' 3 NHM, 20(3): 938-954.

i Networks and DOI: 10.3934/nhm.2025040
L/ Heterogeneous Media Received: 15 July 2025
- Revised: 15 August 2025
Accepted: 28 August 2025
Published: 05 September 2025

>

@

w

https://www.aimspress.com/journal/ NHM

Research article

Prescribed-time control for impulsive systems with uncertainties via

adaptive control

Chenrong Niu!, Chunyan Zhang"*, Liping Du' and Lichao Feng!-*

I College of Science, North China University of Science and Technology, Tangshan 063210, China
2 Hebei Key Laboratory of Data Science and Application, North China University of Science and
Technology, Tangshan 063210, China

* Correspondence: Email: zhangchunyan@ncst.edu.cn, fenglichao@ncst.edu.cn.

Abstract: To present, there has been much research on prescribed-time stability (PTS) of uncertain
systems, but the significant impulse factor has not been considered. Therefore, in this paper, the
stability control problem of a class of impulsive systems with uncertainties within the prescribed time
was studied by the Lyapunov functional approach. The comparison lemma was utilized and iteration
was carried out for each impulsive interval to prove the PTS theorem for general impulsive systems
with uncertainties. In addition, a time-varying adaptive controller in combination with the
backstepping method was constructed for PTS of special impulsive strict-feedback systems with
uncertainties, breaking through the dependence of traditional methods on uncertain parameters. Finally,
a simulation example was used to verify the effectiveness and feasibility of the proposed method.
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1. Introduction

Stability, as a core attribute, determines the reliability and controllability of system behavior.
Finite-time stability (FTS) had garnered increasing attention from researchers due to its capability of
achieving convergence within a bounded time frame [1]. Studies [2—4] extended the theory and
application of FTS and provided novel control methods for complex systems. For FTS, convergence
time remains dependent on initial conditions, making it impossible to precisely schedule system
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behavior in practical engineering applications. To solve this, fixed-time stability (FxTS) was
introduced to guarantee that a system will attain or maintain a stable state within a settling time
frame [5-8]. For instance, [8] investigated the achievement of FxTS for unstable impulsive systems,
proposing novel FXTS criteria and delivering more precise estimates of the settling time. Nevertheless,
FxTS guarantees a fixed upper bound for the settling time, where this upper bound depends on the
system parameters.

For the aforementioned limitations of FTS and FxTS, prescribed-time stability (PTS) has emerged.
In contrast to FTS and FXTS, PTS ensures that the system can achieve a stable state within a precisely
predetermined time, demonstrating stronger flexibility and more promising engineering application
potential. In recent years, numerous scholars have achieved a series of remarkable outcomes for
PTS [9-13]. For instance, reference [14] investigated an effective PTS strategy based on an extended
state observer. Reference [15] studied the PTS impulsive control for nonlinear systems, where impulses
can instantaneously adjust the system states at specific moments. The above studies on PTS do not
consider the uncertainty factor. For uncertain systems, some works have been reported on PTS [16—-19].
Here, we particularly emphasize [19]. Specifically speaking, rooted in the Lyapunov functional approach,
reference [19] investigated the PTS adaptive control for nonlinear systems with unknown parameters,
where uncertain terms can more realistically reflect various unknown factors for practical systems and
enhance system robustness. However, [19] did not take into account the impact of the impulsive factor.
As known, the impulsive phenomenon, as a significant factor, is vital for system stability /instability.
Therefore, one may ask: Can PTS assertions be achieved for impulsive differential systems with
uncertainties (IDSUs) rooted in the Lyapunov functional approach? Giving a clear answer to this
question constitutes the foremost motivation for this research.

Strict-feedback systems (SFSs) are a class of nonlinear systems with a lower triangular structure,
which establishes a systematic framework for complex systems, particularly for those involving
unknown parameters [20-24]. Reference [25] proposed a smooth control method for uncertain
nonlinear SFSs with state constraints, achieving tracking control within a finite time. Reference [26]
solved FxTS of SFSs. Reference [27] investigated the PTS of nonlinear SFSs and proposed a new
non-scaling design method. Furthermore, there are some works [28,29] on impulsive SFSs. However,
as far as we know, research on achieving PTS for impulsive SFSs has not been reported so far.
Therefore, filling this gap constitutes the second motivation for conducting this research.

Inspired by the aforementioned insights, this paper aims to investigate PTS for impulsive systems
with uncertainties and apply the obtained assertion to impulsive SFSs by using the backstepping
method to handle uncertainties. Compared with existing works, the main contributions are as follows:

(1) Rooted in the Lyapunov functional approach, we propose a PTS assertion for nonlinear
systems with impulsive effects and uncertainties, establishing explicit theoretical conditions for state
convergence, thereby opening up new avenues for PTS analysis of such systems.

(2) For impulsive SFSs with uncertainties (ISFSUs), a time-varying adaptive controller is adopted
by the backstepping approach to achieve PTS, effectively enhancing the reliability and stability of the
system in complex environments.
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Table 1. Notation list.

Notation Meaning

Z, Collection of positive integers.

R, Collection of non-negative real numbers.

R™" Collection of r X r real matrices.

T Collection of {z,, k € Z,} (short for {z,}) satisfying 0 < z; < - < z; > +00, k > +o0,
K K={a€eC(R,,R)a(0) =0, a(s) >0 for s >0 and «a is strictly increasing in s}.
Ko Ko = {@ € K:a(s) » o0 as s — oo},

M >0 Matrix M is positive definite.

[I]I Norm of a vector.

C'(R; R) Collection of real-value functions B(r) on R being once continuously differentiable on r.
ApinT7H) Minimum eigenvalue of matrix ™2,
Amax (T Maximum eigenvalue of matrix '™,

2. Preliminaries

Consider a nonlinear IDSU

7(z) =H(z,7(2),n(2),6),z#+ z,, 2= 0

r(z) = W(r(z‘)), zZ =2z (1)
r(0) =r,

where r(z) € R", 7(z) denotes the right-hand derivative of r(z), n(z) € R™ is the control input
vector, § € R" is the uncertain parameter vector, {z,} € J; stands for the sequence of impulse
instants; H(*): R, X R®" X R™ X R" - R" is Lipschitz with respect to (w.r.t.) r and continuous
w.rt. z with H(z, 0,0, ) = 0;and W(:): R® - R" is continuous satisfying W(r) =0 if r = 0.
The other suitable conditions are assumed to be satisfied to ensure solution 7(z) of IDSU (1) uniquely
exists. In addition, the right-continuous property and the left limit property hold for r(z).

Definition 1. [19] For r(0) € R", if a time-varying adaptive controller

nz) =1 (Z, r(z), Z(z, r(z))) M (z, 0, A(z, 0)) =0 (2)

Z(z) =@ (Z, r(2), Z(z, r(z))) ,Q (Z, 0, A(z, 0)) =0 3)

exists such that r(z) of IDSU (1) and A(z) are bounded, and 7(z) = 0, Vz > Ly, 1y, > 0, then
IDSU (1) is globally prescribed-time stable (Z,-GPTS), where A(z) is the estimated value of the

uncertain parameter vector A which depends on 8. A(0) = A, and A(z) = A(z) — A(z) is the

estimation error.

Lemma 1. [30] Let G(y) = 0 be continuous on [m, n) with a singularity n. If lim (n —y)G(y) =
yon

D, where D > 0 or D = +oo, then fnfg(y) dy = +oo.
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Lemma 2. [31] If T(y) = —Q(y)T(y) + L(y), then
T(y) = T(o)e—fon(s)ds + e—nyQ(s)ds foy L(s) efos(@(z)dzds.
Definition 2. [19] If function B(z) is continuous, f(z) >0, Vz € [0,Z,), and lir%l_(Zp -
VAd D

Z)ﬂ(z) =@, where Q >0 or +oo, then [(z) is referred to as a prescribed-time adjustment
(Z,-PTA) function.

Remark 1. By Definition 2, one can derive 11%1_ B(z) = +oo. Furthermore, by leveraging Lemma 1,
VAnd D

it becomes evident that when f(z) is a Z,- PTA function, and under the assumption of
lir%l_ (Zp - Z)ﬁ(z) = +oo, it follows that fOZp B(z)dz = +oo. In addition, the Z,-PTA function can
z-Ly

be regarded as a special case of the Z,-finite-time stable function [32]. This is because, on the basis of
ensuring FTS, it further provides the capability for precise control and adjustment of the settling time.

Theorem 1. For given Z, > 0, if there exist functions B, (r(z)), B, (Z(z)) € C'(R; R), and @; €
K, (i =1, 2, 3, 4), such that

(C1) B(z) = B,(r(2)) + B, (”A‘(z)) ,Vr € R",
(C) @ (I 1) <B(r) <@, (Il r ), vVr € R",

©3) w3 (I13 1) < B,(R) < w, (1 A1),
(C4) B(2) < —CR(2)B4(r(2)), z # 2,

(C5) By (W) < JB, (1),

where constants € >0, 0 < J <1,and B(z) isa Z,-PTA function, then IDSU (1) under controller
(2)is Z,-GPTS.
Proof. The proof is divided into two parts: (A") We will prove that 7(z) and A(z) are bounded.
(B") We will show that IDSU (1) converges to zero within Z,.For Z, > 0, an integer Q exists for
ZQ < Zp < ZQ+1. .
Part A’: When z # z,, from (C4), B(z) < 0; when z = z,, from (C5), one has
B(z) < JB1(r(zic)) + B, (A(z))
< By (r(z)) + B, (B(z)) )
= B(zy).
Therefore, B(z) is monotonically decreasing for z € [0, + ).

From (Cl1), one can easily obtain that

B, (r(2)) < B(2) < B(0). B, (A(2)) < B(2) < B(0). (5)
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From Eq (5) and (C2), (C3), one has

I7(2) I < @7 (B, (r(2)) < w1 (B(0)).

1A(2) Il < w3 (B2 (Z(z))) < @3'(B(0)),

so, both 7(z) and A(z) are bounded. Since A(z) = A — A(z), it follows that A(z) is also bounded.
Part B’: According to (C1) and (C4), one can easily calculate that

B() < ~C6(2) (B@) - B, (E(@)) = ~CA@B@) + CB @B, (A@)). (6)

When “=" holds, Eq (6) is recast as a first-order linear differential equation. When z € [0, z;),
by Lemma 2, one has

B(2) = B(0)e Sk FOE 4 o=Cl PO [ cp(s)B, (A(s)) e®o AV W ds. )
By the comparison lemma, we have
B(z) < B(0)e Ch PO 4 o~Cl PO [ cp(s)B, (A(s)) e PV s, @®)

Assume that Eq (8) also holds on z € [z,_1, z;). Then when z € [z, z,,4), from Eq (4), we have
B(zy) < B(z) o
< B(0)e ™SI PO 4 o=CL* s [P cp(5)B, (K(s) ) eSo P s, ©)

From (C4), we can get

B(2) < B(Zk)e—cfzzkﬁ(s)ds + e—(szZkﬁ(s)ds fzzk CB(s)B, (Z(s)) e@fzskﬁ(v)dvds
< [B(o) o=ClskB$)ds | o=C[T*ps)ds [ CB(s)B, (Z(s)) RINIOLY ds] ol B
4o PO 2 cp(o)B, (B() e ds
< BO)e S PO 1 =L IS [ (B, (B(s)) e H Vs
+e_MZZkB(S)dS fZZk CB(s)B, (Z(s)) e(cfzskﬁ(v)dvds

< B(0)e~ %o B 4 o€l Bas [Pk cp (5B, (Z(s)) oLl BOIAY g
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+e Bl A (AW % ¢p(5)B, (B(s)) e P ds
< B(o)e—((:fozﬁ(S)dS + e C fOZ.B(S)ds fOZk C,B(S)Bz ('A'(S)) e((:fosﬁ(v)dvds
+e"Ch PO 17 cp(5)B, (B(s) ) eClo PPV as

4 ¥4 — s (10)
< B(0)e Clo F&)ds 4 o=Clo s)ds [ 7k Cp(s)B, (A(s)) oLl BOIAY g
+17 CB()B, (B(s)) e o P s
< B(0)e Clo B 4 o€l B [Zcp(s)B, (Z(s)) oCls BWav g
Therefore, Eq (8) holds Vz € [0, + o0).
By Definition 2 and Lemma 1, lirzp_ fOZ B (v)dv = +oo. Further, it is easy to obtain that
7~y
lim B() = lim (B, () + B, (E))
< lim N ms)Bz(E(Zs))e% IV g
o e (11)

CB(2)B,(B(2))e o PV g
m

Z_)ZE (C‘B(Z)ecfozﬁ(s)ds
= ZIL%BZ (A(z)).

Consequently, we obtain lim_Bl(r(Z)) =0 and lim r(z) =0.
z—>Zp z—>Zp

When Z, # z,, by the continuity of 7(z) at Z,, r(Zp) = 0; when Z,, = zy, by the continuity

of B,(r) and W(r), from (C5), B, (r(Zp))=B1 (w (r(z,;)))zB1 W(Zlirél_r(z)) -

B, (ler%l_W(r(z))> = lel%l_Bl (W(T(Z))) < ZILI%I_JBl(T(Z)) = 0. Thus, T(Zp) =0 can be

concluded. From Eq (2), it follows that n(Zp) = 0.
Further, since r(z) = 0 is an equilibrium point of IDSU (1), H(z, 0, 0, §) = 0,and W(0) = 0,
we have 7(z) = 0,1(z) = 0, Vz = Z,. Therefore, A(z) = Z(Zp) and A(z) = Z(Zp) for Vz = 7Z,.
Based on Parts A’ and B, IDSU (1) is Z,-GPTS. This completes the proof.
Remark 2. Compared with [19], our Theorem 1 focuses on the impulsive factor. Based on the
Lyapunov functional and combined with the comparison lemma, we conduct a piecewise recursive
proof for each impulsive interval. Furthermore, we rigorously address the particular scenario of
whether Z,, coincides with an impulsive point.
Remark 3. Unlike [16,17], which use parameterized Lyapunov equations to handle uncertain
parameters, this paper is based on the general Lyapunov functional approach. This method does not
rely on parametric design, but uses traditional tools such as inequality scaling and the comparison
lemma to handle the influence of unknown parameters, which avoids excessive reliance on parametric
design and offers broader applicability and stronger robustness.
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Remark 4. [33] employed matrix-valued Lyapunov functions and the comparison principle to analyze
the stability of IDSUs. [34] integrated fractional-order calculus with almost periodicity theory to
address the existence and robust stability of almost periodic solutions of IDSUs. In contrast, this paper
constructs a general Lyapunov functional approach by introducing the Z, -PTA function, and

subsequently proposes a PTS theorem.
Remark 5. In the proof of Theorem 1, z, is introduced to address whether Z, coincides with an

impulsive point or not. Specifically, for fixed value Z, and monotonically increasing impulsive
sequence {z}, there must exist an integer Q such that z, < Z, < zy44. Then, we categorize and
discuss: When Z, # z,, it follows that r(Zp) = 0; when Z, = z,, r(Zp) = 0 holds as well. Thus,
T(Zp) = 0 holds, which provides rigorous logical support for establishing PTS in Theorem 1.

3. Main results

An ISFSU is considered:
7(2) = 1141 (2) + §TH(7i(2)), i = 1,2, ..,n— 1,z # 2
m(z) =n+ ST}[n(Fn(Z)), Z # 7y (12)
r(2) =W(rz)),z =z
where 7; € R, n € R,and § € R" are the system state, control input, and uncertain parameter vector,
respectively; 7; = [ry, -, 1;]T € R}; r(2) = 7,(2); and H;: R* - R” are known smooth functions

with H;(0) =0,i =1, -, n.
Theorem 2. For given Z, > 0 and impulsive ISFSU (12) with condition (C6),

o) IwmIIz < Jlirli?,
one can employ a continuous time-varying adaptive controller

n=-86TH, +E,

; (13)
§=T¢,0<2<1,

such that ISFSU (12) is Z,-GPTS, where § is the estimated value of §, [ >0 € R™", §, =

_yn-1 901 oo _\yn-1 90n_1 n-1 ae)J'—l 0054 _
$n-1t&n (}[n Zj:l or; 7’@) ) o= <7{n Zj:l or; H; FZ]':z 55 9175 [$n
On 0051 n-1 ST : :
- &n ~Ep1t— —+ Yo (rj+1 +0 7—[]), 0, > 1 is to be designed, and for ©,_1, &€,_1, &,

refer to its proof.

Proof. Choose B(z) =By(e(2)) + B, (8(2)).  Bi(e(2)) =e"(2e(z) . B, (S(z)) =
ST(DI15(2), €(z) = (sl(z), &(2), -, sn(z))T, 5 =6 — & . Hence, conditions (C1-C3), in

Theorem 1 hold with @y (Il € ) = @, (I e ) =l € 12, @5(1 5 11) = Apin T NS 12, w, (15 1) =
Amax (T 116 112,

Networks and Heterogeneous Media Volume 20, Issue 3, 938-954.
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When z # z, (0 <z< Zp), set

& =",
{Si =1 —0;_1,i=2,,n (14)
where 0;_; refers to the virtual controller designed later.
Next, we will design a prescribed-time controller by means of the backstepping method. The
design consists of n steps.
Step 1: From Eq (14), yield

él s 7;'1 = rz + 6Tj'[1 = @1 + 82 + 5T}[1. (15)
Design 0, as

0, = ——g —5TH,, (16)

Zp—z

where o; > n. Then, from Eqs (15) and (16),

él = _Zaiz 51 - ST}[l + 82 + 5T%1
A (17)
- Lp—z & 1
where Ay = 8TH, + &,.
Define R, = ||&||> + B,, and get
Ry = 2¢e,¢, + 26TT18
= 281 (_%81 + ST}[I + 82) - ZSTF_lé
-
< < i 18
=2 Z"lz llel|? + 26,6, + 26, 6TH, — 26TT16 (18)
-
_ oy O 2 ST _r-18
= -2 llaull® + 28,2, + 26 (& -1715).
where El = 81}[1.
Step 2: From Eq (14), we have
éz s T'3 + (ST}[Z - (:)1
1
=0, + &5+ 8TH, - 226 691( +6THy) — 22, (19)
Then 0, is designed as
@2 = — Z:iz 82 - Sl - ST}[Z + %FEZ 661 (7"2 6TH1) + 391 (20)

where 0, >n—1 and & =& + & (f]-[ ael 7-[1) From Eqgs (19) and (20),

Networks and Heterogeneous Media Volume 20, Issue 3, 938-954.
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&= — 328y — &1 = 8TH, + T2TE + 522 (ry + 8700,) + T2 + &5 + 673, — 26
D
06 00
— ( +6TH) — > (21
= _Zp—Z &y + Az,

where A, = &3 —&; + 6TH, + 601 (FEZ ;) 661 6T7{1

Define R, = R; + ||&,]|?, and get

jez = ‘7.21 + Zgzéz

+ 2¢e,6, + 267 (E F_lé) + 2¢, [—%82 +&3—¢& +6TH,

ael(Ffz *) 6616T}[1]

= -2 Ji llelI? + 2,6, + 267 (51 — 1“‘15) —2-= + 28,85 — 2548, 22)
+ 26,67, + 26,22 (1&g, — 8) - 2 @ST}Q
_ sz 2 0 ||e,|| + 287 (& —T716) + 26585 + 26,52 (T, — 6).
Step i(i =3, --,n — 1): From Eq (14), we have
£ =y + 0, +8TH -2 B zlla@ll(rjﬂw ;). (23)
For Eq (23), design O; as
O = — o e — &g — 8TH + B Z"-;llaj—r";l(rjﬂ +87H;) + ST,
+(m—2;aa§” )T 23126‘3;1,-, .
where 0, >n—i+1 and & =¢&_1 + ¢ (}[i —Z; 1162)‘ 1}[) Then
& = Zp_zel + A, (25)
where  A; = 8T, — X 1132" 29i1 gy +(}fi—z; il 1}f)rz; 380 4 2% (g, - §) +

€i+1 — €i-1-
Define R; = R;_;1 + ||&l|%, and get

:Ri:_

_ZZ§'=1"1‘||EJ‘||2+2€i£i+1+25 (f —-Ir- 15)+ZZ, 25§ (Ffl ) (26)

Step n: From Eq (14), we have

00n-y _ 001 4 _ i 19@11 1(r]+1 +68TH;).  (27)

&y =M+6TH, — 0,_; = N+6TH, — — —=
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From adaptive controller (13),

. " a@n a@n
——ST}[n—ZZ_e —gpq t L4+ Yt 1(7"]+1+5 H;) + 6TH,
0051 _ yn-190n—1 n— 1691 1 '_aen—l 0051 &
+ BE) F€n+(}[” Z:J 1 or }[)FZ 0z GE) 6 (28)
_ a@n_
—Zn=1 1(7}‘+1+5 :]-[j)
= Zp Zs +An,
a@n —1004_ —100j_1 —1004_4 g
where Ay = 22 (rg, = 8) + (36, — Dot Kot oty Py Tty — Tt 2267 +
ST}[n - é‘n_l.
Define R, = R,_1 + llexlI? = B(e(2)), and get
Ry = Ry_q + 28,6,
2 n-1 n-1 90
2 ~ _ A i—1 A
> gl + 287 (s - 18) + 2 ) g (v - 6)
PoT= j=2
~ a@ -1 A
+ 28,18, + 2¢, I— p_ P OTH, — eq_q + a—}(f‘fn - 6)
- n-— 1 n-1
00;_
Z n 1 5T7'[ n Z ]A 1 gj
- — 7'] e 00
= j=1 Jj=2
2 n-1 n-1 a@
2 ~ LA i—1 A
= _ZZG,- 5" + 267 (£0y —1718) + 2 (;S & (Tén s — )
1Y j=1 j=2
o
+ 280_18n — 27— llenll? + 287 e, I, — 26018, + 22— £, (TE, — 6)
L, —
n—la@ n-1 a@ n-1 a@
n-1 g n-1 j—1
_Zgnz or, 5Tg.[j + 2¢, | H,, — ' or, H; FZ 38 &
j=1 j=2
2 n n-1 90
— -1
== gllgll” + 287 ( fus — T8+ e — ey )
j=1 =1
0 L
n—1 _ a j—1 .
t2—cte, (ré,—8) +2 2,75 & (T&n-1 — 8 +Té, — Téy_)
2~ 0
—1@ 1 a
= - Zajnejn +267 (g, ~1718) + 2 = & (T, — 6)
=1
+2313 2L g (rg, - )
2 (29)

el

—23(2)]31
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where B(z) = ﬁ is a Z,-PTA function and o = ie{gn.i.r.l n}{al-} > 1. Hence, condition (C4) in

Theorem 1 holds for impulsive ISFSU (12).
When z = z,, since there is no control on impulsive ISFSU (12) at z, let ©;(z;) = 0. Further,

&1(z) =1(zg) = W(H(Zl:)),
&(zx) =12(2) = W(TZ (Z,;)), (30)

kgn(zk) =1,(2x) = W(Tn(z;:)),

and from (C6), we have

B1(€(Zk)) = rT(Zk)r(Zk)
= WG|’
< Jlir(z)II?
< JB1(e(z;)).

Thus, condition (C5) in Theorem 1 holds.

Based on Theorem 1, we conclude that impulsive ISFSU (12) is Z,-GPTS.
Remark 6. In the proof of Theorem 2, when z # z;, 0;(z) are designed recursively based on the
backstepping technique, progressively constructing a Lyapunov functional and deriving the specific
form of controller n(z); when z = z,, 0;(z) is used to verify that condition (C5) of Theorem 1 can
still be satisfied here.
Remark 7. Similarly to Remark 2, compared with [19], this paper constrains the state jump at impulse
instants zj, through condition (C6). When z # z, controllers are designed via the backstepping
method, ultimately guaranteeing system stability.
Remark 8. Compared with [28], this paper further addresses the uncertain parameters in ISFSU (12)
and conducts research on PTS. Distinct from [29], this paper employs the backstepping technique to
design the controller, and achieves PTS by adjusting functions.
Remark 9. Unlike [23,24,35] on adaptive control, this paper focuses on the PTS issue, requiring
system states to strictly converge to zero within Z, that can be arbitrarily specified and are
independent of the initial conditions. Meanwhile, system uncertainties are addressed through a
designed adaptive law rather than relying on fuzzy basis functions to estimate unknown terms, thereby
reducing computational redundancy and estimation errors while lowering controller complexity.
Furthermore, although [23,24,35] and this paper use the backstepping method to design controllers,
this paper further takes into account the impact of impulsive effects, making the design more suitable
for practical applications.
Remark 10. For uncertain systems, [36] implements a controller design using a data-driven hybrid
iteration algorithm; whereas this paper uses the backstepping method to design an adaptive prescribed-
time control strategy. Despite these differences, the innovative data-driven controller design method is
particularly important to us.

(1)

Networks and Heterogeneous Media Volume 20, Issue 3, 938-954.
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4. Simulation results

Consider an ISFSU

71(2) = 1,(2) + 6711(2), 2 # z,
72(2) =13(2), z # 7,

3(z) =n+ 61§ (2), z # 7,

r(z) =Ari(z7),z=12,,1i=1,2,3,

(32)

with initial conditions ICI1 = (1.0, —2.0,1.1), IC2 = (-0.8,2.1, —1.0), IC3 = (0.6, — 1.0,
—1.2), A =028, § =0.9, and impulsive points z, = 0.2, 0.4, 0.6, ---. When the prescribed time is
chosen as Z, = 3, as illustrated in Figure 1, when there is no controller n, the state trajectory of
ISFSU (32) fails to reach stability within Z,. Hence, it is necessary to employ the appropriate
controller 1 to achieve Z,-GPTS.

Based on the design procedure outlined in Section 3, we can formulate the prescribed-time
adaptive controller as follows:

— 03 ol & —
n=-758+E56=§z€[0.1,), (33)
20 o 00 00, , 00 20 20 o
here Z=—%(r Tr)+ =2y + 2+ =& — —f(r ——Zr)— — or =g&r —
20 90 . . .
& a_rlrl + & (r32 — a_rzrl)' The design parameters are selected as 0, = 0, = 03 = 5. The simulation
1 1

results are illustrated in Figures 2—4. It can be observed from Figure 2 that, under different initial
conditions, the controlled system (32) converges to zero within Z,. As shown in Figure 3 and 4, the

controller (33) is continuous and also converges to zero within Z,, while the parameter estimation 5
remains bounded.

- -
o _:r__:!.-__‘_!.'-_-j_-_-_m-..,....-..._._.,_.,
- T
— =

g r
s~'\ =y et 1y With IC1 —e— 1 with IC2 ——a— 1y With 1C3

I’ ————— r with IC1 ——== nWithlIC(2 ——-- r with IC3
,_(z’ —a=-= 3 withICl —-o=-= r3withIC2 —-#=-= 3 withIC3
0 i 2 3 4 5
Time (z)

Figure 1. Response of r of ISFSU (32) without a controller under different initial conditions.
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Figure 2. Responses of r of ISFSU (32) under the control input (33) with different initial

conditions.
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w
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Figure 3. Responses of 1 with different initial conditions.
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Figure 4. Responses of § under the control input (33) with different initial conditions.

5. Conclusions

This research proposes a prescribed-time control method for nonlinear IDSUs via adaptive control.
First, a PTS theorem is put forward for IDSUs, and its proof is completed by constructing a Lyapunov
functional. Then, for an ISFSU, a feedback controller is designed using the backstepping method, and
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a time-varying gain control law is constructed, avoiding the influence of parameterization, and
enabling the system to be Z,-GPTS.

In future work, we plan to generalize condition (C4) to some broader cases, such as B(z) <
—CB(2)B(r(2)) or B(z) < —aBi(r(2)) + bB{(r(2)) with proper parameters a, b, p, q, z #
z,. These developments relax the strict constraints on B(z), allowing it to exhibit more complex
functional forms, with the aim of extending applicability to a broader class of systems. Furthermore,
we will design an appropriate controller that will adapt to the above developments to ensure system
stability and control performance.

Use of Al tools declaration

The authors declare they have not used Artificial Intelligence (Al) tools in the creation of this article.

Acknowledgments

This project is jointly supported by the Humanities and Social Science Fund of the Ministry of
Education of China (23YJAZHO031), the Natural Science Foundation of Hebei Province of China
(A2023209002, A2019209005), the Tangshan Science and Technology Bureau Program of Hebei
Province of China (24130201C), and Fundamental Research Funds for Hebei Province Universities:
North China University of Science and Technology (No. JIC2024045).

Conflict of interest

The authors declare there is no conflict of interest.

Author contributions

Chenrong Niu: Investigation, Methodology, Writing, Validation; Chunyan Zhang: Investigation,
Validation; Liping Du: Writing, Software; Lichao Feng: Conceptualization, Investigation, Supervision,
Funding acquisition.

References

1. S. P. Bhat, D. S. Bernstein, Finite-time stability of continuous autonomous systems, SIAM J.
Control Optim., 38 (2000), 751-766. https://doi.org/10.1137/S0363012997321358

2. Y. Guo, B. Huang, S. M. Song, A.J. Li, C. Q. Wang, Robust saturated finite-time attitude control
for spacecraft using integral sliding mode, J. Guid. Control Dyn., 42 (2019), 440-446.
https://doi.org/10.2514/1.G003520

3. Z.Y.Sun, M. M. Yun, T. Li, A new approach to fast global finite-time stabilization of high-order
nonlinear system, Automatica, 81 (2019), 455-463.
https://doi.org/10.1016/j.automatica.2017.04.024

4. M. A. Z. Tajrishi, A. Akbarzadeh Kalat, Fast finite time fractional-order robust-adaptive sliding
mode control of nonlinear systems with unknown dynamics, J. Comput. Appl. Math., 438 (2024),
115554. https://doi.org/10.1016/j.cam.2023.115554

Networks and Heterogeneous Media Volume 20, Issue 3, 938-954.



952

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

C. C. Hua, Y. F. Li, X. P. Guan, Finite/fixed-time stabilization for nonlinear interconnected
systems with dead-zone input, [EEE Trans. Autom. Control, 62 (2016), 2554-2560.
https://doi.org/10.1109/TAC.2016.2600343

X.Y. Liu, D. W. C. Ho, Q. Song, J. D. Cao, Finite-/fixed-time robust stabilization of switched
discontinuous systems with disturbances, Nonlinear Dyn., 90 (2017), 2057-2068.
https://doi.org/10.1007/s11071-017-3782-9

H. Shen, X. Yu, H. C. Yan, J. H. Park, J. Wang, Robust fixed-time sliding mode attitude control
for a 2-DOF helicopter subject to input saturation and prescribed performance, IEEE Trans.
Transp. Electrif-, 11 (2024), 1223—1233. https://doi.org/10.1109/TTE.2024.3402316

M. A. Jamal, R. Kumar, S. Mukhopadhyay, S. Das, Fixed-time stability of dynamical systems
with impulsive effects, J. Franklin Inst., 359 (2022), 3164-3182.
https://doi.org/10.1016/j.jfranklin.2022.02.016

Q. Lin, Y. Zhou, G. P. Jiang, S. Ge, S. Ye, Prescribed-time containment control based on
distributed observer for multi-agent systems, Neurocomputing, 431 (2021), 69-77.
https://doi.org/10.1016/;.neucom.2020.12.030

C. C. Li, C. Y. Zhang, L. C. Feng, Z. H. Wu, Note on prescribed-time stability of impulsive
piecewise-smooth differential systems and application in networks, Networks Heterog. Media, 10
(2024), 970-991. https://doi.org/10.3934/nhm.2024043

L. C. Feng, C. C. Li, M. Abdel-Aty, J. D. Cao, Prescribed-time stability of nonlinear impulsive
piecewise systems and synchronization for dynamical networks, Qual. Theory Dyn. Syst., 24
(2025), 165. https://doi.org/10.1007/s12346-025-01302-1

H. Shen, W. Zhao, J. D. Cao, J. H. Park, J. Wang, Predefined-time event-triggered tracking control
for nonlinear servo systems: A fuzzy weight-based reinforcement learning scheme, /EEE Trans.
Fuzzy Syst., 32 (2024), 4557-4569. https://doi.org/10.1109/TFUZZ.2024.3403917

A. Shakouri, N. Assadian, Prescribed-time control with linear decay for nonlinear systems, /EEE
Control Syst. Lett., 6 (2021), 313-318. https://doi.org/10.1109/LCSYS.2021.3073346

L. Cui, N. Jin, Prescribed-time ESO-based prescribed-time control and its application to partial
IGC design, Nonlinear Dyn., 106 (2021), 491-508. https://doi.org/10.21203/rs.3.rs-643681/v1
X. Y. He, X. D. Li, S. J. Song, Prescribed-time stabilization of nonlinear systems via impulsive
regulation, [EEE  Trans. Syst. Man  Cybern.: Syst., 53 (2022), 981-985.
https://doi.org/10.1109/TSMC.2022.3188874

L. C. Feng, M. Y. Dai, N. Ji, Y. L. Zhang, L. P. Du, Prescribed-time stabilization of nonlinear
systems with uncertainties/disturbances by improved time-varying feedback control, AIMS Math.,
9 (2024), 23859-23877. https://doi.org/10.3934/math.20241159

K. K. Zhang, B. Zhou, G. R. Duan, Global prescribed-time output feedback control of a class of
uncertain nonlinear systems by linear time-varying feedback, Automatica, 165 (2024), 111680.
https://doi.org/10.1016/j.automatica.2024.111680

P. J. Ning, C. C. Hua, K. Li, H. Li, A novel theorem for prescribed-time control of nonlinear
uncertain time-delay systems, Automatica, 152 (2023), 1110009.
https://doi.org/10.1016/j.automatica.2023.111009

C. C. Hua, P. J. Ning, K. Li, Adaptive prescribed-time control for a class of uncertain nonlinear
systems, IEEE Trans. Autom. Control, 67 (2022), 6159-6166.
https://doi.org/10.1109/TAC.2021.3130883

Networks and Heterogeneous Media Volume 20, Issue 3, 938-954.



953

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

J. Wu, W. Wang, S. H. Ding, X. P. Xie, Y. Yi, Adaptive neural optimized control for uncertain
strict-feedback systems with unknown control directions and pre-set performance, Commun.
Nonlinear Sci. Numer. Simul., 126 (2023), 107506. https://doi.org/10.1016/j.cnsns.2023.107506
G. W. Zuo, Y. J. Wang, Adaptive prescribed finite time control for strict-feedback systems, IEEE
Trans. Autom. Control, 68 (2022), 5729-5736. https://doi.org/10.1109/TAC.2022.3225465

B. Mao, X. Q. Xu, H. Liu, Y. H. Xu, J. H. Lu, Adaptive fuzzy tracking control with global
prescribed-time prescribed performance for uncertain strict-feedback nonlinear systems, /EEE
Trans. Cybern., 54 (2024), 5217-5230. https://doi.org/10.1109/TCYB.2024.3366177

T. Wang, J. Wu, Y. J. Wang, M. Ma, Adaptive fuzzy tracking control for a class of strict-feedback
nonlinear systems with time-varying input delay and full state constraints, /IEEE Trans. Fuzzy
Syst., 28 (2019), 3432-3441. https://doi.org/10.1109/TFUZZ.2019.2952832

T. Wang, N. Wang, J. B. Qiu, C. Buccella, C. Cecati, Adaptive event-triggered control of
stochastic nonlinear systems with unknown dead zone, /EEE Trans. Fuzzy Syst., 31 (2022), 138—
147. https://doi.org/10.1109/TFUZZ.2022.3183763

B. Cui, Y. Q. Xia, K. Liu, G. H. Shen, Finite-time tracking control for a class of uncertain strict-
feedback nonlinear systems with state constraints: a smooth control approach, IEEE Trans. Neural
Networks Learn. Syst., 31 (2020), 4920-4932. https://doi.org/10.1109/TNNLS.2019.2959016

C. H. Zhang, L. Chang, L. T. Xing, X. F. Zhang, Fixed-time stabilization of a class of strict-feedback
nonlinear systems via dynamic gain feedback control, IEEE/CAA J. Autom. Sinica, 10 (2023),
403-310. https://doi.org/10.1109/JAS.2023.123408

H. Wang, W. Q. Li, M. Krstic, Prescribed-time stabilization and inverse optimality for strict-feedback
nonlinear systems, Syst. Control Lett., 190 (2024), 105859.
https://doi.org/10.1016/j.sysconle.2024.105859

W. H. Pan, W. J. Zhang, X. F. Zhang, Impulsive control for strict-feedback nonlinear systems
based on discontinuous monitoring of system states, Nonlinear Dyn., 113 (2025), 13535-13551.
https://doi.org/10.1007/s11071-025-11080-9

D. B. Fan, X. F. Zhang, W. H. Pan, Sliding mode control for strict-feedback nonlinear impulsive
systems with matched disturbances, /[EEE Trans. Circuits Syst. II, 71 (2023), 787-791.
https://doi.org/10.1109/TCSII1.2023.3311920

M. Bohner, G. Guseinov, Improper integrals on time scales, Dyn. Syst. Appl., 12 (2003), 45-66.
https://doi.org/10.1007/s00454-002-0761-8

M. Kline, Calculus: An intuitive and physical approach, Courier Corp., (1998).

B. Zhou, Finite-time stability analysis and stabilization by bounded linear time-varying feedback,
Automatica, 121 (2020), 109191. https://doi.org/10.1016/j.automatica.2020.109191

A. A. Martynyuk, I. M. Stamova, V. A. Chernienko, Stability analysis of uncertain impulsive
systems via fuzzy differential equations, Int. J. Syst. Sci., 51 (2020), 643-654.
https://doi.org/10.1080/00207721.2020.1737265

G. Stamov, L. Stamova, Uncertain impulsive differential systems of fractional order: Almost
periodic solutions, Int. J. Syst. Sci., 49 (2018), 631-638.
https://doi.org/10.1080/00207721.2017.1416428

T. Wang, M. Ma, J. B. Qiu, H. J. Gao, Event-triggered adaptive fuzzy tracking control for pure-
feedback stochastic nonlinear systems with multiple constraints, /EEE Trans. Fuzzy Syst., 29
(2020), 1496—1506. https://doi.org/10.1109/TFUZZ.2020.2979668

Networks and Heterogeneous Media Volume 20, Issue 3, 938-954.



954

36. H. Shen, C. J. Peng, H. C. Yan, S. Y. Xu, Data-driven near optimization for fast sampling
singularly perturbed systems, [EEE Trans. Autom. Control., 69 (2024), 4689-4694.
https://doi.org/10.1109/TAC.2024.3352703

©2025 the Author(s), licensee AIMS Press. This is an open access

AIMS AIMS Press article distributed under the terms of the Creative Commons
Attribution License (https://creativecommons.org/licenses/by/4.0)

Networks and Heterogeneous Media Volume 20, Issue 3, 938-954.



