൫𝑟௝ାଵ + 𝛿்ℋ௝൯௜ିଵ௝ୀଵ . (23) 

For Eq (23), design Θ௜ as 

 
Θ௜ = − ఙ೔ℤ೛ି௭ 𝜀௜ − 𝜀௜ିଵ − 𝛿መ்ℋ௜ + డ஀೔షభడ௭ + ∑ డ஀೔షభడ௥ೕ ൫𝑟௝ାଵ + 𝛿መ்ℋ௝൯ + డ஀೔షభడఋ෡ Γ𝜉௜௜ିଵ௝ୀଵ+ ൬ℋ௜ − ∑ డ஀೔షభడ௥ೕ ℋ௝௜ିଵ௝ୀଵ ൰ Γ ∑ డ஀ೕషభడఋ෡ 𝜀௝௜ିଵ௝ୀଶ ,

 (24) 

where 𝜎௜ > 𝑛 − 𝑖 + 1 and 𝜉௜ = 𝜉௜ିଵ + 𝜀௜ ൬ℋ௜ − ∑ డ஀೔షభడ௥ೕ ℋ௝௜ିଵ௝ୀଵ ൰. Then 

 𝜀ሶ௜ = − ఙ೔ℤ೛ି௭ 𝜀௜ + Λ௜, (25) 

where Λ௜ = 𝛿ሚ்ℋ௜ − ∑ డ஀೔షభడ௥ೕ 𝛿ሚ்ℋ௝௜ିଵ௝ୀଵ + ൬ℋ௜ − ∑ డ஀೔షభడ௥ೕ ℋ௝௜ିଵ௝ୀଵ ൰ Γ ∑ డ஀ೕషభడఋ෡ 𝜀௝௜ିଵ௝ୀଶ + డ஀೔షభడఋ෡ ቀΓ𝜉௜ − 𝛿መሶቁ +𝜀௜ାଵ − 𝜀௜ିଵ. 
Define ℛ௜ = ℛ௜ିଵ + ‖𝜀௜‖ଶ, and get 

 ℛሶ ௜ = − ଶℤ೛ି௭ ∑ 𝜎௝௜௝ୀଵ ฮ𝜀௝ฮଶ + 2𝜀௜𝜀௜ାଵ + 2𝛿ሚ் ቀ𝜉௜ − Γିଵ𝛿መሶቁ + 2 ∑ డ஀ೕషభడఋ෡ 𝜀௝ ቀΓ𝜉௜ − 𝛿መሶቁ௜௝ୀଶ . (26) 

Step 𝑛: From Eq (14), we have 

 𝜀ሶ௡ = η+𝛿்ℋ௡ − Θሶ ௡ିଵ = η+𝛿்ℋ௡ − డ஀೙షభడ௭ − డ஀೙షభడఋ෡ 𝛿መሶ − ∑ డ஀೙షభడ௥ೕ ൫𝑟௝ାଵ + 𝛿்ℋ௝൯௡ିଵ௝ୀଵ . (27) 
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From adaptive controller (13), 

 

𝜀ሶ௡ = −𝛿መ்ℋ௡ − ఙ೙ℤ೛ି௭ 𝜀௡ − 𝜀௡ିଵ + డ஀೙షభడ௭ + ∑ డ஀೙షభడ௥ೕ ൫𝑟௝ାଵ + 𝛿መ்ℋ௝൯௡ିଵ௝ୀଵ + 𝛿்ℋ௡+ డ஀೙షభడఋ෡ Γ𝜉௡ + ൬ℋ௡ − ∑ డ஀೙షభడ௥ೕ ℋ௝௡ିଵ௝ୀଵ ൰ Γ ∑ డ஀ೕషభడఋ෡ 𝜀௝௡ିଵ௝ୀଶ − డ஀೙షభడ௭ − డ஀೙షభడఋ෡ 𝛿መሶ− ∑ డ஀೙షభడ௥ೕ ൫𝑟௝ାଵ + 𝛿்ℋ௝൯௡ିଵ௝ୀଵ= − ఙ೙ℤ೛ି௭ 𝜀௡ + Λ௡,

 (28) 

where Λ௡ = డ஀೙షభడఋ෡ ቀΓ𝜉௡ − 𝛿መሶቁ + ൬ℋ௡ − ∑ డ஀೙షభడ௥ೕ ℋ௝௡ିଵ௝ୀଵ ൰ Γ ∑ డ஀ೕషభడఋ෡ 𝜀௝௡ିଵ௝ୀଶ − ∑ డ஀೙షభడ௥ೕ 𝛿ሚ்ℋ௝௡ିଵ௝ୀଵ +𝛿ሚ்ℋ௡ − 𝜀௡ିଵ. 
Define ℛ௡ = ℛ௡ିଵ + ‖𝜀௡‖ଶ = Β൫𝜀(𝑧)൯, and get ℛሶ ௡ = ℛሶ ௡ିଵ + 2𝜀௡𝜀ሶ௡= − 2ℤ௣ − 𝑧 ෍ 𝜎௝௡ିଵ

௝ୀଵ ฮ𝜀௝ฮଶ + 2𝛿ሚ் ቀ𝜉௡ିଵ − Γିଵ𝛿መሶቁ + 2 ෍ 𝜕Θ௝ିଵ𝜕𝛿መ 𝜀௝ ቀΓ𝜉௡ିଵ − 𝛿መሶቁ௡ିଵ
௝ୀଶ+ 2𝜀௡ିଵ𝜀௡ + 2𝜀௡ ቈ− 𝜎௡ℤ௣ − 𝑧 𝜀௡ + 𝛿ሚ்ℋ௡ − 𝜀௡ିଵ + 𝜕Θ௡ିଵ𝜕𝛿መ ቀΓ𝜉௡ − 𝛿መሶቁ

− ෍ 𝜕Θ௡ିଵ𝜕𝑟௝ 𝛿ሚ்ℋ௝௡ିଵ
௝ୀଵ + ቌℋ௡ − ෍ 𝜕Θ௡ିଵ𝜕𝑟௝ ℋ௝௡ିଵ

௝ୀଵ ቍ Γ ෍ 𝜕Θ௝ିଵ𝜕𝛿መ 𝜀௝௡ିଵ
௝ୀଶ ቏

= − 2ℤ௣ − 𝑧 ෍ 𝜎௝௡ିଵ
௝ୀଵ ฮ𝜀௝ฮଶ + 2𝛿ሚ் ቀ𝜉௡ିଵ − Γିଵ𝛿መሶቁ + 2 ෍ 𝜕Θ௝ିଵ𝜕𝛿መ 𝜀௝ ቀΓ𝜉௡ିଵ − 𝛿መሶቁ௡ିଵ

௝ୀଶ+ 2𝜀௡ିଵ𝜀௡ − 2 𝜎௡ℤ௣ − 𝑧 ‖𝜀௡‖ଶ + 2𝛿ሚ்𝜀௡ℋ௡ − 2𝜀௡ିଵ𝜀௡ + 2 𝜕Θ௡ିଵ𝜕𝛿መ 𝜀௡ ቀΓ𝜉௡ − 𝛿መሶቁ
−2𝜀௡ ෍ 𝜕Θ௡ିଵ𝜕𝑟௝ 𝛿ሚ்ℋ௝௡ିଵ

௝ୀଵ + 2𝜀௡ ቌℋ௡ − ෍ 𝜕Θ௡ିଵ𝜕𝑟௝ ℋ௝௡ିଵ
௝ୀଵ ቍ Γ ෍ 𝜕Θ௝ିଵ𝜕𝛿መ 𝜀௝௡ିଵ

௝ୀଶ= − 2ℤ௣ − 𝑧 ෍ 𝜎௝௡
௝ୀଵ ฮ𝜀௝ฮଶ + 2𝛿ሚ் ቌ𝜉௡ିଵ − Γିଵ𝛿መሶ + 𝜀௡ℋ௡ − 𝜀௡ ෍ 𝜕Θ௡ିଵ𝜕𝑟௝ ℋ௝௡ିଵ

௝ୀଵ ቍ
+ 2 𝜕Θ௡ିଵ𝜕𝛿መ 𝜀௡ ቀΓ𝜉௡ − 𝛿መሶቁ + 2 ෍ 𝜕Θ௝ିଵ𝜕𝛿መ 𝜀௝௡ିଵ

௝ୀଶ ቀΓ𝜉௡ିଵ − 𝛿መሶ + Γ𝜉௡ − Γ𝜉௡ିଵቁ
= − 2ℤ௣ − 𝑧 ෍ 𝜎௝௡

௝ୀଵ ฮ𝜀௝ฮଶ + 2𝛿ሚ் ቀ𝜉௡ − Γିଵ𝛿መሶቁ + 2 𝜕Θ௡ିଵ𝜕𝛿መ 𝜀௡ ቀΓ𝜉௡ − 𝛿መሶቁ

 

 

+ 2 ∑ డ஀ೕషభడఋ෡ 𝜀௝௡ିଵ௝ୀଶ ቀΓ𝜉௡ − 𝛿መሶቁ= − ଶℤ೛ି௭ ∑ 𝜎௝௡௝ୀଵ ฮ𝜀௝ฮଶ≤ −2𝛽(𝑧)Βଵ
 (29) 
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where 𝛽(𝑧) = ఙℤ೛ି௭  is a ℤ௣ -PTA function and 𝜎 = min௜ఢ{ଵ, ⋯, ௡}{𝜎௜} > 1 . Hence, condition (C4)  in 

Theorem 1 holds for impulsive ISFSU (12). 
When 𝑧 = 𝑧௞, since there is no control on impulsive ISFSU (12) at 𝑧௞, let Θ௜(𝑧௞) = 0. Further, 

 ⎩⎪⎨
⎪⎧𝜀ଵ(𝑧௞) = 𝑟ଵ(𝑧௞) = 𝒲൫𝑟ଵ(𝑧௞ି )൯,𝜀ଶ(𝑧௞) = 𝑟ଶ(𝑧௞) = 𝒲൫𝑟ଶ(𝑧௞ି )൯,⋯𝜀௡(𝑧௞) = 𝑟௡(𝑧௞) = 𝒲൫𝑟௡(𝑧௞ି )൯,

 (30) 

and from (C6), we have 

 

Βଵ൫𝜀(𝑧௞)൯ = 𝑟்(𝑧௞)𝑟(𝑧௞)= ฮ𝒲൫𝑟(𝑧௞ି )൯ฮଶ≤ 𝒥‖𝑟(𝑧௞ି )‖ଶ≤ 𝒥Βଵ൫𝜀(𝑧௞ି )൯.

 (31) 

Thus, condition (C5) in Theorem 1 holds. 
Based on Theorem 1, we conclude that impulsive ISFSU (12) is ℤ௣-GPTS. 

Remark 6. In the proof of Theorem 2, when 𝑧 ≠ 𝑧௞, Θ௜(𝑧) are designed recursively based on the 
backstepping technique, progressively constructing a Lyapunov functional and deriving the specific 
form of controller η(𝑧); when 𝑧 = 𝑧௞, Θ௜(𝑧) is used to verify that condition (C5) of Theorem 1 can 
still be satisfied here. 
Remark 7. Similarly to Remark 2, compared with [19], this paper constrains the state jump at impulse 
instants 𝑧௞  through condition (C6) . When 𝑧 ≠ 𝑧௞ , controllers are designed via the backstepping 
method, ultimately guaranteeing system stability. 
Remark 8. Compared with [28], this paper further addresses the uncertain parameters in ISFSU (12) 
and conducts research on PTS. Distinct from [29], this paper employs the backstepping technique to 
design the controller, and achieves PTS by adjusting functions. 
Remark 9. Unlike [23,24,35] on adaptive control, this paper focuses on the PTS issue, requiring 
system states to strictly converge to zero within ℤ௣  that can be arbitrarily specified and are 
independent of the initial conditions. Meanwhile, system uncertainties are addressed through a 
designed adaptive law rather than relying on fuzzy basis functions to estimate unknown terms, thereby 
reducing computational redundancy and estimation errors while lowering controller complexity. 
Furthermore, although [23,24,35] and this paper use the backstepping method to design controllers, 
this paper further takes into account the impact of impulsive effects, making the design more suitable 
for practical applications. 
Remark 10. For uncertain systems, [36] implements a controller design using a data-driven hybrid 
iteration algorithm; whereas this paper uses the backstepping method to design an adaptive prescribed-
time control strategy. Despite these differences, the innovative data-driven controller design method is 
particularly important to us. 
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4. Simulation results 

Consider an ISFSU 

 ⎩⎨
⎧𝑟ሶଵ(𝑧) = 𝑟ଶ(𝑧) + 𝛿𝑟ଵ(𝑧), 𝑧 ≠ 𝑧௞,𝑟ሶଶ(𝑧) = 𝑟ଷ(𝑧), 𝑧 ≠ 𝑧௞,𝑟ሶଷ(𝑧) = η + 𝛿𝑟ଷଶ(𝑧), 𝑧 ≠ 𝑧௞,𝑟௜(𝑧) = 𝒜𝑟௜(𝑧ି), 𝑧 = 𝑧௞, 𝑖 = 1, 2, 3,

 (32) 

with initial conditions IC1 = (1.0, − 2.0, 1.1) , IC2 = (−0.8, 2.1, − 1.0) , IC3 = (0.6, − 1.0, − 1.2), 𝒜 = 0.8, 𝛿 = 0.9, and impulsive points 𝑧௞ = 0.2, 0.4, 0.6, ⋯. When the prescribed time is 
chosen as ℤ௣ = 3 , as illustrated in Figure 1, when there is no controller η , the state trajectory of 
ISFSU (32) fails to reach stability within ℤ௣ . Hence, it is necessary to employ the appropriate 
controller η to achieve ℤ௣-GPTS. 

Based on the design procedure outlined in Section 3, we can formulate the prescribed-time 
adaptive controller as follows: 

 η = − ఙయℤ೛ି௭ 𝜀ଷ + Ξ, 𝛿መሶ = 𝜉, 𝑧 ∈ ൣ0, ℤ௣൯, (33) 

where Ξ = డ஀మడ௥భ ൫𝑟ଶ + 𝛿መ்𝑟ଵ൯ + డ஀మడ௥మ 𝑟ଷ + డ஀మడ௭ + డ஀మడఋ෡ 𝜉 − 𝜀ଶ డ஀భడఋ෡ ቀ𝑟ଷ − డ஀మడ௥భ 𝑟ଵቁ − 𝜀ଶ − 𝛿መ𝑟ଷ,  𝜉 = 𝜀ଵ𝑟ଵ −𝜀ଶ డ஀భడ௥భ 𝑟ଵ + 𝜀ଷ ቀ𝑟ଷଶ − డ஀మడ௥భ 𝑟ଵቁ. The design parameters are selected as 𝜎ଵ = 𝜎ଶ = 𝜎ଷ = 5. The simulation 

results are illustrated in Figures 2–4. It can be observed from Figure 2 that, under different initial 
conditions, the controlled system (32) converges to zero within ℤ௣. As shown in Figure 3 and 4, the 
controller (33) is continuous and also converges to zero within ℤ௣, while the parameter estimation 𝛿መ 
remains bounded. 

 

Figure 1. Response of 𝑟 of ISFSU (32) without a controller under different initial conditions. 
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Figure 2. Responses of 𝑟 of ISFSU (32) under the control input (33) with different initial 
conditions. 

 

Figure 3. Responses of η with different initial conditions. 

 

Figure 4. Responses of 𝛿መ under the control input (33) with different initial conditions. 

5. Conclusions 

This research proposes a prescribed-time control method for nonlinear IDSUs via adaptive control. 
First, a PTS theorem is put forward for IDSUs, and its proof is completed by constructing a Lyapunov 
functional. Then, for an ISFSU, a feedback controller is designed using the backstepping method, and 
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a time-varying gain control law is constructed, avoiding the influence of parameterization, and 
enabling the system to be ℤ௣-GPTS. 

In future work, we plan to generalize condition (C4) to some broader cases, such as Βሶ (𝑧) ≤−ℂ𝛽(𝑧)Β൫𝑟(𝑧)൯  or Βሶ (𝑧) ≤ −𝑎Βଵp൫𝑟(𝑧)൯ + 𝑏Βଵq൫𝑟(𝑧)൯  with proper parameters 𝑎 , 𝑏 , p , q , 𝑧 ≠𝑧௞.  These developments relax the strict constraints on Β(𝑧) , allowing it to exhibit more complex 
functional forms, with the aim of extending applicability to a broader class of systems. Furthermore, 
we will design an appropriate controller that will adapt to the above developments to ensure system 
stability and control performance. 
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