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Abstract: In this paper, we investigate the asymptotic behavior of the time-dependent solution
for the M/G/1 stochastic clearing queueing system operating in a three-phase environment. The
mathematical model of this system is characterized by an infinite set of integro-partial differential
equations, with boundary conditions that incorporate integral equations. Initially, we employ probability
generating functions to demonstrate that 0 is an eigenvalue of the system operator, possessing a geometric
multiplicity of one. Subsequently, by invoking Greiner’s boundary perturbation method, we establish
that all points on the imaginary axis, with the exception of 0, reside within the resolvent set of the system
operator. Furthermore, we highlight that 0 also serves as an eigenvalue of the adjoint operator of the
system operator, with a geometric multiplicity of unity. As a result, we conclude that the time-dependent
solution of the system converges strongly to its steady-state solution.
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1. Introduction

The stochastic clearing queueing system has a wide range of applications across various fields such
as manufacturing systems, telecommunications, transportation systems, supply chain and inventory
management, etc. For example, in manufacturing, stochastic clearing queueing systems can be applied to
optimize production lines. For instance, a production line may operate in batches, where all accumulated
orders are processed together. The system can be designed to start production only when a certain
number of orders are accumulated, or it can be activated randomly when the number of orders is below
the threshold to avoid long delays. In telecommunication networks, stochastic clearing queueing systems
can be used to manage data packet transmission. Packets arrive randomly and are processed in batches
to optimize bandwidth usage and reduce latency. The clearing mechanism helps in managing the queue
of packets efficiently.

Many scholars have previously investigated stochastic clearing queuing systems [1–5]. The M/G/1
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stochastic clearing queuing system is a specialized model within the realm of stochastic clearing queues.
Here, “M” denotes Markovian arrivals, signifying that the arrival process adheres to a Poisson process,
characterized by exponentially distributed inter-arrival times. “G” represents a general service time
distribution, implying that service durations can follow any distribution, not limited to exponential ones.
Last, “1” indicates that there is only one server in the system. In this system, customers arrive following
a Poisson process. A single server attends to them, with service times governed by a general distribution.
At random intervals, the entire system is cleared, removing all customers in the queue as well as those
being served. The clearance times are random and follow a specific distribution.

Zhang et al. [6] were the first to examine the M/G/1 stochastic clearing queueing system in a
three-phase environment. They formulated the mathematical model of this system using the method of
supplementary variables and explored the steady-state solution and several key stationary performance
measures under the following hypothesis:

lim
t→∞

Q j,0(t) = Q j,0, j = 1, 3; lim
t→∞

Vn(t) = Vn, n ≥ 0,

lim
t→∞

p j,n(·, t) = p j,n(·), j = 1, 3, n ≥ 1,

where Q j,0(t) ( j = 1, 3) represents the probability that there are no customers in phase j and the server
is idle at time t; Vn(t) (n ≥ 0) denotes the probability that there are n customers in the system and the
system is in phase 2; p j,n(x, t)dx ( j = 1, 3; n ≥ 1) is the probability that there are n customers in the
system (including the one being served) at time t with the server busy serving a customer whose elapsed
service time lies in the interval [x, x + dx) in phase j.

Drawing on the theory of partial differential equations (see [7, 8]), we can infer that the
aforementioned hypothesis implies the following two hypotheses:

Hypothesis 1): This queueing system has a nonnegative time-dependent solution.
Hypothesis 2): The time-dependent solution of this system converges to its nonzero steady-

state solution.
Recently, in our work [9], we established that Hypothesis 1) holds when the service rate of the

server is a bounded function, and Hypothesis 2) holds when the service rate is constant. To address
whether Hypothesis 2) holds, as demonstrated in [9], we first identify the adjoint operator of the system
operator. Subsequently, we analyze the spectrum of this adjoint operator on the imaginary axis. By
leveraging the relationship between the spectrum of the operator and its adjoint, we then determine the
spectrum of the system operator on the imaginary axis. However, in the aforementioned literature, we
did not address whether Hypothesis 2) remains valid when the service rate is a bounded function. In this
article, we aim to resolve this outstanding issue.

In this paper, we employ the boundary perturbation method of Greiner [10] and probability
generating functions [6] to investigate the asymptotic behavior of the time-dependent solution for the
M/G/1 stochastic clearing queueing system in a three-phase environment. To achieve this, we first select
an appropriate Banach space to serve as the state space for the system. We then define the maximal
operator and boundary operators for this queueing within this state space. Utilizing these operators, we
construct the system operator for the given system.

Next, by introducing suitable probability generating functions, we demonstrate that 0 is an
eigenvalue of the system operator with a geometric multiplicity of 1. We further define an operator with
a boundary condition of 0 for this queueing system using the aforementioned maximal and boundary
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operators. We then identify the resolvent set of this operator and define the Dirichlet operator. Drawing
on a result from Haji and Radl [11], we prove that all points on the imaginary axis, except for 0, belong
to the resolvent set of the system operator. Additionally, we directly show that 0 is also an eigenvalue of
the adjoint operator of the system, with a geometric multiplicity of 1.

These results collectively indicate that the time-dependent solution of the M/G/1 stochastic clearing
queueing system in a three-phase environment strongly converges to its non-zero steady-state solution.
In other words, Hypothesis 2) holds true in the sense of strong convergence. In addition, the conclusion
of this article includes the main result of [9].

2. Mathematical model and its abstract Cauchy problem

According to Zhang et al. [6], the mathematical model of the M/G/1 stochastic clearing queueing
system operating in a three-phase environment can be described by the following system of integro-
partial differential equations:

dQ1,0(t)
dt

= −(λ1 + θ1)Q1,0(t) + θ3Q3,0(t) +
∫ ∞

0
p1,1(x, t)µ1(x)dx + θ3

∞∑
n=1

∫ ∞

0
p3,n(x, t)dx, (2.1)

dQ3,0(t)
dt

= −(λ3 + θ3)Q3,0(t) + N0V0(t) +
∫ ∞

0
p3,1(x, t)µ3(x)dx, (2.2)

dV0(t)
dt

= −V0(t) + θ1Q1,0(t), (2.3)

dVn(t)
dt

= −Vn(t) + θ1

∫ ∞

0
p1,n(x, t)dx, n ≥ 1, (2.4)

∂p j,1(x, t)
∂t

+
∂p j,1(x, t)
∂x

= −[λ j + θ j + µ j(x)]p j,1(x, t), j = 1, 3, (2.5)

∂p j,n(x, t)
∂t

+
∂p j,n(x, t)
∂x

= −[λ j + θ j + µ j(x)]p j,n(x, t) + λ j p j,n−1(x, t), n ≥ 2, (2.6)

with the following boundary and initial conditions

p1,1(0, t) = λ1Q1,0(t) +
∫ ∞

0
p1,2(x, t)µ1(x)dx, (2.7)

p1,n(0, t) =
∫ ∞

0
p1,n+1(x, t)µ1(x)dx, n ≥ 2, (2.8)

p3,1(0, t) = λ3Q3,0(t) +
1∑

k=0

NkV1−k(t) +
∫ ∞

0
p3,2(x, t)µ3(x)dx, (2.9)

p3,n(0, t) =
n∑

k=0

NkVn−k(t) +
∫ ∞

0
p3,n+1(x, t)µ3(x)dx, n ≥ 2, (2.10)

Vn(0) = un ≥ 0, n ≥ 0; Q j,1(0) = u j ≥ 0, p j,n(x, 0) = u j,n(x) ≥ 0, j = 1, 3; n ≥ 1. (2.11)
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Here, (x, t) ∈ [0,∞) × [0,∞), and

u1 + u3 +

∞∑
n=0

un +

∞∑
n=1

∫ ∞

0
u1,n(x)dx +

∞∑
n=1

∫ ∞

0
u3,n(x)dx = 1;

Q j,0(t) ( j = 1, 3) represents the probability that there are no customers in phase j and the server is idle
at time t; Vn(t) (n ≥ 0) denotes the probability that there are n customers in the system and the system
is in phase 2; p j,n(x, t)dx ( j = 1, 3; n ≥ 1) is the probability that there are n customers in the system
(including the one being served) at time t with the server busy serving a customer whose elapsed service
time lies in the interval [x, x + dx) in phase j; λ j ( j = 1, 2, 3) is the arrival rate of customers when the
system is in phase j; µ j(x) ( j = 1, 3) is the conditional probability (hazard rate) of completing a service
during the interval (x, x + dx) with elapsed time x in phase j. It satisfies the conditions:

µ j(x) ≥ 0,
∫ ∞

0
µ j(x)dx = ∞, j = 1, 3,

θ j ( j = 1, 3) is the residence rate of the system in phase j.
The system operates in three distinct phases. The first and third phases are working phases, while

the second phase is a deterministic time phase during which no service is provided. Upon completion of
the first phase, the system transitions into the second phase. If a customer arrives during the second
phase, they will either enter the system with probability p or leave without joining the system with
probability q = 1 − p. During this second phase, all customers are unable to receive service for
a fixed duration d. After the second phase concludes, the system enters the third phase. Once the
third phase is completed, the current customer is forced to leave the system without receiving further
service, and the system then returns to the first phase to initiate a new service cycle. We assume that
Nr = (r!)−1e−λ2 pd(λ2 pd)r is the probability of r (r ≥ 0) arrivals during phase 2.

In this paper, we present our main result under the following assumption:

Assumption 2.1. Let λ j > 0, θ j > 0,N0 ∈ (0, 1) and µ j(x) : [0,∞)→ [0,∞) measurable and

0 < inf
x∈[0,∞)

µ j(x) ≤ µ j(x) ≤ sup
x∈[0,∞)

µ j(x) < ∞, j = 1, 3.

We choose the state space as follows:

X =


(V, p1, p3)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

V = (Q1,0,Q3,0,V0,V1,V2 · · · ) ∈ l1

p1 = (p1,1, p1,2, · · ·) ∈ L1[0,∞) × L1[0,∞) × · · ·
p3 = (p3,1, p3,2, · · ·) ∈ L1[0,∞) × L1[0,∞) × · · ·
∥(V, p1, p3)∥ = |Q1,0| + |Q3,0| +

∑∞
n=0 |Vn|

+
∑∞

n=1 ∥p1,n∥L1[0,∞) +
∑∞

n=1 ∥p3,n∥L1[0,∞) < ∞


.

It is not difficult to verify that X is a Banach space.
We define the maximal operator of systems (2.1)–(2.11) as follows:

Am(V, p1, p3) = (A2,1
m V + A2,2

m p1 + A2,3
m p3, A1

m p1, A3
m p3),

and

D(Am) =

(V, p1, p3) ∈ X

∣∣∣∣∣∣∣
dp j,n

dx ∈ L1[0,∞), j = 1, 3, n ≥ 1, p j,n are absolutely
continuous functions and

∑∞
n=1

∥∥∥∥dp j,n

dx

∥∥∥∥
L1[0,∞)

< ∞

 ,
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where

A2,1
m V =



−(λ1 + θ1) θ3 0 0 0 · · ·

0 −(λ3 + θ3) N0 0 0 · · ·

θ1 0 −1 0 0 · · ·

0 0 0 −1 0 · · ·

0 0 0 0 −1 · · ·
...

...
...
...
...
. . .





Q1,0

Q3,0

V0

V1

V2
...


,

A2,2
m p1 =



φ2 0 0 · · ·

0 0 0 · · ·

0 0 0 · · ·

θ1φ1 0 0 · · ·

0 θ1φ1 0 · · ·
...

...
...
. . .





p1,1

p1,2

p1,3

p1,4
...


, A2,3

m p3 =


θ3φ1 θ3φ1 θ3φ1 · · ·

φ3 0 0 · · ·

0 0 0 · · ·
...

...
...
. . .



p3,1

p3,2

p3,3
...

 ,

A j
m p j =


B j 0 0 · · ·

λ j B j 0 · · ·

0 λ j B j · · ·
...
...
...
. . .



p j,1

p j,2

p j,3
...

 , j = 1, 3,

where φ1 f (x) :=
∫ ∞

0
f (x)dx, φ2 f (x) :=

∫ ∞
0
µ1(x) f (x)dx, φ3 f (x) :=

∫ ∞
0
µ3(x) f (x)dx and

B jg := −
dg(x)

dx
− [λ j + θ j + µ j(x)]g(x), g ∈ W1,1[0,∞).

In the following, we choose the boundary space ∂X of X and define the boundary operators Ψ and
Φ of systems (2.1)–(2.11) as follows:

∂X = l1 × l1, Ψ : D(Am)→ ∂X, Φ : D(Am)→ ∂X,

and

Ψ(V, p1, p3) =



p1,1(0)
p1,2(0)
p1,3(0)
...

 ,

p3,1(0)
p3,2(0)
p3,3(0)
...


 ,

Φ(V, p1, p3) = (Φ1,2V + Φ1,1 p1,Φ
3,2V + Φ3,3 p3),

where

Φ1,2V =



λ1 0 0 0 · · ·

0 0 0 0 · · ·

0 0 0 0 · · ·

0 0 0 0 · · ·
...
...
...
...
. . .





Q1,0

Q3,0

V0

V1
...


, Φ1,1 =



0 φ2 0 0 · · ·

0 0 φ2 0 · · ·

0 0 0 φ2 · · ·

0 0 0 0 · · ·
...
...
...
...
. . .





p1,1

p1,2

p1,3

p1,4
...


,
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Φ3,2V =



0 λ3 N1 N0 0 0 · · ·

0 0 N2 N1 N0 0 · · ·

0 0 N3 N2 N1 N0 · · ·

0 0 N4 N3 N2 N1 · · ·

0 0 N5 N4 N3 N2 · · ·
...
...
...
...
. . .





Q1,0

Q3,0

V0

V1

V2
...


, Φ3,3 p3 =



0 φ3 0 0 · · ·

0 0 φ3 0 · · ·

0 0 0 φ3 · · ·

0 0 0 0 · · ·
...
...
...
...
. . .





p3,1

p3,2

p3,3

p3,4
...


.

Now, we define the system operatorA of systems (2.1)–(2.11) by

A(V, p1, p3) = Am(V, p1, p3),
D(A) = {(V, p1, p3) ∈ D(Am)|Ψ(V, p1, p3) = Φ(V, p1, p3)}.

Consequently, the systems (2.1)–(2.11) can be written as an abstract Cauchy problem in the Banach
space X by 

d(V,p1,p3)(t)
dt = A(V, p1, p3)(t), for all t ∈ (0,∞),

(V, p1, p3)(0) =





u1

u3

u0

u1
...


,



u1,1

u1,1

u1,3

u1,4
...


,



u3,1

u3,2

u3,3

u3,4
...




.

(2.12)

Recently, in our work [9], we have obtained the following results.

Theorem 2.1. Let λ j > 0, θ j > 0,Nr > 0, and 0 < supx∈[0,∞) µ j(x) < ∞, j = 1, 3; r ≥ 0; then system
operatorA generates a positive C0-semigroup eAt of contractions on X. Hence, system (2.12) admits a
unique positive time-dependent solution (V(t), p1(·, t), p3(·, t)) that satisfies

∥(V(t), p1(·, t), p3(·, t))∥ = 1, for all t ∈ [0,∞).

Theorem 2.2. Let µ j(·) = µ j be a constant and λ j, θ j, µ j > 0,Nr > 0, j = 1, 3; r ≥ 0, then we have the
following results:

1) All points in

γ ∈ C

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

sup
{

1
|(γ+1)(γ+λ1+θ1)(γ+λ3+θ3)−θ1θ3N0 |

sup
{
λ1(θ1+µ1)|(γ+1)(γ+λ3+θ3)|

|σ1 |
,

λ2
1 |(γ+1)(γ+λ3+θ3)|

ℜσ1
, λ3θ1N0(θ3+µ3)

|σ3 |
,
λ2

3θ1N0

ℜσ3
, θ1θ3(1−N0)|γ+λ3+θ3 |

|σ3 |−µ3
,

λ3µ3θ1(1−N0)|γ+λ3+θ3 |

ℜσ3(|σ3 |−µ3) , λ1θ3(θ1+µ1)|γ+1|
|σ1 |

,
λ2

1θ3 |γ+1|
ℜσ1

,
θ1θ

2
3(1−N0)
|σ3 |−µ3

,
λ3(θ3+µ3)|(γ+1)(γ+λ1+θ1)|

|σ3 |
,
λ2

3 |(γ+1)(γ+λ1+θ1)|
ℜσ3

, λ3µ3θ1θ3(1−N0)
ℜσ3(|σ3 |−µ3) ,

λ3θ1N0(θ1+µ1)
|σ1 |

, λ1λ3θ1N0
ℜσ1

, λ3N0(θ3+µ3)|γ+λ1+θ1 |

|σ3 |
,
λ2

3N0 |γ+λ1+θ1 |

ℜσ3
,

θ3(1−N0)|(γ+λ1+θ1)(γ+λ3+θ3)|
|σ3 |−µ3

, λ3µ3(1−N0)|(γ+λ1+θ1)(γ+λ3+θ3)|
ℜσ3(|σ3 |−µ3)

}
,

θ3
|γ+1||σ3 |−µ3

, λ3µ3
|γ+1|ℜσ3(|σ3 |−µ3) ,

θ1+µ1
|σ1 |
, λ1
ℜσ1
, θ1
|σ1 |−µ1

, λ1µ1
ℜσ1(|σ1 |−µ1) ,

θ3+µ3
|σ3 |
, λ3
ℜσ3
, θ3
|σ3 |−µ3

, λ3µ3
ℜσ3(|σ3 |−µ3)

}
< 1,ℜσ j > 0, |σ j| > µ j


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are belong to the resolvent set ρ(A∗). In particular, all points on the imaginary axis except zero belong
to ρ(A), where σ j = γ + λ j + θ j + µ j, 0 < N0 < 1, andℜγ is the real part of γ.

2) If λ j < θ j + µ j, then zero is an eigenvalue ofA with geometric multiplicity one.
3) Zero is an eigenvalue ofA∗ with geometric multiplicity one.

3. Asymptotic behavior of the solution of system (2.12)

According to Theorem 1.96 of [12], if we can demonstrate that the intersection of the point spectrum
of the system operatorA and its adjoint operatorA∗ with the imaginary axis is a singleton set containing
only zero, and that 0 is an eigenvalue ofA∗ with geometric multiplicity one, then we can conclude that
the time-dependent solution of system (2.12) strongly converges to its steady-state solution.

In this section, we first employ probability generating functions to demonstrate that 0 is an
eigenvalue of the system operator A, with a geometric multiplicity is 1. Subsequently, we apply the
boundary perturbation method of Greiner [10] to show that all points on the imaginary axis except for 0
fall on the resolvent set ofA. Additionally, we directly prove that 0 is also an eigenvalue of the adjoint
operatorA∗, with a geometric multiplicity of 1. Consequently, the primary findings of this paper are
articulated by invoking [12, Theorem 1.96].

Lemma 3.1. Let λ j > 0, θ j > 0, Nr ∈ (0, 1), r ≥ 0, and 0 < µ j(·) < ∞, j = 1, 3. Then, 0 is an
eigenvalue ofA with geometric multiplicity one.

Proof. Consider the equationA(V, p1, p3) = 0, which is equivalent to

(λ1 + θ1)Q1,0 = θ3

∞∑
n=1

∫ ∞

0
p3,n(x)dx + θ3Q3,0 +

∫ ∞

0
p1,1(x)µ1(x)dx, (3.1)

(λ3 + θ3)Q3,0 = N0V0 +

∫ ∞

0
p3,1(x)µ3(x)dx, (3.2)

V0 = θ1Q1,0, (3.3)

Vn = θ1

∫ ∞

0
p1,n(x)dx, n ≥ 1, (3.4)

dp1,1(x)
dx

= −[λ1 + θ1 + µ1(x)]p1,1(x), (3.5)

dp1,n(x)
dx

= −[λ1 + θ1 + µ1(x)]p1,n(x) + λ1 p1,n−1(x), n ≥ 2, (3.6)

dp3,1(x)
dx

= −[λ3 + θ3 + µ3(x)]p3,1(x), (3.7)

dp3,n(x)
dx

= −[λ3 + θ3 + µ3(x)]p3,n(x) + λ3 p3,n−1(x), n ≥ 2, (3.8)

p1,1(0) = λ1Q1,0 +

∫ ∞

0
p1,2(x)µ1(x)dx, (3.9)

p1,n(0) =
∫ ∞

0
p1,n+1(x)µ1(x)dx, n ≥ 2, (3.10)
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p3,1(0) = λ3Q3,0 + N1V0 + N0V1 +

∫ ∞

0
p3,2(x)µ3(x)dx, (3.11)

p3,n(0) =
n∑

k=0

Nn−kVk +

∫ ∞

0
p3,n+1(x)µ3(x)dx, n ≥ 2. (3.12)

By solving the Eqs (3.5)–(3.8), we have

p j,n(x) = e−(λ j+θ j)x−
∫ x

0 µ j(τ)dτ
n∑

k=1

(λ jx)n−k

(n − k)!
p j,k(0), j = 1, 3; n ≥ 1. (3.13)

Due to the difficulty in finding the specific expression of Vn, p1,n(x), and p3,n(x) and proving
whether 0 is the eigenvalue of the system operator A, we will solve this problem by introducing the
probability generating function.

p j(x, z) :=
∞∑

n=1

p j,n(x)zn, V(z) :=
∞∑

n=0

Vnzn,

p j(z) :=
∞∑

n=1

p j,nzn, p j,n :=
∫ ∞

0
p j,n(x)dx, j = 1, 3.

Multiply both sides of Eq (3.4) by zn, n ≥ 1, then sum n from 0 to positive infinity, and add Eq (3.3)
to obtain

V(z) = V0 +

∞∑
n=1

Vnzn = V0 + θ1

∞∑
n=1

∫ ∞

0
p1,n(x)zndx

= θ1Q1,0 + θ1 p1(z).

(3.14)

Multiply both sides of Eqs (3.6) and (3.8) by zn, n ≥ 2, then sum n from 0 to positive infinity, and
using Eqs (3.5) and (3.7), we have

∂
∑∞

n=1 p j,n(x)zn

∂x
= −

∞∑
n=1

[λ j + θ j + µ j(x)]p j,n(x)zn + λ j

∞∑
n=1

p j,n−1(x)zn.

That is,
∂p j(x, z)
∂x

= −[λ j + θ j + µ j(x)]p j(x, z) + λ jzp j(x, z)

= −[θ j + λ j(1 − z) − µ j(x)]p j(x, z).
(3.15)

By solving the above equation, we obtain

p j(x, z) = p j(0, z)e−[θ j+λ j(1−z)]x−
∫ x

0 µ j(τ)dτ, j = 1, 3. (3.16)
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Using the boundary conditions (3.9), (3.10), and Eq (3.16), we have

p1(0, z) =
∞∑

n=1

p1,n(0)zn = p1,1(0)z +
∞∑

n=2

p1,n(0)zn

= zλ1Q1,0 +

∫ ∞

0
p1,2(x)µ1(x)zdx +

∞∑
n=2

∫ ∞

0
p1,n+1(x)µ1(x)zndx

= zλ1Q1,0 +

∞∑
n=1

∫ ∞

0
p1,n+1(x)µ1(x)zndx

= zλ1Q1,0 +
1
z

∫ ∞

0

∞∑
n=1

p1,n(x)znµ1(x)dx −
∫ ∞

0
p1,1(x)µ1(x)dx

= zλ1Q1,0 +
1
z

∫ ∞

0
p1(x, z)µ1(x)dx −

∫ ∞

0
p1,1(x)µ1(x)dx

= zλ1Q1,0 +
1
z

p1(0, z)
∫ ∞

0
µ1(x)e−[θ1+λ1(1−z)]x−

∫ x
0 µ1(τ)dτdx −

∫ ∞

0
p1,1(x)µ1(x)dx.

That is,

(z −
∫ ∞

0
µ1(x)e−[θ1+λ1(1−z)]x−

∫ x
0 µ1(τ)dτdx)p1(0, z) = z2λ1Q1,0 − z

∫ ∞

0
p1,1(x)µ1(x)dx. (3.17)

By Eqs (3.2), (3.11), (3.12), (3.16) and

∞∑
n=0

Nnzn =

∞∑
n=0

e−λ2 pd (λ2 pdz)n

n!
= e−λ2 pd(1−z),

we calculate that

p3(0, z) =
∞∑

n=1

p3,n(0)zn = p3,1(0)z +
∞∑

n=2

p3,n(0)zn

= zλ3Q3,0 + zN1V0 + zN0V1 +

∫ ∞

0
p3,2(x)zµ3(x)dx

+

∞∑
n=2

 n∑
k=0

Nn−kVk +

∫ ∞

0
p3,n+1(x)µ3(x)dx

 zn

= zλ3Q3,0 +

∞∑
n=1

zn
n∑

k=0

Nn−kVk +

∞∑
n=1

∫ ∞

0
p3,n+1(x)znµ3(x)dx

= zλ3Q3,0 + V(z)eλ2 pd(1−z) − V0N0 +
1
z

∫ ∞

0

∞∑
n=1

p3,n(x)znµ3(x)d −
∫ ∞

0
p3,1(x)µ3(x)dx

= zλ3Q3,0 + V(z)eλ2 pd(1−z) − (λ3 + θ3)Q3,0 +
1
z

∫ ∞

0
p3(x, z)µ3(x)dx

= −[θ3 + λ3(1 − z)]Q3,0 + V(z)eλ2 pd(1−z) +
1
z

p3(0, z)
∫ ∞

0
µ3(x)e−[θ3+λ3(1−z)]x−

∫ x
0 µ3(τ)dτdx.

Networks and Heterogeneous Media Volume 20, Issue 2, 590–624.



599

That is,[
z −

∫ ∞

0
µ3(x)e−[θ3+λ3(1−z)]x−

∫ x
0 µ3(τ)dτdx

]
p3(0, z) = −z[θ3 + λ3(1 − z)]Q3,0 + zV(z)eλ2 pd(1−z). (3.18)

Notice that when z ∈ (−1, 1), according to Rouche’s theorem, we deduce that there exists a unique
solution (for detailed proof, please refer to [6, Lemma 1]) to equation

z =
∫ ∞

0
µ j(x)e−[θ j+λ j(1−z)]x−

∫ x
0 µ j(τ)dτdx, j = 1, 3,

we assume that the solution is γ j. Then, by the above Eqs (3.17) and (3.18), we obtain γ1 and γ3 that
satisfy the following equations:

γ1λ1Q1,0 =

∫ ∞

0
p1,1(x)µ1(x)dx, (3.19)

Q3,0 =
V(γ3)eλ2 pd(1−γ3)

[θ3 + λ3(1 − γ3)]
. (3.20)

Using the above Eqs (3.16), (3.19), and (3.20), we have

p1(0, z) =
λ1Q1,0z(z − γ1)

z −
∫ ∞

0
µ1(x)e−[θ1+λ1(1−z)]x−

∫ x
0 µ1(τ)dτdx

, (3.21)

p3(0, z) =
−z[θ3 + λ3(1 − z)]Q3,0 + zV(z)eλ2 pd(1−z)

z −
∫ ∞

0
µ3(x)e−[θ3+λ3(1−z)]x−

∫ x
0 µ3(τ)dτdx

. (3.22)

Hence, by Eqs (3.16), (3.21), (3.22), and (3.15), we obtain

p1(1) = lim
z→1

p1(z) = lim
z→1

∫ ∞

0
p1(x, z)dx

= lim
z→1

λ1Q1,0z(z − γ1)
∫ ∞

0
e−[θ1+λ1(1−z)]x−

∫ x
0 µ1(τ)dτdx

z −
∫ ∞

0
µ1(x)e−[θ1+λ1(1−z)]x−

∫ x
0 µ1(τ)dτdx

=
λ1Q1,0(1 − γ1)

∫ ∞
0

e−θ1 x−
∫ x

0 µ1(τ)dτdx

1 −
∫ ∞

0
µ1(x)e−θ1 x−

∫ x
0 µ1(τ)dτdx

,

(3.23)

p3(1) = lim
z→1

p3(z) = lim
z→1

∫ ∞

0
p3(x, z)dx

= lim
z→1

[−z(θ3 + λ3(1 − z))Q3,0 + zV(z)eλ2 pd(1−z)]

z −
∫ ∞

0
µ3(x)e−[θ3+λ3(1−z)]x−

∫ x
0 µ3(τ)dτdx

×

∫ ∞

0
µ3(x)e−[θ3+λ3(1−z)]x−

∫ x
0 µ3(τ)dτdx

=
[−θ3Q3,0 + V(1)]

∫ ∞
0
µ3(x)e−θ3 x−

∫ x
0 µ3(τ)dτdx

1 −
∫ ∞

0
µ3(x)e−θ3 x−

∫ x
0 µ3(τ)dτdx

,

(3.24)
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V(1) = lim
z→1

V(z) = θ1Q1,0 + θ1 p1(1)

= θ1Q1,0 + θ1
λ1Q1,0(1 − γ1)

∫ ∞
0

e−θ1 x−
∫ x

0 µ1(τ)dτdx

1 −
∫ ∞

0
µ1(x)e−θ1 x−

∫ x
0 µ1(τ)dτdx

.
(3.25)

Consequently, using Eqs (3.19), (3.20), (3.23)–(3.25) and the normalizing condition Q1,0 + Q3,0 +

V(1) + p1(1) + p3(1) = 1, we can obtain the specific expression for Q1,0, which we have omitted here.
Notice that

∫ ∞
0
µ j(x)e−θ j x−

∫ x
0 µ j(τ)dτdx < 1, j = 1, 3. Hence, the above discussions mean that 0 is an

eigenvalue ofA.
In addition, since Eqs (3.1)–(3.4) and (3.13), it is easy to see that the geometric multiplicity of zero

is one.

Next, we define the operator A0 with boundary conditions p j,n(0) = 0, j = 1, 3; n ≥ 1 for systems
(2.1)–(2.11) as follows:

A0(V, p1, p3) = Am(V, p1, p3),

D(A0) = {(V, p1, p3) ∈ D(Am)|Ψ(V, p1, p3) = 0}.

And find the resolvent set of this operator. For this objective, we consider the equation (γI −
A0)(V, p1, p3) = (w, y1, y3) for all (V, p1, p3) ∈ X, where w = (z1,0, z3,0,w0,w1, · · · ) and y j = (y j,1, y j,2, · · · ),
j = 1, 3. This equation is equivalent to

(γ + λ1 + θ1)Q1,0 = z1,0 + θ3

∞∑
n=1

∫ ∞

0
p3,n(x)dx + θ3Q3,0 +

∫ ∞

0
p1,1(x)µ1(x)dx, (3.26)

(γ + λ3 + θ3)Q3,0 = z3,0 + N0V0 +

∫ ∞

0
p3,1(x)µ3(x)dx, (3.27)

(γ + 1)V0 = w0 + θ1Q1,0, (3.28)

(γ + 1)Vn = wn + θ1

∫ ∞

0
p1,n(x)dx, n ≥ 1, (3.29)

dp1,1(x)
dx

= −[γ + λ1 + θ1 + µ1(x)]p1,1(x) + y1,1(x), (3.30)

dp1,n(x)
dx

= −[γ + λ1 + θ1 + µ1(x)]p1,n(x) + λ1 p1,n−1(x) + y1,n(x), n ≥ 2, (3.31)

dp3,1(x)
dx

= −[γ + λ3 + θ3 + µ3(x)]p3,1(x) + y3,1(x), (3.32)

dp3,n(x)
dx

= −[γ + λ3 + θ3 + µ3(x)]p3,n(x) + λ3 p3,n−1(x) + y3,n(x), n ≥ 2, (3.33)

p j,n(0) = 0, j = 1, 3; n ≥ 1. (3.34)
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Solve the above Eqs (3.26)–(3.33), and using boundary conditions p j,n(0) = 0, we have

Q1,0 =
(γ + 1)(γ + λ3 + θ3)

(γ + 1)(γ + λ1 + θ1)(γ + λ3 + θ3) − θ1θ3N0
z1,0

+
(γ + 1)θ3

(γ + 1)(γ + λ1 + θ1)(γ + λ3 + θ3) − θ1θ3N0
z3,0

+
θ3N0

(γ + 1)(γ + λ1 + θ1)(γ + λ3 + θ3) − θ1θ3N0
w0

+
(γ + 1)(γ + λ3 + θ3)

(γ + 1)(γ + λ1 + θ1)(γ + λ3 + θ3) − θ1θ3N0

∫ ∞

0
p1,1(x)µ1(x)dx

+
(γ + 1)θ3

(γ + 1)(γ + λ1 + θ1)(γ + λ3 + θ3) − θ1θ3N0

∫ ∞

0
p3,1(x)µ3(x)dx

+
(γ + 1)(γ + λ3 + θ3)θ3

(γ + 1)(γ + λ1 + θ1)(γ + λ3 + θ3) − θ1θ3N0

∞∑
n=1

∫ ∞

0
p3,n(x)dx,

(3.35)

Q3,0 =
θ1N0

(γ + 1)(γ + λ1 + θ1)(γ + λ3 + θ3) − θ1θ3N0
z1,0

+
(γ + 1)(γ + λ1 + θ1)

(γ + 1)(γ + λ1 + θ1)(γ + λ3 + θ3) − θ1θ3N0
z3,0

+
N0(γ + λ1 + θ1)

(γ + 1)(γ + λ1 + θ1)(γ + λ3 + θ3) − θ1θ3N0
w0

+
θ1N0

(γ + 1)(γ + λ1 + θ1)(γ + λ3 + θ3) − θ1θ3N0

∫ ∞

0
p1,1(x)µ1(x)dx

+
(γ + 1)(γ + λ1 + θ1)

(γ + 1)(γ + λ1 + θ1)(γ + λ3 + θ3) − θ1θ3N0

∫ ∞

0
p3,1(x)µ3(x)dx

+
θ1θ3N0

(γ + 1)(γ + λ1 + θ1)(γ + λ3 + θ3) − θ1θ3N0

∞∑
n=1

∫ ∞

0
p3,n(x)dx,

(3.36)

V0 =
θ1(γ + λ3 + θ3)

(γ + 1)(γ + λ1 + θ1)(γ + λ3 + θ3) − θ1θ3N0
z1,0

+
θ1θ3

(γ + 1)(γ + λ1 + θ1)(γ + λ3 + θ3) − θ1θ3N0
z3,0

+
(γ + λ1 + θ1)(γ + λ3 + θ3)

(γ + 1)(γ + λ1 + θ1)(γ + λ3 + θ3) − θ1θ3N0
w0

+
θ1(γ + λ3 + θ3)

(γ + 1)(γ + λ1 + θ1)(γ + λ3 + θ3) − θ1θ3N0

∫ ∞

0
p1,1(x)µ1(x)dx

+
θ1θ3

(γ + 1)(γ + λ1 + θ1)(γ + λ3 + θ3) − θ1θ3N0

∫ ∞

0
p3,1(x)µ3(x)dx

+
θ1θ3(γ + λ3 + θ3)

(γ + 1)(γ + λ1 + θ1)(γ + λ3 + θ3) − θ1θ3N0

∞∑
n=1

∫ ∞

0
p3,n(x)dx,

(3.37)
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Vn =
1
γ + 1

wn +
θ1
γ + 1

∫ ∞

0
p1,n(x)dx, (3.38)

p j,1(x) = e−(γ+λ j+θ j)x−
∫ x

0 µ j(τ)dτ
∫ x

0
y j,1(τ)e(γ+λ j+θ j)τ+

∫ τ
0 µ j(ξ)dξdτ, j = 1, 3, (3.39)

p j,n(x) = e−(γ+λ j+θ j)x−
∫ x

0 µ j(τ)dτ
∫ x

0
y j,n(τ)e(γ+λ j+θ j)τ+

∫ τ
0 µ j(ξ)dξdτ

+λ je−(γ+λ j+θ j)x−
∫ x

0 µ j(τ)dτ
∫ x

0
p j,n−1(τ)e(γ+λ j+θ j)τ+

∫ τ
0 µ j(ξ)dξdτ, n ≥ 1.

(3.40)

For convenience, we introduce E j as follows:

E j f (x) := e−(γ+λ j+θ j)x−
∫ x

0 µ j(τ)dτ
∫ x

0
f (τ)e(γ+λ j+θ j)τ+

∫ τ
0 µ j(ξ)dξdτ, j = 1, 3, (3.41)

for any f ∈ L1[0,∞). Then, if (γI − A0)−1 exists, then by Eqs (3.35)–(3.40), we have

(γI − A0)−1(w, y1, y3) =





a1,1 a1,2 a1,3 0 0 · · ·

a2,1 a2,2 a2,3 0 0 · · ·

a3,1 a3,2 a3,3 0 0 · · ·

0 0 0 1
γ+1 0 · · ·

0 0 0 0 1
γ+1 · · ·

...
...

...
...

...
. . .





z1,0

z3,0

w0

w1

w2
...



+



a1,4φ2E1 0 0 0 · · ·

a2,4φ2E1 0 0 0 · · ·

a3,4φ2E1 0 0 0 · · ·
θ1
γ+1φ1E1 0 0 0 · · ·
θ1
γ+1λ1φ1E2

1
θ1
γ+1φ1E1 0 0 · · ·

θ1
γ+1λ

2
1φ1E3

1
θ1
γ+1λ1φ1E2

1
θ1
γ+1φ1E1 0 · · ·

...
...

...
. . .





y1,1

y1,2

y1,3

y1,4
...



+



a1,5φ3 + a1,6φ1 a1,6φ1 a1,6φ1 · · ·

a2,5φ3 + a2,6φ1 a2,6φ1 a2,6φ1 · · ·

a3,5φ3 + a3,6φ1 a3,6φ1 a3,6φ1 · · ·

0 0 0 · · ·

0 0 0 · · ·
...

...
...

. . .




E3 0 0 · · ·

λ3E2
3 E3 0 · · ·

λ2
3E3

3 λ3E2
3 E3 · · ·

...
...

...
. . .



y3,1

y3,2

y3,3
...

 ,


E1 0 0 · · ·

λ1E2
1 E1 0 · · ·

λ2
1E3

1 λ1E2
1 E1 · · ·

...
...

...
. . .



y1,1

y1,2

y1,3
...

 ,


E3 0 0 · · ·

λ3E2
3 E3 0 · · ·

λ2
3E3

3 λ3E2
3 E3 · · ·

...
...

...
. . .



y3,1

y3,2

y3,3
...


 ,

(3.42)

where

φ1 f (x) =
∫ ∞

0
f (x)dx, φ2 f (x) =

∫ ∞

0
µ1(x) f (x)dx, φ3 f (x) =

∫ ∞

0
µ3(x) f (x)dx,
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and

a1,1 = a1,4 =
(γ + 1)(γ + λ3 + θ3)

(γ + 1)(γ + λ1 + θ1)(γ + λ3 + θ3) − θ1θ3N0
, (3.43)

a1,2 = a1,5 =
(γ + 1)θ3

(γ + 1)(γ + λ1 + θ1)(γ + λ3 + θ3) − θ1θ3N0
, (3.44)

a1,3 =
θ3N0

(γ + 1)(γ + λ1 + θ1)(γ + λ3 + θ3) − θ1θ3N0
, (3.45)

a1,6 =
(γ + 1)(γ + λ3 + θ3)θ3

(γ + 1)(γ + λ1 + θ1)(γ + λ3 + θ3) − θ1θ3N0
, (3.46)

a2,1 = a2,4 =
θ1N0

(γ + 1)(γ + λ1 + θ1)(γ + λ3 + θ3) − θ1θ3N0
, (3.47)

a2,2 = a2,5 =
(γ + 1)(γ + λ1 + θ1)

(γ + 1)(γ + λ1 + θ1)(γ + λ3 + θ3) − θ1θ3N0
, (3.48)

a2,3 =
N0(γ + λ1 + θ1)

(γ + 1)(γ + λ1 + θ1)(γ + λ3 + θ3) − θ1θ3N0
, (3.49)

a2,6 =
θ1θ3N0

(γ + 1)(γ + λ1 + θ1)(γ + λ3 + θ3) − θ1θ3N0
, (3.50)

a3,1 =
θ1(γ + λ3 + θ3)

(γ + 1)(γ + λ1 + θ1)(γ + λ3 + θ3) − θ1θ3N0
, (3.51)

a3,2 = a3,5 =
θ1θ3

(γ + 1)(γ + λ1 + θ1)(γ + λ3 + θ3) − θ1θ3N0
, (3.52)

a3,3 =
(γ + λ1 + θ1)(γ + λ3 + θ3)

(γ + 1)(γ + λ1 + θ1)(γ + λ3 + θ3) − θ1θ3N0
, (3.53)

a3,4 =
θ1(γ + λ3 + θ3)

(γ + 1)(γ + λ1 + θ1)(γ + λ3 + θ3) − θ1θ3N0
, (3.54)

a3,6 =
θ1θ3(γ + λ3 + θ3)

(γ + 1)(γ + λ1 + θ1)(γ + λ3 + θ3) − θ1θ3N0
. (3.55)

Lemma 3.2. Let λ j > 0, θ j > 0,N0 ∈ (0, 1), and µ j(x) : [0,∞)→ [0,∞) be measurable and

0 < inf
x∈[0,∞)

µ j(x) ≤ µ j(x) ≤ sup
x∈[0,∞)

µ j(x) < ∞, j = 1, 3.

Then, S =:
{
γ ∈ C

∣∣∣ ℜγ + 1 > 0,ℜγ + θ j + infx∈[0,∞) µ j(x) > 0
}
⊂ ρ(A0).

Proof. The proof of this lemma is provided in the appendix.

Lemma 3.3. Let λ j > 0, θ j > 0,N0 ∈ (0, 1), and µ j(x) : [0,∞)→ [0,∞) be measurable and

0 < inf
x∈[0,∞)

µ j(x) ≤ µ j(x) ≤ sup
x∈[0,∞)

µ j(x) < ∞, j = 1, 3.
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If γ ∈ S , then (V, p1, p3) ∈ ker(γI − Am) if and only if

Q1,0 = a1,4 p1,1(0)
∫ ∞

0
µ1(x)e−(γ+λ1+θ1)x−

∫ x
0 µ1(τ)dτdx

+a1,5 p3,1(0)
∫ ∞

0
µ3(x)e−(γ+λ3+θ3)x−

∫ x
0 µ3(τ)dτdx

+a1,6

∞∑
n=1

n∑
k=1

p3,n−k+1(0)
∫ ∞

0

(λ3x)k−1

(k − 1)!
e−(γ+λ3+θ3)x−

∫ x
0 µ3(τ)dτdx,

(3.56)

Q3,0 = a2,4 p1,1(0)
∫ ∞

0
µ1(x)e−(γ+λ1+θ1)x−

∫ x
0 µ1(τ)dτdx

+a2,5 p3,1(0)
∫ ∞

0
µ3(x)e−(γ+λ3+θ3)x−

∫ x
0 µ3(τ)dτdx

+a2,6

∞∑
n=1

n∑
k=1

p3,n−k+1(0)
∫ ∞

0

(λ3x)k−1

(k − 1)!
e−(γ+λ3+θ3)x−

∫ x
0 µ3(τ)dτdx,

(3.57)

V0 = a3,4 p1,1(0)
∫ ∞

0
µ1(x)e−(γ+λ1+θ1)x−

∫ x
0 µ1(τ)dτdx

+a3,5 p3,1(0)
∫ ∞

0
µ3(x)e−(γ+λ3+θ3)x−

∫ x
0 µ3(τ)dτdx

+a3,6

∞∑
n=1

n∑
k=1

p3,n−k+1(0)
∫ ∞

0

(λ3x)k−1

(k − 1)!
e−(γ+λ3+θ3)x−

∫ x
0 µ3(τ)dτdx,

(3.58)

Vn =
θ1
γ + 1

n∑
k=1

p1,n−k+1(0)
∫ ∞

0

(λ1x)k−1

(k − 1)!
e−(γ+λ1+θ1)x−

∫ x
0 µ1(τ)dτdx, (3.59)

p j,n(x) = e−(γ+λ j+θ j)x−
∫ x

0 µ j(τ)dτ
n∑

k=1

(λ jx)k−1

(k − 1)!
p j,n−k+1(0), j = 1, 3; n ≥ 1, (3.60)

p j = (p j,1, p j,2, · · · ) ∈ l1, j = 1, 3, (3.61)

where the specific expressions for ak,m, k = 1, 2, 3; m = 4, 5, 6 are given in Eqs (3.43)–(3.55).

Proof. The proof of this lemma is provided in the appendix.

It is clear that the boundary operator Ψ is surjective. In addition, for γ ∈ S , we see that the operator

Ψ
∣∣∣
ker(γI−Am)

: ker(γI − Am)→ ∂X,

is a reversible operator.
Now, for γ ∈ S , we define the Dirichlet operator Dγ as follows:

Dγ := (Ψ
∣∣∣
ker(γI−Am)

)−1 : ∂X → ker(γI − Am).
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Then, for any γ ∈ S , using Lemma 3.3, we obtain the specific expression of the operator Dγ:

Dγ( p⃗1(0), p⃗3(0)) =





a1,4φ2m1,1 0 0 0 · · ·

a2,4φ2m1,1 0 0 0 · · ·

a3,4φ2m1,1 0 0 0 · · ·
θ1
γ+1φ1m1,1 0 0 0 · · ·
θ1
γ+1φ1m1,2

θ1
γ+1φ1m1,1 0 0 · · ·

θ1
γ+1φ1m1,3

θ1
γ+1φ1m1,2

θ1
γ+1φ1m1,1 0 · · ·

...
...

...
. . .





p1,1(0)
p1,2(0)
p1,3(0)
p1,4(0)
...


+



a1,5φ3 + a1,6φ1 a1,6φ1 a1,6φ1 · · ·

a2,5φ3 + a2,6φ1 a2,6φ1 a2,6φ1 · · ·

a3,5φ3 + a3,6φ1 a3,6φ1 a3,6φ1 · · ·

0 0 0 · · ·

0 0 0 · · ·
...

...
...

. . .




m3,1 0 0 · · ·

m3,2 m3,1 0 · · ·

m3,3 m3,2 m3,1 · · ·
...

...
...
. . .



p3,1(0)
p3,2(0)
p3,3(0)
...

 ,

m1,1 0 0 · · ·

m1,2 m1,1 0 · · ·

m1,3 m1,2 m1,1 · · ·
...

...
...
. . .



p1,1(0)
p1,2(0)
p1,3(0)
...

 ,

m3,1 0 0 · · ·

m3,2 m3,1 0 · · ·

m3,3 m3,2 m3,1 · · ·
...

...
...
. . .



p3,1(0)
p3,2(0)
p3,3(0)
...


 ,

(3.62)

where

m j,k =
(λ jx)k−1

(k − 1)!
e−(γ+λ j+θ j)x−

∫ x
0 µ j(τ)dτ, j = 1, 3; k ≥ 1.

Finally, by the definitions of operators Φ and Dγ, we calculate that

ΦDγ( p⃗1(0), p⃗3(0))

=



λ1δ1

0
0
...

 +


φ2[m1,2 p1,1(0) + m1,1 p1,2(0)]
φ2[m1,3 p1,1(0) + m1,2 p1,2(0) + m1,1 p1,3(0)]

φ2[m1,4 p1,1(0) + m1,3 p1,2(0) + m1,2 p1,3(0) + m1,1 p1,4(0)]
...

 ,
λ3δ2 + N1δ3 + N0

θ1
γ+1φ1m1,1 p1,1(0)

N2δ3 + N1
θ1
γ+1φ1m1,1 p1,1(0) + N0

θ1
γ+1

∑2
k=1 φ1m1,k p1,2−k+1(0)

Υ
...


+


φ3[m3,2 p3,1(0) + m3,1 p3,2(0)]

φ3[m3,3 p3,1(0) + m3,2 p3,2(0) + m3,1 p3,3(0)]
φ3[m3,4 p3,1(0) + m3,3 p3,2(0) + m3,2 p3,3(0) + m3,1 p3,4(0)]

...


 ,

(3.63)

where

Υ = N3δ3 + N2
θ1
γ+1φ1m1,1 p1,1(0) + N1

θ1
γ+1

∑2
k=1 φ1m1,k p1,2−k+1(0) + N0

θ1
γ+1

∑3
k=1 φ1m1,k p1,3−k+1(0),
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δ1 = a1,4φ2m1,1 p1,1(0) + a1,5φ3m3,1 p3,1(0) + a1,6

∞∑
n=1

φ1m3,n

∞∑
k=1

p3,k(0),

δ2 = a2,4φ2m1,1 p1,1(0) + a2,5φ3m3,1 p3,1(0) + a2,6

∞∑
n=1

φ1m3,n

∞∑
k=1

p3,k(0),

δ3 = a3,4φ2m1,1 p1,1(0) + a3,5φ3m3,1 p3,1(0) + a3,6

∞∑
n=1

φ1m3,n

∞∑
k=1

p3,k(0).

Based on a conclusion drawn by Haji and Radl [11], we know that the following result, Lemma
3.4, holds true.

Lemma 3.4. If γ ∈ ρ(A0) and there exists some γ0 such that 1 is not in the spectrum σ(ΦDγ0) of ΦDγ0 ,
then the conclusion

γ ∈ σ(A) if and only if 1 ∈ σ(ΦDγ)

holds.

Hence, using Lemma 3.4 and Nagel [13, p. 297], we have the following result:

Lemma 3.5. Let λ j > 0, θ j > 0,Nr ∈ (0, 1), r ≥ 0, and µ j(x) : [0,∞)→ [0,∞) be measurable and

0 < inf
x∈[0,∞)

µ j(x) ≤ µ j(x) ≤ sup
x∈[0,∞)

µ j(x) < ∞, j = 1, 3.

Then, all points on the imaginary axis, except for 0, fall on the resolvent set ρ(A) ofA.

Proof. If we take γ = ib, b ∈ R \ {0}, p⃗1(0) = (p1,1(0), p1,2(0), · · · ) ∈ l1 and
p⃗3(0) = (p3,1(0), p3,2(0), · · · ) ∈ l1. The Riemann–Lebesgue Lemma states that for any f ∈ L1[0,∞) (i.e.,
f is an integrable function on [0,∞), we have

lim
b→∞

∫ ∞

0
f (x) cos(bx)dx = 0, lim

b→∞

∫ ∞

0
f (x) sin(bx)dx = 0.

This means that as b approaches infinity, the integrals of f (x) with high-frequency cosine or sine
functions tend to zero. Using Euler’s formula e−ibx = cos(bx) − i sin(bx), the integral

∣∣∣∫ ∞
0

f (x)e−ibxdx
∣∣∣

can be split into real and imaginary parts:∣∣∣∣∣∫ ∞

0
f (x)e−ibxdx

∣∣∣∣∣ = ∣∣∣∣∣∫ ∞

0
f (x) cos(bx)dx − i

∫ ∞

0
f (x) sin(bx)dx

∣∣∣∣∣ . (3.64)

Then, according to the Riemann–Lebesgue Lemma, for sufficiently large |b|, both of integrals of
Eq (3.64) tend to zero.

In addition, for any 0 < f ∈ L1[0,∞), we have∣∣∣∣∣∫ ∞

0
f (x)e−ibxdx

∣∣∣∣∣ ≤ ∫ ∞

0
f (x)dx. (3.65)
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Then, for any 0 < f ∈ L1[0,∞) and |b| > M1 (where M1 is some sufficiently large constant),
according to Eqs (3.64), (3.65), and the Riemann–Lebesgue Lemma, we can further obtain∣∣∣∣∣∫ ∞

0
f (x)e−ibxdx

∣∣∣∣∣2 = (∫ ∞

0
f (x) cos(bx)dx

)2

+

(∫ ∞

0
f (x) sin(bx)dx

)2

<

(∫ ∞

0
f (x)dx

)2

.

(3.66)

That is, for any 0 < f ∈ L1[0,∞) and |b| > M1, we have∣∣∣∣∣∫ ∞

0
f (x)e−ibxdx

∣∣∣∣∣ < ∫ ∞

0
f (x)dx. (3.67)

Furthermore, through tedious calculations, we have found that the following inequality holds true

|λ1a1,h| < 1, |λ3a2,h| < 1, |(1 − N0)a3,h| < 1, h = 4, 5, 6, (3.68)

where the specific expressions for ak,h(k = 1, 2, 3; h = 4, 5, 6) are given in Eqs (3.43)–(3.55) and
N0 = e−λ2 pd(< 1) is the probability of zero arrivals during phase 2. In fact,

|(ib + 1)(ib + λ1 + θ1)(ib + λ3 + θ3) − θ1θ3N0|
2 − λ2

1|(ib + 1)(ib + λ3 + θ3)|2

= b6 + b4[2λ1θ1 + θ
2
1 + (λ3 + θ3)2 + 1] + b2{2λ1θ1 + θ

2
1 + (λ3 + θ3)2

+(2λ1θ1 + θ
2
1)(λ3 + θ3)2 + 2(λ1 + θ1 + λ3 + θ3 + 1)θ1θ3N0}

+2λ1(λ3 + θ3)[θ1(λ3 + θ3) − θ1θ3N0] + [θ1(λ3 + θ3) − θ1θ3N0]2 > 0

⇒ |λ1a1,4| =
λ1|(ib + 1)(ib + λ3 + θ3)|

|(ib + 1)(ib + λ1 + θ1)(ib + λ3 + θ3) − θ1θ3N0|
< 1,

(3.69)

|(ib + 1)(ib + λ1 + θ1)(ib + λ3 + θ3) − θ1θ3N0|
2

= b6 + b4[(λ1 + θ1)2 + (λ3 + θ3)2 + 1] + b2{(λ1 + θ1)2 + (λ3 + θ3)2

+[(λ1 + θ1)(λ3 + θ3)]2 + 2(λ1 + θ1 + λ3 + θ3 + 1)θ1θ3N0}

+[(λ1 + θ1)(λ3 + θ3) − θ1θ3N0]2 > θ21[b2 + (λ3 + θ3)2]

> [θ1(1 − N0)]2[b2 + (λ3 + θ3)2] = |θ1(1 − N0)(ib + λ3 + θ3)|2

⇒ |(1 − N0)a3,4| =
θ1(1 − N0)|ib + λ3 + θ3|

|(ib + 1)(ib + λ1 + θ1)(ib + λ3 + θ3) − θ1θ3N0|
< 1.

(3.70)

Using the same method as Eqs (3.69) and (3.70), we can prove that the remaining inequalities in
Eq (3.68) also hold true.

Hence, for any |b| > M1, using Eqs (3.63), (3.67), and (3.68), the formula
∞∑

r=0

Nr =

∞∑
r=0

e−λ2 pd(λ2 pd)r

r!
= 1,

∫ ∞

0
[θ j + µ j(x)]e−

∫ x
0 [θ j+µ j(τ)]dτdx = 1, j = 1, 3,

and 1
√

b2+1
< 1, through tedious calculations, we estimate that

∥ΦDib( p⃗1(0), p⃗3(0))∥ ≤ λ1|a1,4||φ2m1,1||p1,1(0)| + λ1|a1,5||φ3m3,1||p3,1(0)|
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+λ1|a1,6|

∞∑
n=1

|φ1m3,n|

∞∑
k=1

|p3,k(0)| + |φ2m1,2||p1,1(0)| + |φ2m1,1||p1,2(0)| + |φ2m1,3||p1,1(0)|

+|φ2m1,2||p1,2(0)| + |φ2m1,1||p1,3(0)| + |φ2m1,4||p1,1(0)| + |φ2m1,3||p1,2(0)| + |φ2m1,2||p1,3(0)|

+|φ2m1,1||p1,4(0)| + · · ·

+λ3|a2,4||φ2m1,1||p1,1(0)| + λ3|a2,5||φ3m3,1||p3,1(0)| + λ3|a2,6|

∞∑
n=1

|φ1m3,n|

∞∑
k=1

|p3,k(0)|

+N1|a3,4||φ2m1,1||p1,1(0)| + N1|a3,5||φ3m3,1||p3,1(0)| + N1|a3,6|

∞∑
n=1

|φ1m3,n|

∞∑
k=1

|p3,k(0)|

+N0
θ1
|ib + 1|

|φ1m1,1||p1,1(0)| + |φ3m3,2||p3,1(0)| + |φ3m3,1||p3,2(0)|

+N2|a3,4||φ2m1,1||p1,1(0)| + N2|a3,5||φ3m3,1||p3,1(0)| + N2|a3,6|

∞∑
n=1

|φ1m3,n|

∞∑
k=1

|p3,k(0)|

+N1
θ1
|ib + 1|

|φ1m1,1||p1,1(0)| + N0
θ1
|ib + 1|

2∑
k=1

|φ1m1,k||p1,2−k+1(0)|

+|φ3m3,3||p3,1(0)| + |φ3m3,2||p3,2(0)| + |φ3m3,1||p3,3(0)|

+N3|a3,4||φ2m1,1||p1,1(0)| + N3|a3,5||φ3m3,1||p3,1(0)| + N3|a3,6|

∞∑
n=1

|φ1m3,n|

∞∑
k=1

|p3,k(0)|

+N2
θ1
|ib + 1|

|φ1m1,1||p1,1(0)| + N1
θ1
|ib + 1|

2∑
k=1

|φ1m1,k||p1,2−k+1(0)|

+N0
θ1
|ib + 1|

3∑
k=1

|φ1m1,k||p1,3−k+1(0)| + |φ3m3,4||p3,1(0)| + |φ3m3,3||p3,2(0)|

+|φ3m3,2||p3,3(0)| + |φ3m3,1||p3,4(0)| + · · ·

≤ λ1|a1,4||φ2m1,1||p1,1(0)| + λ1|a1,5||φ3m3,1||p3,1(0)| + λ1|a1,6|

∞∑
n=1

|φ1m3,n|

∞∑
k=1

|p3,k(0)|

+

∞∑
n=2

|φ2m1,n||p1,1(0)| +
∞∑

n=1

|φ2m1,n||p1,2(0)| +
∞∑

n=1

|φ2m1,n||p1,3(0)|

+

∞∑
n=1

|φ2m1,n||p1,4(0)| + · · ·

+λ3|a2,4||φ2m1,1||p1,1(0)| + λ3|a2,5||φ3m3,1||p3,1(0)| + λ3|a2,6|

∞∑
n=1

|φ1m3,n|

∞∑
k=1

|p3,k(0)|

+

∞∑
j=1

N j|a3,4|φ2m1,1||p1,1(0)| +
∞∑
j=1

N j|a3,5||φ3m3,1||p3,1(0)|
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+

∞∑
j=1

N j|a3,6|

∞∑
n=1

|φ1m3,n|

∞∑
k=1

|p3,k(0)|

+

∞∑
j=0

N j
θ1

√
b2 + 1

|φ1m1,1||p1,1(0)| +
∞∑
j=0

N j
θ1

√
b2 + 1

|φ1m1,2||p1,1(0)|

+

∞∑
j=0

N j
θ1

√
b2 + 1

|φ1m1,3||p1,1(0)| +
∞∑
j=0

N j
θ1

√
b2 + 1

|φ1m1,4||p1,1(0)|

+ · · ·

+

∞∑
j=0

N j
θ1

√
b2 + 1

|φ1m1,1||p1,2(0)| +
∞∑
j=0

N j
θ1

√
b2 + 1

|φ1m1,2||p1,2(0)|

+

∞∑
j=0

N j
θ1

√
b2 + 1

|φ1m1,3||p1,2(0)| +
∞∑
j=0

N j
θ1

√
b2 + 1

|φ1m1,4||p1,2(0)|

+ · · ·

+

∞∑
j=0

N j
θ1

√
b2 + 1

|φ1m1,1||p1,3(0)| +
∞∑
j=0

N j
θ1

√
b2 + 1

|φ1m1,2||p1,3(0)|

+

∞∑
j=0

N j
θ1

√
b2 + 1

|φ1m1,3||p1,3(0)| +
∞∑
j=0

N j
θ1

√
b2 + 1

|φ1m1,4||p1,3(0)|

+ · · ·

+

∞∑
j=0

N j
θ1

√
b2 + 1

|φ1m1,1||p1,4(0)| +
∞∑
j=0

N j
θ1

√
b2 + 1

|φ1m1,2||p1,4(0)|

+

∞∑
j=0

N j
θ1

√
b2 + 1

|φ1m1,3||p1,4(0)| +
∞∑
j=0

N j
θ1

√
b2 + 1

|φ1m1,4||p1,4(0)|

+ · · ·

+

∞∑
n=2

|φ3m3,n||p3,1(0)| +
∞∑

n=1

|φ3m3,n||p3,2(0)| +
∞∑

n=1

|φ3m3,n||p3,3(0)|

+

∞∑
n=1

|φ3m3,n||p3,4(0)| + · · ·

<

θ3 ∞∑
n=1

|φ1m3,n| +

∞∑
n=1

|φ3m3,n|

 ∞∑
k=1

|p3,k(0)|

+

 ∞∑
n=1

|φ2m1,n| + θ1

∞∑
n=1

|φ1m1,n|

 ∞∑
k=1

|p1,k(0)|

=

θ3 ∞∑
n=1

∣∣∣∣∣∣
∫ ∞

0

(λ3x)n−1

(n − 1)!
e−(ib+λ3+θ3)x−

∫ x
0 µ3(τ)dτdx

∣∣∣∣∣∣
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+

∞∑
n=1

∣∣∣∣∣∣
∫ ∞

0
µ3(x)

(λ3x)n−1

(n − 1)!
e−(ib+λ3+θ3)x−

∫ x
0 µ3(τ)dτdx

∣∣∣∣∣∣
 ∞∑

k=1

|p3,k(0)|

+

 ∞∑
n=1

∣∣∣∣∣∣
∫ ∞

0
µ1(x)

(λ1x)n−1

(n − 1)!
e−(ib+λ1+θ1)x−

∫ x
0 µ1(τ)dτdx

∣∣∣∣∣∣
+θ1

∞∑
n=1

∣∣∣∣∣∣
∫ ∞

0

(λ1x)n−1

(n − 1)!
e−(ib+λ1+θ1)x−

∫ x
0 µ3(τ)dτdx

∣∣∣∣∣∣
 ∞∑

k=1

|p1,k(0)|

≤

θ3 ∞∑
n=1

∫ ∞

0

(λ3x)n−1

(n − 1)!
e−(λ3+θ3)x−

∫ x
0 µ3(τ)dτdx

+

∞∑
n=1

∫ ∞

0
µ3(x)

(λ3x)n−1

(n − 1)!
e−(λ3+θ3)x−

∫ x
0 µ3(τ)dτdx

 ∞∑
k=1

|p3,k(0)|

+

 ∞∑
n=1

∫ ∞

0
µ1(x)

(λ1x)n−1

(n − 1)!
e−(λ1+θ1)x−

∫ x
0 µ1(τ)dτdx

+θ1

∞∑
n=1

∫ ∞

0

(λ1x)n−1

(n − 1)!
e−(λ1+θ1)x−

∫ x
0 µ3(τ)dτdx

 ∞∑
k=1

|p1,k(0)|

=

θ3 ∫ ∞

0

∞∑
n=1

(λ3x)n−1

(n − 1)!
e−(λ3+θ3)x−

∫ x
0 µ3(τ)dτdx

+

∫ ∞

0
µ3(x)

∞∑
n=1

(λ3x)n−1

(n − 1)!
e−(λ3+θ3)x−

∫ x
0 µ3(τ)dτdx

 ∞∑
k=1

|p3,k(0)|

+

∫ ∞

0
µ1(x)

∞∑
n=1

(λ1x)n−1

(n − 1)!
e−(λ1+θ1)x−

∫ x
0 µ1(τ)dτdx

+θ1

∫ ∞

0

∞∑
n=1

(λ1x)n−1

(n − 1)!
e−(λ1+θ1)x−

∫ x
0 µ3(τ)dτdx

 ∞∑
k=1

|p1,k(0)|

=

∫ ∞

0
[θ3 + µ3(x)]e−

∫ x
0 [θ3+µ3(τ)]dτdx

∞∑
k=1

|p3,k(0)|

+

∫ ∞

0
[θ1 + µ1(x)]e−

∫ x
0 [θ1+µ1(τ)]dτdx

∞∑
k=1

|p1,k(0)|

= ∥ p⃗1(0), p⃗3(0)∥. (3.71)

That is, ∥ΦDib∥ < 1. Inequality (3.71) means that when |b| > M1, the spectral bound r(ΦDib) ≤
∥ΦDib∥ < 1. That is, we have 1 < σ(ΦDib) if |b| > M1. Therefore, by Lemma 3.4, we deduce that

{ib | |b| > M1} ⊂ ρ(A), {ib | |b| < M1} ⊂ σ(A) ∩ iR. (3.72)

On the other hand, since the semigroup eAt is positive uniformly bounded by Theorem 2.1,
by [13, Corollary 2.3, p. 297] we see that σ(A) ∩ iR is imaginary additively cyclic, which shows that if

Networks and Heterogeneous Media Volume 20, Issue 2, 590–624.



611

ib ∈ σ(A) ∩ iR, then ibn ∈ σ(A) ∩ iR for all integer n. Hence, from which, together with Eq (3.72) and
Lemma 3.1, we conclude that ib ∈ σ(A) ∩ iR = {0}.

It is easy to see that the dual space X∗ of X is as follows (see [9]):

X∗ =


(V∗, p∗1, p

∗
3)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

V∗ = (Q∗1,0,Q
∗
3,0,V

∗
0 ,V

∗
1 , · · · ) ∈ l∞,

p∗1 = (p∗1,1, p
∗
1,2, p

∗
1,3, · · ·) ∈ L∞[0,∞) × L∞[0,∞) × L∞[0,∞) × · · · ,

p∗3 = (p∗3,1, p
∗
3,2, p

∗
3,3, · · ·) ∈ L∞[0,∞) × L∞[0,∞) × L∞[0,∞) × · · · ,

∥(V∗, p∗1, p
∗
3)∥ = sup

{
|Q∗1,0|, |Q

∗
3,0|, sup j≥0 |V

∗
j |,

sup j≥1 ∥p
∗
1, j∥L∞[0,∞), sup j≥1 ∥p

∗
3, j∥L∞[0,∞)

}
< ∞


.

Clearly, X∗ also is a Banach space.

Lemma 3.6. The adjoint operatorA∗ ofA is as follows:

A∗(V∗, p∗1, p
∗
3) =





−(λ1 + θ1) 0 θ1 0 0 · · ·

θ3 −(λ3 + θ3) 0 0 0 · · ·

0 N0 −1 0 0 · · ·

0 0 0 −1 0 · · ·

0 0 0 0 −1 · · ·
...

...
...
...
...
. . .





Q∗1,0
Q∗3,0
V∗0
V∗1
V∗2
...



+


λ1 0 0 · · ·

0 0 0 · · ·

0 0 0 · · ·
...
...
...
. . .



p∗1,1(0)
p∗1,2(0)
p∗1,3(0)
...

 +


0 0 0 0 · · ·

λ3 0 0 0 · · ·

N1 N2 N3 N4 · · ·

N0 N1 N2 N3 · · ·

0 N0 N1 N2 · · ·
...
...
...
...
. . .





p∗3,1(0)
p∗3,2(0)
p∗3,3(0)
p∗3,4(0)
...


,



µ1(x) 0 0 θ1 0 0 · · ·

0 0 0 0 θ1 0 · · ·

0 0 0 0 0 θ1 · · ·

0 0 0 0 0 0 · · ·
...

...
...
...
...
...
. . .





Q∗1,0
Q∗3,0
V∗0
V∗1
...


+



0 0 0 0 · · ·

µ1(x) 0 0 0 · · ·

0 µ1(x) 0 0 · · ·

0 0 µ1(x) 0 · · ·
...

...
...

...
. . .





p∗1,1(0)
p∗1,2(0)
p∗1,3(0)
p∗1,4(0)
...



+


ζ1 λ1 0 · · ·

0 ζ1 λ1 · · ·

0 0 ζ1 · · ·
...
...
...
. . .



p∗1,1(x)
p∗1,2(x)
p∗1,3(x)
...

 ,


θ3 µ3(x) 0 0 · · ·

θ3 0 0 0 · · ·

θ3 0 0 0 · · ·

θ3 0 0 0 · · ·
...

...
...
...
. . .





Q∗1,0
Q∗3,0
V∗0
V∗1
...



+



0 0 0 0 · · ·

µ3(x) 0 0 0 · · ·

0 µ3(x) 0 0 · · ·

0 0 µ3(x) 0 · · ·
...

...
...

...
. . .





p∗3,1(0)
p∗3,2(0)
p∗3,3(0)
p∗3,4(0)
...


+


ζ3 λ3 0 · · ·

0 ζ3 λ3 · · ·

0 0 ζ3 · · ·
...
...
...
. . .



p∗3,1(x)
p∗3,2(x)
p∗3,3(x)
...




,
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where ζ j =
d
dx − [λ j + θ j + µ j(x)], j = 1, 3 and

D(A∗) =

(q∗I , q
∗
w) ∈ X∗

∣∣∣∣∣∣∣∣∣
p∗j,n(·) (n ≥ 1) are absolutely continuous
functions and satisfy p∗j,n(∞) = α, α is

a nonzero constant which is irrelevant to n

 .
Proof. For any (V, p1, p3) ∈ D(A) and (V∗, p∗1, p

∗
3) ∈ D(A∗), we calculate that

⟨A(V, p1, p3), (V∗, p∗1, p
∗
3)⟩

=

−(λ1 + θ1)Q1,0 + θ3

∞∑
n=1

∫ ∞

0
p3,n(x)dx + θ3Q3,0 +

∫ ∞

0
µ1(x)p1,1(x)dx

 Q∗1,0

+

[
−(λ3 + θ3)Q3,0 + N0V0 +

∫ ∞

0
µ3(x)p3,1(x)dx

]
Q∗3,0

+(−V0 + θ1Q1,0)V∗0 +
∞∑

n=1

[
−Vn + θ1

∫ ∞

0
p1,n(x)dx

]
V∗n

+

∫ ∞

0

[
−

dp1,1(x)
dx

− (λ1 + θ1 + µ1(x))p1,1(x)
]

p∗1,1(x)dx

+

∞∑
n=2

∫ ∞

0

[
−

dp1,n(x)
dx

− (λ1 + θ1 + µ1(x))p1,n(x) + λ1 p1,n−1(x)
]

p∗1,n(x)dx

+

∫ ∞

0

[
−

dp3,1(x)
dx

− (λ3 + θ3 + µ3(x))p3,1(x)
]

p∗3,1(x)dx

+

∞∑
n=2

∫ ∞

0

[
−

dp3,n(x)
dx

− (λ3 + θ3 + µ3(x))p3,n(x) + λ1 p3,n−1(x)
]

p∗3,n(x)dx

= −(λ1 + θ1)Q1,0Q∗1,0 + θ3
∞∑

n=1

∫ ∞

0
p3,nQ∗1,0(x)dx + θ3Q3,0Q∗1,0

+

∫ ∞

0
µ1(x)p1,1(x)(x)Q∗1,0dx

−(λ3 + θ3)Q3,0Q∗3,0 + N0V0Q∗3,0 +
∫ ∞

0
µ3(x)p3,1(x)Q∗3,0dx

+θ1Q1,0V∗0 −
∞∑

n=0

VnV∗n + θ1
∞∑

n=1

∫ ∞

0
p1,n(x)V∗ndx

+

∞∑
n=1

p1,n(0)p∗1,n(0) +
∞∑

n=1

∫ ∞

0
p1,n(x)

[dp∗1,n(x)

dx
− (λ1 + θ1 + µ1(x))p∗1,n(x)

]
dx

+λ1

∞∑
n=1

∫ ∞

0
p1,n(x)p∗1,n+1(x)dx

+

∞∑
n=1

p3,n(0)p∗3,n(0) +
∞∑

n=1

∫ ∞

0
p3,n(x)

[dp∗3,n(x)

dx
− (λ3 + θ3 + µ3(x))p∗3,n(x)

]
dx
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+λ3

∞∑
n=1

∫ ∞

0
p3,n(x)p∗3,n+1(x)dx

= −(λ1 + θ1)Q1,0Q∗1,0 + θ3
∞∑

n=1

∫ ∞

0
p3,nQ∗1,0(x)dx + θ3Q3,0Q∗1,0

+

∫ ∞

0
µ1(x)p1,1(x)Q∗1,0dx

−(λ3 + θ3)Q3,0Q∗3,0 + N0V0Q∗3,0 +
∫ ∞

0
µ3(x)p3,1(x)Q∗3,0dx

+θ1Q1,0V∗0 −
∞∑

n=0

VnV∗n + θ1
∞∑

n=1

∫ ∞

0
p1,n(x)V∗ndx

+λ1Q1,0 p∗1,1(0) +
∞∑

n=1

∫ ∞

0
µ1(x)p1,n+1(x)p∗1,n(0)dx

+

∞∑
n=1

∫ ∞

0
p1,n(x)

[dp∗1,n(x)

dx
− (λ1 + θ1 + µ1(x))p∗1,n(x)

]
dx

+λ1

∞∑
n=1

∫ ∞

0
p1,n(x)p∗1,n+1(x)dx

+λ3Q3,0 p∗3,1(0) +
∞∑

n=1

n∑
k=0

NkVn−k p∗3,n(0) +
∞∑

n=1

∫ ∞

0
µ3(x)p3,n+1(x)p∗3,n(0)dx

+

∞∑
n=1

∫ ∞

0
p3,n(x)

[dp∗3,n(x)

dx
− (λ3 + θ3 + µ3(x))p∗3,n(x)

]
dx

+λ3

∞∑
n=1

∫ ∞

0
p3,n(x)p∗3,n+1(x)dx

= ⟨(V, p1, p3), A∗(V∗, p∗1, p
∗
3)⟩. (3.73)

Eq (3.73) means that Lemma 3.6 holds true.

Lemma 3.7. Let λ j > 0, θ j > 0, Nr ∈ (0, 1), r ≥ 0, and 0 < µ j(·) < ∞, j = 1, 3. Then, 0 is an
eigenvalue ofA∗ with geometric multiplicity 1.

Proof. We consider the equationA∗(V∗, p∗1, p
∗
3) = 0. That is,

−(λ1 + θ1)Q∗1,0 + θ1V∗0 = 0, (3.74)

θ3Q∗1,0 − (λ3 + θ3)Q∗3,0 + λ3 p∗3,1(0) = 0, (3.75)

N0Q∗3,0 − V∗0 +
∞∑

k=1

Nk p∗3,k(0) = 0, (3.76)

−V∗n +
∞∑

k=0

Nk p∗3,k+n(0) = 0, n ≥ 1, (3.77)
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dp∗1,1(x)

dx
− [λ1 + θ1 + µ1(x)]p∗1,1(x) + λ1 p∗1,2(x) + θ1V∗1 + µ1(x)Q∗1,0 = 0, (3.78)

dp∗1,n(x)

dx
− [λ1 + θ1 + µ1(x)]p∗1,n(x) + λ1 p∗1,n+1(x) + θ1V∗n + µ1(x)p∗1,n−1(0) = 0, n ≥ 2, (3.79)

dp∗3,1(x)

dx
− [λ3 + θ3 + µ3(x)]p∗3,1(x) + λ3 p∗3,2(x) + θ3Q∗1,0 + µ3(x)Q∗3,0 = 0, (3.80)

dp∗3,n(x)

dx
− [λ3 + θ3 + µ3(x)]p∗3,n(x) + λ3 p∗3,n+1(x) + θ3Q∗1,0 + µ3(x)p∗3,n−1(0) = 0, n ≥ 2, (3.81)

p∗j,n(∞) = α, j = 1, 3; n ≥ 1. (3.82)

It is easy to see that

(V∗, p∗1, p
∗
3) =



α

α
...

 ,

α

α
...

 ,

α

α
...


 ∈ D(A∗),

is a nonzero solution of Eqs (3.74)–(3.82). In addition, Eqs (3.74)–(3.81) are equivalent to

Q∗1,0 =
θ1(λ3 + θ3)

(λ1 + θ1)(λ3 + θ3) − N0θ1θ3

 λ3N0

λ3 + θ3
p∗3,1(0) +

∞∑
k=1

Nk p∗3,k(0)

 , (3.83)

Q∗3,0 =
θ1θ3

(λ1 + θ1)(λ3 + θ3) − N0θ1θ3

 λ3N0

λ3 + θ3
p∗3,1(0) +

∞∑
k=1

Nk p∗3,k(0)

 , (3.84)

V∗0 =
(λ1 + θ1)(λ3 + θ3)

(λ1 + θ1)(λ3 + θ3) − N0θ1θ3

 λ3N0

λ3 + θ3
p∗3,1(0) +

∞∑
k=1

Nk p∗3,k(0)

 , (3.85)

V∗n =
∞∑

k=0

Nk p∗3,k+n(0), n ≥ 1, (3.86)

p∗1,2(x) = −
1
λ1

dp∗1,1(x)

dx
− (λ1 + θ1 + µ1(x))p∗1,1(x) + θ1

∞∑
k=0

Nk p∗3,k+1(0)

+
θ1(λ3 + θ3)µ1(x)

(λ1 + θ1)(λ3 + θ3) − N0θ1θ3

 λ3N0

λ3 + θ3
p∗3,1(0) +

∞∑
k=1

Nk p∗3,k(0)

 ,
(3.87)

p∗1,n+1(x) = −
1
λ1

dp∗1,n(x)

dx
− (λ1 + θ1 + µ1(x))p∗1,n(x) + θ1

∞∑
k=0

Nk p∗3,k+n(0)


−
µ1(x)
λ1

p∗3,n−1(0), n ≥ 2,

(3.88)

p∗3,2(x) = −
1
λ3

[dp∗3,1(x)

dx
− (λ3 + θ3 + µ3(x))p∗3,1(x)

+
θ1θ3(λ3 + θ3)

(λ1 + θ1)(λ3 + θ3) − N0θ1θ3

 λ3N0

λ3 + θ3
p∗3,1(0) +

∞∑
k=1

Nk p∗3,k(0)


+

θ1θ3µ3(x)
(λ1 + θ1)(λ3 + θ3) − N0θ1θ3

 λ3N0

λ3 + θ3
p∗3,1(0) +

∞∑
k=1

Nk p∗3,k(0)

 ,
(3.89)
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p∗3,n+1(x) = −
1
λ3

[dp∗3,n(x)

dx
− (λ3 + θ3 + µ3(x))p∗3,n(x) + µ3(x)p∗3,n−1(0)

+
θ1θ3(λ3 + θ3)

(λ1 + θ1)(λ3 + θ3) − N0θ1θ3

 λ3N0

λ3 + θ3
p∗3,1(0) +

∞∑
k=1

Nk p∗3,k(0)

 , n ≥ 2.
(3.90)

Consequently, Eqs (3.83)–(3.90) mean that the geometric multiplicity of 0 is one.

Finally, using Lemmas 3.1, 3.5, and 3.7 and Theorem 1.96 of [12], we obtain the following
desired result.

Theorem 3.1. Let λ j > 0, θ j > 0,Nr ∈ (0, 1), r ≥ 0, and µ j(x) : [0,∞)→ [0,∞) be measurable and

0 < inf
x∈[0,∞)

µ j(x) ≤ µ j(x) ≤ sup
x∈[0,∞)

µ j(x) < ∞, j = 1, 3.

Then, the time-dependent solution of system (2.12) strongly converges to its steady-state solution,
that is,

lim
t→∞
∥(V(t), p1(·, t), p3(·, t)) − ⟨(V∗, p∗1(·), p∗3(·)), (V, p1, p3)(0))⟩(V, p1(·), p3(·))∥ = 0, (3.91)

where (V, p1(·), p3(·)) and (V∗, p∗1(·), p∗3(·)) are the eigenvectors in Lemmas 3.1 and 3.7, respectively, and
(V, p1, p3)(0)) is the initial value of system (2.12).

Proof. Theorem 2.1 establishes that the operatorA generates a uniformly bounded C0−semigroup on
the Banach space X. Furthermore, leveraging Lemmas 3.5, 3.1, and 3.7, we can readily deduce that

σp(A) ∩ iR = σp(A∗) ∩ iR = {0},

and that the set {γ ∈ C | γ = ib, b , 0, b ∈ R} is a subset of the resolvent set ρ(A). Additionally, zero is
an eigenvalue ofA∗ with geometric multiplicity one.

Consequently, invoking Theorem 1.96 from [12], we conclude that the time-dependent solution
of the system (2.12) converges strongly to its steady-state solution. Specifically, the limit Eq (3.91)
holds true.

4. Conclusions

In this paper, we investigate the asymptotic behavior of the M/G/1 stochastic clearing queueing
model in a three-phase environment, specifically when the service rate of the server is a bounded
function. By employing probability generating functions and the boundary perturbation method of
Greiner, we demonstrate that all points on the imaginary axis, except for 0, fall within the resolvent
set of the system operator. Additionally, we highlight that 0 is an eigenvalue of the adjoint operator of
the system operator, with a geometric multiplicity of 1. This finding implies that the time-dependent
solution of the system strongly converges to its steady-state solution.

This theoretical result provides a solid foundation for understanding the long-term behavior of the
system. However, the implications of strong convergence for practical system performance metrics,
such as queue-length distributions, transient behavior, and the rate of convergence, are equally important
for real-world applications. Strong convergence implies that over time, the system’s transient behavior
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will closely approximate its steady-state behavior. This means that for sufficiently large times, the
queue-length distribution and other performance metrics will be well-represented by their steady-state
counterparts. In practical settings, this suggests that after an initial transient period, the system will
exhibit stable performance characteristics that can be effectively estimated using steady-state analysis.

However, for the more general case of the service rate function, where 0 ≤ µ j(·) ≤ ∞, we have
not yet determined whether the above results still hold. Furthermore, it remains unclear whether the
time-dependent solution exponentially converges to its steady-state solution. To address the exponential
stability of this system, we need to investigate the spectrum of the system operator on the left half of the
complex plane, as discussed in [14, 15]. These topics are among our future research endeavors.

The approach outlined in this paper is specifically tailored for queuing systems that are characterized
through partial differential equations [16]. It is not applicable to the queuing systems discussed in [17,18].
There have been extensive studies on the asymptotic behavior of semigroups (see [7, 8, 12, 19]). which
are also of significant interest for our future research.

Use of AI tools declaration

The authors declare that they have not used Artificial Intelligence (AI) tools in the creation of
this article.

Acknowledgements

We are grateful to the anonymous referees, who read carefully the manuscript and made valuable
comments and suggestions. This work was supported by the Natural Science Foundation of Xinjiang
Uygur Autonomous Region (No: 2024D01C229) and the National Natural Science Foundation of China
(No: 12301150).

Conflicts of interest

The authors declare there is no conflict of interest.

References

1. S. Ghosh, R. Hassin, Inefficiency in stochastic queueing systems with strategic customers, Eur. J.
Oper. Res., 295 (2021), 1–11. https://doi.org/10.1016/j.ejor.2021.03.065

2. G. Chen, J. P. Gayon, P. Lemaire, Stochastic scheduling with abandonment: necessary and
sufficient conditions for the optimality of a strict priority policy, Oper. Res., 71 (2023), 1789–
1793. https://doi.org/10.1287/opre.2022.2285

3. J. R. Artalejo, A. Gomez-Corral, Analysis of a stochastic clearing system with
repeated attempts, Commun. Stast. Stochastic Models, 14 (1998), 623–645.
https://doi.org/10.1080/15326349808807492

4. L. Li, J. Wang, Y. Wang, L. Zhang, Equilibrium and social optimality in Markovian
queues with catastrophes and N-policy, Int. J. Syst. Sci. Oper. Logist., 12 (2025), 2469795.
https://doi.org/10.1080/23302674.2025.2469795

Networks and Heterogeneous Media Volume 20, Issue 2, 590–624.

https://dx.doi.org/https://doi.org/10.1016/j.ejor.2021.03.065
https://dx.doi.org/https://doi.org/10.1287/opre.2022.2285
https://dx.doi.org/https://doi.org/10.1080/15326349808807492
https://dx.doi.org/https://doi.org/10.1080/23302674.2025.2469795


617

5. W. S. Yang, J. D. Kim, K. C. Chae, Analysis of M/G/1 stochastic clearing systems, Stochastic Anal.
Appl., 20 (2002), 1083–1100. https://doi.org/10.1081/SAP-120014554

6. X. Y. Zhang, L. W. Liu, T. Jiang, Analysis of an M/G/1 stochastic clearing queue in a 3-phase
environment, J. Syst. Sci. Inf., 3 (2015), 374–384. https://doi.org/10.1515/jssi-2015-0374

7. P. G. Geredeli, Spectral analysis and asymptotic decay of the solutions to multilayered
structure-Stokes fluid interaction PDE system, J. Differ. Equ., 427 (2025), 1–25.
https://doi.org/10.1016/j.jde.2025.01.080

8. M. Elghandouri, K. Ezzinbi, L. Saidi, Exploring well-posedness and asymptotic behavior in
an Advection-Diffusion-Reaction (ADR) model, J. Comput. Appl. Math., 462 (2025), 116465.
https://doi.org/10.1016/j.cam.2024.116465

9. N. Yiming, Dynamic analysis of the M/G/1 stochastic clearing queueing model in a three-phase
environment, Mathematics, 12 (2024), 805. https://doi.org/10.3390/math12060805

10. G. Greiner, Perturbing the boundary conditions of a generator, Houston J. Math., 13 (1987),
213–229.

11. A. Haji, A. Radl, Asymptotic stability of the solution of the M/MB/1 queueing model, Comput.
Math. Appl., 53 (2007), 1411–1420. https://doi.org/10.1016/j.camwa.2006.12.005

12. G. Gupur, Functional Analysis Methods for Reliability Models, Springer-Verlag, Basel, 2011.

13. R. Nagel (ed.), One-Parameter Semigroups of Positive Operators (Lecture Notes in Mathematics
1184), Springer-Verlag, Berlin, 1986.

14. G. Gupur, Point spectrum of the operator corresponding to a reliability model and application, J.
Pseudo-Differ. Oper. Appl., 7 (2016), 411–429. https://doi.org/10.1007/s11868-016-0162-z

15. N. Yiming, Dynamic analysis of the M/G/1 queueing system with multiple phases of operation,
Networks Heterogen. Mediaa, 19 (2024), 1231–1260. https://doi.org/10.3934/nhm.2024053

16. A. Sylia, T. Samira, On a Balking M/G/1 queue with general differentiated vacations, Methodol.
Comput. Appl. Probab., 27 (2025), 1–32. https://doi.org/10.1007/s11009-025-10145-x

17. A. Dudin, S. Dudin, R. Manzo, L. Rarità, Queueing system with batch arrival of heterogeneous
orders, flexible limited processor sharing and dynamical change of priorities, AIMS Math., 9 (2024),
12144–12169. https://doi.org/10.3934/math.2024593

18. A. Dudin, S. Dudin, R. Manzo, L. Rarità, Analysis of semi-open queueing network
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A. Appendix: The proof of Lemmas 3.2 and 3.3

The proof of Lemma 3.2. For all f ∈ L1[0,∞), we compute∫ ∞

0
|E j f (x)|dx =

∫ ∞

0

∣∣∣∣∣e−(γ+λ j+θ j)x−
∫ x

0 µ j(τ)dτ
∫ x

0
f (τ)e(γ+λ j+θ j)τ+

∫ τ
0 µ j(ξ)dξdτ

∣∣∣∣∣ dx

≤

∫ ∞

0
e−(ℜγ+λ j+θ j)x−

∫ x
0 µ j(τ)dτ

∫ x

0
| f (τ)|e(ℜγ+λ j+θ j)τ+

∫ τ
0 µ j(ξ)dξdτdx

=

∫ ∞

0

−1
ℜγ + λ j + θ j + µ j(x)

∫ x

0
| f (τ)|e(ℜγ+λ j+θ j)τ+

∫ τ
0 µ j(ξ)dξdτde−(ℜγ+λ j+θ j)x−

∫ x
0 µ j(τ)dτ

=
−1

ℜγ + λ j + θ j + µ j(x)
e−(ℜγ+λ j+θ j)x−

∫ x
0 µ j(τ)dτ

∫ x

0
| f (τ)|e(ℜγ+λ j+θ j)τ+

∫ τ
0 µ j(ξ)dξdτ

∣∣∣∣x=∞
x=0

+

∫ ∞

0

1
ℜγ + λ j + θ j + µ j(x)

e−(ℜγ+λ j+θ j)x−
∫ x

0 µ j(τ)dτe(ℜγ+λ j+θ j)x+
∫ x

0 µ j(τ)dτ| f (x)|dx

= limx→∞
−1

ℜγ+λ j+θ j+µ j(x)e
−(ℜγ+λ j+θ j)x−

∫ x
0 µ j(τ)dτ

∫ x

0
| f (τ)|e(ℜγ+λ j+θ j)τ+

∫ τ
0 µ j(ξ)dξdτ

+

∫ ∞

0

1
ℜγ + λ j + θ j + µ j(x)

| f (x)|dx

=

∫ ∞

0

1
ℜγ + λ j + θ j + µ j(x)

| f (x)|dx

≤
1

ℜγ + λ j + θ j + infx∈[0,∞) µ j(x)
∥ f ∥L1[0,∞), j = 1, 3.

This means that
∥E j∥ ≤

1
ℜγ + λ j + θ j + infx∈[0,∞) µ j(x)

, j = 1, 3. (A.1)

Then, for any (w, y1, y3) ∈ X, using the inequalities ∥φ1∥ ≤ 1, ∥φ2∥ ≤ supx∈[0,∞) µ1(x), ∥φ3∥ ≤

supx∈[0,∞) µ3(x) and Eq (3.56), we estimate

∥(γI − A0)−1(w, y1, y3)∥

= ∥(a1,1 + a2,1 + a3,1)z1,0 + (a1,2 + a2,2 + a3,2)z3,0 + (a1,3 + a2,3 + a3,3)w0

+
1
γ + 1

∞∑
n=1

wn + (a1,4 + a2,4 + a3,4)φ2E1y1,1

+
θ1
γ + 1

[φ1E1y1,1 + (λ1φ1E2
1y1,1 + φ1E1y1,2)

+(λ2
1φ1E3

1y1,1 + λ1φ1E2
1y1,2 + φ1E1y1,3)

+(λ3
1φ1E4

1y1,1 + λ
2
1φ1E3

1y1,2 + λ1φ1E2
1y1,3 + φ1E1y1,4) + · · · ]

+(a1,5 + a2,5 + a3,5)φ3E3y3,1 + (a1,6 + a2,6 + a3,6)[φ1E3y3,1 + (λ3φ1E2
3y3,1 + φ1E3y3,2)

+(λ2
3φ1E3

3y3,1 + λ3φ1E2
3y3,2 + φ1E3y3,3)

+(λ3
3φ1E4

3y3,1 + λ
2
3φ1E3

3y3,2 + λ3φ1E2
3y3,3 + φ1E3y3,4) + · · · ]
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+(E1y1,1 + λ1E2
1y1,1 + E1y1,2 + λ

2
1E3

1y1,1 + λ1E2
1y1,2 + E1y1,3

+λ3
1E4

1y1,1 + λ
2
1E3

1y1,2 + λ1E2
1y1,3 + · · · )

+(E3y3,1 + λ3E2
3y3,1 + E3y3,2 + λ

2
3E3

3y3,1 + λ3E2
3y3,2 + E3y3,3

+λ3
3E4

3y3,1 + λ
2
3E3

3y3,2 + λ3E2
3y3,3 + · · · )∥

≤ |a1,1 + a2,1 + a3,1||z1,0| + |a1,2 + a2,2 + a3,2||z3,0| + |a1,3 + a2,3 + a3,3||w0|

+
1

|γ + 1|

∞∑
n=1

|wn| + |a1,4 + a2,4 + a3,4|∥φ2∥∥E1∥∥y1,1∥L1[0,∞)

+
θ1
|γ + 1|

[
∥φ1∥∥E1∥∥y1,1∥L1[0,∞) + λ1∥φ1∥∥E1∥

2∥y1,1∥L1[0,∞)

+∥φ1∥∥E1∥∥y1,2∥L1[0,∞) + λ
2
1∥φ1∥∥E1∥

3∥y1,1∥L1[0,∞)

+λ1∥φ1∥∥E1∥
2∥y1,2∥L1[0,∞) + ∥φ1∥∥E1∥∥y1,3∥L1[0,∞)

+λ3
1∥φ1∥∥E1∥

4∥y1,1∥L1[0,∞) + λ
2
1∥φ1∥∥E1∥

3∥y1,2∥L1[0,∞)

+λ1∥φ1∥∥E1∥
2∥y1,3∥L1[0,∞) + ∥φ1∥∥E1∥∥y1,4∥L1[0,∞) + · · ·

]
+|a1,5 + a2,5 + a3,5|∥φ3∥∥E3∥∥y3,1∥L1[0,∞)

+|a1,6 + a2,6 + a3,6|
[
∥φ1∥∥E3∥∥y3,1∥L1[0,∞) + λ3∥φ1∥∥E3∥

2∥y3,1∥L1[0,∞)

+∥φ1∥∥E3∥∥y3,2∥L1[0,∞) + λ
2
3∥φ1∥∥E3∥

3∥y3,1∥L1[0,∞)

+λ3∥φ1∥∥E3∥
2∥y3,2∥L1[0,∞) + ∥φ1∥∥E3∥∥y3,3∥L1[0,∞)

+λ3
3∥φ1∥∥E3∥

4∥y3,1∥L1[0,∞) + λ
2
3∥φ1∥∥E3∥

3∥y3,2∥L1[0,∞)

+λ3∥φ1∥∥E3∥
2∥y3,3∥L1[0,∞) + ∥φ1∥∥E3∥∥y3,4∥L1[0,∞) + · · ·

]
+∥E1∥∥y1,1∥L1[0,∞) + λ1∥E1∥

2∥y1,1∥L1[0,∞) + ∥E1∥∥y1,2∥L1[0,∞)

+λ2
1∥E1∥

3∥y1,1∥L1[0,∞) + λ1∥E1∥
2∥y1,2∥L1[0,∞) + ∥E1∥∥y1,3∥L1[0,∞)

+λ3
1∥E1∥

4∥y1,1∥L1[0,∞) + λ
2
1∥E1∥

3∥y1,2∥L1[0,∞) + λ1∥E1∥
2∥y1,3∥L1[0,∞)

+ · · ·

+∥E3∥∥y3,1∥L1[0,∞) + λ3∥E3∥
2∥y3,1∥L1[0,∞) + ∥E3∥∥y3,2∥L1[0,∞)

+λ2
3∥E3∥

3∥y3,1∥L1[0,∞) + λ3∥E3∥
2∥y3,2∥L1[0,∞) + ∥E3∥∥y3,3∥L1[0,∞)

+λ3
3∥E3∥

4∥y3,1∥L1[0,∞) + λ
2
3∥E3∥

3∥y3,2∥L1[0,∞) + λ3∥E3∥
2∥y3,3∥L1[0,∞)

+ · · ·

= |a1,1 + a2,1 + a3,1||z1,0| + |a1,2 + a2,2 + a3,2||z3,0|

+|a1,3 + a2,3 + a3,3||w0| +
1

|γ + 1|

∞∑
n=1

|wn| + |a1,4 + a2,4 + a3,4|∥φ2∥∥E1∥∥y1,1∥L1[0,∞)
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+
θ1
|γ + 1|

∥φ1∥

∞∑
k=1

λk−1
1 ∥E1∥

k
∞∑

n=1

∥y1,n∥L1[0,∞) + |a1,5 + a2,5 + a3,5|∥φ3∥∥E3∥∥y3,1∥L1[0,∞)

+|a1,6 + a2,6 + a3,6|∥φ1∥

∞∑
k=1

λk−1
3 ∥E3∥

k
∞∑

n=1

∥y3,n∥L1[0,∞)

+

∞∑
k=1

λk−1
1 ∥E1∥

k
∞∑

n=1

∥y1,n∥L1[0,∞) +

∞∑
k=1

λk−1
3 ∥E3∥

k
∞∑

n=1

∥y3,n∥L1[0,∞)

≤ |a1,1 + a2,1 + a3,1||z1,0| + |a1,2 + a2,2 + a3,2||z3,0|

+|a1,3 + a2,3 + a3,3||w0| +
1

ℜγ + 1

∞∑
n=1

|wn|

+|a1,4 + a2,4 + a3,4|
supx∈[0,∞) µ1(x)

ℜγ + λ1 + θ1 + infx∈[0,∞) µ1(x)
∥y1,1∥L1[0,∞)

+
θ1

ℜγ + 1
1

ℜγ + λ1 + θ1 + infx∈[0,∞) µ1(x)

×

∞∑
k=1

(
λ1

ℜγ + λ1 + θ1 + infx∈[0,∞) µ1(x)

)k−1 ∞∑
n=1

∥y1,n∥L1[0,∞)

+|a1,5 + a2,5 + a3,5|
supx∈[0,∞) µ3(x)

ℜγ + λ3 + θ3 + infx∈[0,∞) µ3(x)
∥y3,1∥L1[0,∞)

+|a1,6 + a2,6 + a3,6|
1

ℜγ + λ3 + θ3 + infx∈[0,∞) µ3(x)

×

∞∑
k=1

(
λ3

ℜγ + λ3 + θ3 + infx∈[0,∞) µ3(x)

)k−1 ∞∑
n=1

∥y3,n∥L1[0,∞)

+
1

ℜγ + λ1 + θ1 + infx∈[0,∞) µ1(x)

×

∞∑
k=1

(
λ1

ℜγ + λ1 + θ1 + infx∈[0,∞) µ1(x)

)k−1 ∞∑
n=1

∥y1,n∥L1[0,∞)

+
1

ℜγ + λ3 + θ3 + infx∈[0,∞) µ3(x)

×

∞∑
k=1

(
λ3

ℜγ + λ3 + θ3 + infx∈[0,∞) µ3(x)

)k−1 ∞∑
n=1

∥y3,n∥L1[0,∞)

≤ sup
{
|a1,1 + a2,1 + a3,1| + |a1,2 + a2,2 + a3,2| + |a1,3 + a2,3 + a3,3| +

1
ℜγ + 1

,

|a1,4 + a2,4 + a3,4|
supx∈[0,∞) µ1(x)

ℜγ + λ1 + θ1 + infx∈[0,∞) µ1(x)
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+
θ1

ℜγ + 1
1

ℜγ + θ1 + infx∈[0,∞) µ1(x)
+

1
ℜγ + θ1 + infx∈[0,∞) µ1(x)

,

|a1,5 + a2,5 + a3,5|
supx∈[0,∞) µ3(x)

ℜγ + λ3 + θ3 + infx∈[0,∞) µ3(x)

+|a1,6 + a2,6 + a3,6|
1

ℜγ + θ3 + infx∈[0,∞) µ3(x)
+

1
ℜγ + θ3 + infx∈[0,∞) µ3(x)

}
∥(w, y1, y3)∥

= sup
{
|(γ + 1)(γ + λ3 + θ3) + θ1N0 + θ1(γ + λ3 + θ3)|
|(γ + 1)(γ + λ1 + θ1)(γ + λ3 + θ3) − θ1θ3N0|

+
|(γ + 1)θ3 + (γ + 1)(γ + λ1 + θ1) + θ1θ3|
|(γ + 1)(γ + λ1 + θ1)(γ + λ3 + θ3) − θ1θ3N0|

+
|θ3N0 + (γ + λ1 + θ1)N0 + (γ + λ1 + θ1)(γ + λ3 + θ3)|
|(γ + 1)(γ + λ1 + θ1)(γ + λ3 + θ3) − θ1θ3N0|

+
1

ℜγ + 1
,

|(γ + 1)(γ + λ3 + θ3) + θ1N0 + θ1(γ + λ3 + θ3)|
|(γ + 1)(γ + λ1 + θ1)(γ + λ3 + θ3) − θ1θ3N0|

supx∈[0,∞) µ1(x)

ℜγ + λ1 + θ1 + infx∈[0,∞) µ1(x)

+
θ1

ℜγ + 1
1

ℜγ + θ1 + infx∈[0,∞) µ1(x)
+

1
ℜγ + θ1 + infx∈[0,∞) µ1(x)

,

|(γ + 1)θ3 + (γ + 1)(γ + λ1 + θ1) + θ1θ3|
|(γ + 1)(γ + λ1 + θ1)(γ + λ3 + θ3) − θ1θ3N0|

supx∈[0,∞) µ3(x)

ℜγ + λ3 + θ3 + infx∈[0,∞) µ3(x)

+
|(γ + 1)(γ + λ3 + θ3)θ3 + θ1θ3N0 + θ1θ3(γ + λ3 + θ3)|
|(γ + 1)(γ + λ1 + θ1)(γ + λ3 + θ3) − θ1θ3N0|

1
ℜγ + θ3 + infx∈[0,∞) µ3(x)

+
1

ℜγ + θ3 + infx∈[0,∞) µ3(x)

}
∥(w, y1, y3)∥. (A.2)

Inequality (A.2) means that the result of Lemma 3.2 holds true.
The proof of Lemma 3.3. We assume that (V, p1, p3) ∈ ker(γI − Am), then (γI − Am)(V, p1, p3) = 0.

That is,

(γ + λ1 + θ1)Q1,0 = θ3

∞∑
n=1

∫ ∞

0
p3,n(x)dx + θ3Q3,0 +

∫ ∞

0
p1,1(x)µ1(x)dx, (A.3)

(γ + λ3 + θ3)Q3,0 = N0V0 +

∫ ∞

0
p3,1(x)µ3(x)dx, (A.4)

(γ + 1)V0 = θ1Q1,0, (A.5)

(γ + 1)Vn = θ1

∫ ∞

0
p1,n(x)dx, n ≥ 1, (A.6)

dp1,1(x)
dx

= −[γ + λ1 + θ1 + µ1(x)]p1,1(x), (A.7)

dp1,n(x)
dx

= −[γ + λ1 + θ1 + µ1(x)]p1,n(x) + λ1 p1,n−1(x), n ≥ 2, (A.8)

dp3,1(x)
dx

= −[γ + λ3 + θ3 + µ3(x)]p3,1(x), (A.9)
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dp3,n(x)
dx

= −[γ + λ3 + θ3 + µ3(x)]p3,n(x) + λ3 p3,n−1(x), n ≥ 2. (A.10)

By solving Eqs (A.7)–(A.10), we have

p j,n(x) = e−(γ+λ j+θ j)x−
∫ x

0 µi(τ)dτ
n∑

k=1

(λ jx)k−1

(k − 1)!
p j,n−k+1(0), j = 1, 3; n ≥ 1. (A.11)

By Eqs (A.3)–(A.6), we have

Q1,0 =
θ3

γ + λ1 + θ1

∞∑
n=1

∫ ∞

0
p3,n(x)dx +

θ3
γ + λ1 + θ1

Q3,0 +
1

γ + λ1 + θ1

∫ ∞

0
p1,1(x)µ1(x)dx, (A.12)

Q3,0 =
N0

γ + λ3 + θ3
V0 +

1
γ + λ3 + θ3

∫ ∞

0
p3,1(x)µ3(x)dx, (A.13)

V0 =
θ1
γ + 1

Q1,0, (A.14)

Vn =
1
γ + 1

∫ ∞

0
p1,n(x)dx, n ≥ 1. (A.15)

Then, from Eqs (A.11)–(A.15), by a simple calculation, we can obtain that Eqs (3.56)–(3.59) in
Lemma 3.3 hold true.

Moreover, since (V, p1, p3) ∈ ker(γI − Am), using the Sobolev imbedding theorem [20, Theorem
4.12], we estimate

∞∑
n=1

|p j,n(0)| ≤
∞∑

n=1

∥p j,n∥L∞[0,∞)

≤

∞∑
n=1

(
∥p j,n∥L1[0,∞) +

∥∥∥∥∥dp j,n

dx

∥∥∥∥∥
L1[0,∞)

)
< ∞, j = 1, 3.

(A.16)

Hence, we conclude that Eqs (3.56)–(3.61) in Lemma 3.3 hold true.
On the other hand, if the Eqs (3.56)–(3.61) holds true, then for any positive constantM0 and k ≥ 1,

using the formula ∫ ∞

0
e−M0 xxkdx =

k!
Mk+1

0

,

we estimate

∥p j,n∥L1[0,∞) =

∫ ∞

0

∣∣∣∣∣∣∣e−(γ+λ j+θ j)x−
∫ x

0 µ j(τ)dτ
n∑

k=1

(λ jx)k−1

(k − 1)!
p j,n−k+1(0)

∣∣∣∣∣∣∣ dx

≤

n∑
k=1

λk−1
j

(k − 1)!
|p j,n−k+1(0)|

∫ ∞

0
xk−1e−[ℜγ+λ j+θ j+infx∈[0,∞) µ j(x)]xdx

≤

n∑
k=1

λk−1
j

(k − 1)!
|p j,n−k+1(0)|

(k − 1)!
(ℜγ + λ j + θ j + infx∈[0,∞) µ j(x))k

=

n∑
k=1

λk−1
j

(ℜγ + λ j + θ j + infx∈[0,∞) µ j(x))k |p j,n−k+1(0)|.

(A.17)
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To sum n from 1 to positive infinity on both sides of the above inequality and using the condition
ℜγ + θ j + infx∈[0,∞) µ j(x) > 0, we have

∞∑
n=1

∥p j,n∥L1[0,∞) =

∞∑
n=1

n∑
k=1

λk−1
j

(ℜγ + λ j + θ j + infx∈[0,∞) µ j(x))k |p j,n−k+1(0)|

=

∞∑
k=1

λk−1
j

(ℜγ + λ j + θ j + infx∈[0,∞) µ j(x))k

∞∑
n=1

|p j,n(0)|

=
1

ℜγ + θ j + infx∈[0,∞) µ j(x)

∞∑
n=1

|p j,n(0)| < ∞, j = 1, 3.

(A.18)

By taking the derivative of x on both sides of Eq (A.18), we can obtain

dp j,1(x)
dx

= −[γ + λ j + θ j + µ j(x)]p j,1(0)e−(γ+λ j+θ j)x−
∫ x

0 µ j(τ)dτ

= −[γ + λ j + θ j + µ j(x)]p j,1(x), j = 1, 3,
(A.19)

dp j,n(x)
dx

= −[γ + λ j + θ j + µ j(x)]p j,n(x) + λ j p j,n−1(x), j = 1, 3; n ≥ 1. (A.20)

Combining the Eqs (A.18)–(A.20), we derive

∞∑
n=1

∥∥∥∥∥dp j,n

dx

∥∥∥∥∥
L1[0,∞)

≤

[
|γ| + 2λ j + θ j + sup

x∈[0,∞)
µ j(x)

] ∞∑
n=1

∥p j,n∥L1[0,∞). (A.21)

Therefore, Eqs (A.18)–(A.21) imply that γ ∈ ρ(A0) and

(V, p1, p3) ∈ ker(γI − Am).
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B. Appendix: List of notations

Table 1. List of notations.

Symbol First occurrence & Description
Q j,0(t) Page 2: The probability that there are no customers in phase

j ( j = 1, 3) and the server is idle at time t.
Vn(t) Page 2: The probability that there are n (n ≥ 0) customers in

the system and the system is in phase 2.
p j,n(x, t)dx Page 2: The probability that there are n (n ≥ 1) customers in

the system at time t with the server busy serving a customer
whose elapsed service time lies in the interval [x, x + dx) in
phase j ( j = 1, 3).

λ j Page 4: The arrival rate of customers when the system is in
phase j ( j = 1, 2, 3).

µ j(x) Page 4: The conditional probability of completing a service
during the interval (x, x + dx) with elapsed time x in phase
j ( j = 1, 3).

θ j Page 4: The residence rate of the system in phase j ( j = 1, 3).
Nr Page 5: The probability of r (r ≥ 0) arrivals during phase 2.
X Page 5: The state space of systems (2.1)–(2.11).
X∗ Page 24: The dual space of X.
∂X Page 6: The boundary space of X.
Am Page 5: The maximal operator of systems (2.1)–(2.11).
D(Am) Page 5: The domain of operator Am.
Φ,Ψ Page 6: The boundary operators of systems (2.1)–(2.2).
A Page 7: The system operator of systems (2.1)–(2.11).
A∗ Page 8: The adjoint operator ofA.
A0 Page 12: The system operator with zero boundary conditions

for systems (2.1)–(2.11).
ρ(A) Page 8: The resolvent set ofA.
σ(A) Page 18: The spectrum set ofA.
σp(A) Page 29: The point spectrum set ofA.
ℜγ Page 8: The real part of γ.
Dγ Page 16: The Dirichlet operator.
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