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Abstract: In this paper, we investigate the asymptotic behavior of the time-dependent solution
for the M/G/1 stochastic clearing queueing system operating in a three-phase environment. The
mathematical model of this system is characterized by an infinite set of integro-partial differential
equations, with boundary conditions that incorporate integral equations. Initially, we employ probability
generating functions to demonstrate that 0 is an eigenvalue of the system operator, possessing a geometric
multiplicity of one. Subsequently, by invoking Greiner’s boundary perturbation method, we establish
that all points on the imaginary axis, with the exception of 0, reside within the resolvent set of the system
operator. Furthermore, we highlight that O also serves as an eigenvalue of the adjoint operator of the
system operator, with a geometric multiplicity of unity. As a result, we conclude that the time-dependent
solution of the system converges strongly to its steady-state solution.

Keywords: stochastic clearing queueing system; asymptotic behavior; boundary perturbation; resolvent
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1. Introduction

The stochastic clearing queueing system has a wide range of applications across various fields such
as manufacturing systems, telecommunications, transportation systems, supply chain and inventory
management, etc. For example, in manufacturing, stochastic clearing queueing systems can be applied to
optimize production lines. For instance, a production line may operate in batches, where all accumulated
orders are processed together. The system can be designed to start production only when a certain
number of orders are accumulated, or it can be activated randomly when the number of orders is below
the threshold to avoid long delays. In telecommunication networks, stochastic clearing queueing systems
can be used to manage data packet transmission. Packets arrive randomly and are processed in batches
to optimize bandwidth usage and reduce latency. The clearing mechanism helps in managing the queue
of packets efficiently.

Many scholars have previously investigated stochastic clearing queuing systems [1-5]. The M/G/1
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stochastic clearing queuing system is a specialized model within the realm of stochastic clearing queues.
Here, “M” denotes Markovian arrivals, signifying that the arrival process adheres to a Poisson process,
characterized by exponentially distributed inter-arrival times. “G” represents a general service time
distribution, implying that service durations can follow any distribution, not limited to exponential ones.
Last, “1” indicates that there is only one server in the system. In this system, customers arrive following
a Poisson process. A single server attends to them, with service times governed by a general distribution.
At random intervals, the entire system is cleared, removing all customers in the queue as well as those
being served. The clearance times are random and follow a specific distribution.

Zhang et al. [6] were the first to examine the M/G/1 stochastic clearing queueing system in a
three-phase environment. They formulated the mathematical model of this system using the method of
supplementary variables and explored the steady-state solution and several key stationary performance
measures under the following hypothesis:

lim Q;0(#) = Qjo, j=1,3; LmV,(#) =V,, n=0,
t—o0 t—oo

limpj,n(" t) = p/,n()’ ]: la 3’ nz 1,
—00 ‘

where Q;o(?) (j = 1, 3) represents the probability that there are no customers in phase j and the server
is idle at time #; V,(¢) (n > 0) denotes the probability that there are n customers in the system and the
system is in phase 2; p;,(x,)dx (j = 1,3; n > 1) is the probability that there are n customers in the
system (including the one being served) at time ¢ with the server busy serving a customer whose elapsed
service time lies in the interval [x, x + dx) in phase j.

Drawing on the theory of partial differential equations (see [7, 8]), we can infer that the
aforementioned hypothesis implies the following two hypotheses:

Hypothesis 1): This queueing system has a nonnegative time-dependent solution.

Hypothesis 2): The time-dependent solution of this system converges to its nonzero steady-
state solution.

Recently, in our work [9], we established that Hypothesis 1) holds when the service rate of the
server is a bounded function, and Hypothesis 2) holds when the service rate is constant. To address
whether Hypothesis 2) holds, as demonstrated in [9], we first identify the adjoint operator of the system
operator. Subsequently, we analyze the spectrum of this adjoint operator on the imaginary axis. By
leveraging the relationship between the spectrum of the operator and its adjoint, we then determine the
spectrum of the system operator on the imaginary axis. However, in the aforementioned literature, we
did not address whether Hypothesis 2) remains valid when the service rate is a bounded function. In this
article, we aim to resolve this outstanding issue.

In this paper, we employ the boundary perturbation method of Greiner [10] and probability
generating functions [6] to investigate the asymptotic behavior of the time-dependent solution for the
M/G/1 stochastic clearing queueing system in a three-phase environment. To achieve this, we first select
an appropriate Banach space to serve as the state space for the system. We then define the maximal
operator and boundary operators for this queueing within this state space. Utilizing these operators, we
construct the system operator for the given system.

Next, by introducing suitable probability generating functions, we demonstrate that O is an
eigenvalue of the system operator with a geometric multiplicity of 1. We further define an operator with
a boundary condition of 0 for this queueing system using the aforementioned maximal and boundary
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operators. We then identify the resolvent set of this operator and define the Dirichlet operator. Drawing
on a result from Haji and Radl [11], we prove that all points on the imaginary axis, except for 0, belong
to the resolvent set of the system operator. Additionally, we directly show that O is also an eigenvalue of
the adjoint operator of the system, with a geometric multiplicity of 1.

These results collectively indicate that the time-dependent solution of the M/G/1 stochastic clearing
queueing system in a three-phase environment strongly converges to its non-zero steady-state solution.
In other words, Hypothesis 2) holds true in the sense of strong convergence. In addition, the conclusion
of this article includes the main result of [9].

2. Mathematical model and its abstract Cauchy problem
According to Zhang et al. [6], the mathematical model of the M/G/1 stochastic clearing queueing

system operating in a three-phase environment can be described by the following system of integro-
partial differential equations:

d ’ (t) 00 0o 00
Q:l;) = —(A1 +01)Q10(t) + 6:030(1) + f P11 (x, D (x)dx + 65 Zf Paa(x, t)dx, 2.1)
0 —~Jo
dQs (1) *
jlf = —(A3 + 03)03,0(1) + NoVo(t) + f a1 (6, Dz ()dx, (2.2)
0
dVy(t
O = Vi) + 001000, 2.3)
VD _ 0, f pia(x dx, n > 1, (2.4)
di .

ap ',l(x’ t) 6p "1()(', t) .

- ek ’ax = —[4;+ 0, + u(D]pja(x,0), j=1,3, (2.5)
ap ',n(x’ t) 61’ ‘,n(-x’ t)
]az + Jax = —[A; +6; + 1P (X, ) + AP i1 (x, 1), 0> 2, (2.6)
with the following boundary and initial conditions
P1,1(0,1) = 4,01 0(0) + f Pi2(x, D (x)dx, (2.7)
0
P12(0,1) = f Pins1 (X, D (x)dx, n > 2, (2.8)
0
1 00
P3.1(0,1) = A1303(1) + Z N Vi) + f P32(x, Hus(x)dx, (2.9)
k=0 0
p3a(0,1) = Z N Vi (0) + f D3ns1(X, Du3(x)dx, n > 2, (2.10)
k=0 0

Vi) =u,>20,n>0;0;1(0)=u; 20,p;u(x,0) =uj,(x) >0, j=1,3; n> 1. (2.11)
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Here, (x,1) € [0, ) X [0, o), and

o 0 00 R 00
W+ T+ ) ) f ta(dx + ) f s p(x)dx = 1;
n=0 n=1 0 n=1 0

Q,0(?) (j = 1,3) represents the probability that there are no customers in phase j and the server is idle
at time #; V,(¢) (n > 0) denotes the probability that there are n customers in the system and the system
is in phase 2; p;,(x,0)dx (j = 1,3; n > 1) is the probability that there are n customers in the system
(including the one being served) at time ¢ with the server busy serving a customer whose elapsed service
time lies in the interval [x, x + dx) in phase j; A; (j = 1,2, 3) is the arrival rate of customers when the
system is in phase j; u;(x) (j = 1, 3) is the conditional probability (hazard rate) of completing a service
during the interval (x, x + dx) with elapsed time x in phase j. It satisfies the conditions:

/J](x) 2 07 f /JJ(X)d.X = 0o, J: 19 37
0

0; (j = 1,3) is the residence rate of the system in phase j.

The system operates in three distinct phases. The first and third phases are working phases, while
the second phase is a deterministic time phase during which no service is provided. Upon completion of
the first phase, the system transitions into the second phase. If a customer arrives during the second
phase, they will either enter the system with probability p or leave without joining the system with
probability ¢ = 1 — p. During this second phase, all customers are unable to receive service for
a fixed duration d. After the second phase concludes, the system enters the third phase. Once the
third phase is completed, the current customer is forced to leave the system without receiving further
service, and the system then returns to the first phase to initiate a new service cycle. We assume that
N, = (r!)'e=2P4(1,pd)" is the probability of r (r > 0) arrivals during phase 2.

In this paper, we present our main result under the following assumption:

Assumption 2.1. Let 1; > 0,6, > 0, Ny € (0, 1) and u;(x) : [0, 00) — [0, 00) measurable and

0< inf pj(x) <pi(x) < sup pj(x) <oo, j=1,3.
XE[0,00) )CE[0,00)
We choose the state space as follows:

V = (010,030, Vo, Vi, Vo) € !
1= (P11, P2, ) € L0, 00) X L'[0, 00) X - - -

X ={(V,p1,p3)| P3 = (P31, P32, ) € L'[0,00) X L'[0, 00) X - -
IV, pr, p3)ll = Q101 + 1030l + 2o 1Vl
+ 2 1P allLi0.00) + 2t 1P34llL10,00) < 00

It is not difficult to verify that X is a Banach space.
We define the maximal operator of systems (2.1)—(2.11) as follows:

AV, p1,p3) = (AZ'V + AZ?py + A2 ps, A, p1, A p3),
and

dx
. : dp,
continuous functions and ), , ”%

< o0

in ¢ [1[0,00), j=1,3, n> 1, p;, are absolutely }
L1[0,00)

D(A,,) = {(V»pl»p3) eX
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where
—(41 +6y) 03 0 0 O O
0 —(A3+6;) Ny 0 O 030
A2V = 0 0 0 -1 0 ---|lV |
0 0 o 0 -1 ---|| W
2 0 0
P11
0 o 0 --- L 301 G301 G301 -\ (P31
0 o 0 --- ’ ©3 0 0 -||ps2
22 23 :
Am P1= 0101 0 0o --- P13y, Am P3=1 0 0 0 P33 |’
0 G 0 ---||P :
B, 0 0 Pia
. A B, O ;
Alpi=lo i Pzl i=1s,

where @1 f(x) := [[7 fO0dx, g2 (x) := [ n(0)f(0)dx, @3 f(0) := [ p3(x) f(x)dx and

d
Bjg:=— fz(;) —[4;+6; + pi(0]g(x), ge W0, 00).

In the following, we choose the boundary space X of X and define the boundary operators ¥ and
@ of systems (2.1)—(2.11) as follows:

X =1'x1', ¥:D(@A,) — X, @:D@A,)— X,

and
P1,1(0)) (p3,1(0)
P120) | | p32(0)
YVopipa) = p50) ] pss ) ||
OV, p1, p3) = (P2V + OVl p, @32V + 03 py),
where
A4 0 00 Oio 0 oo 0 O P11
0 0 0O O30 0 0 ¢ O ---lfpi2
o2y =10 0 0 O Vo, ®"'=]0 0 0 ¢ --||p13],
0 00 0O 0 O

N )

Vi o -- P14
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00 No Ny No 0 -|{Qs0 Ei% 0 8 P
b |00 N N NNy || Vo A P % e
eV = 0 0O Ny, N5 N, Ny ---|| Vi |’ O ps = o 0 0 9(0)3 P33 |.
00 N N Mo N oo V- SRS S

Now, we define the system operator (A of systems (2.1)—(2.11) by

AV, p1, p3) = An(V, p1, p3),
D(A) = {(V, p1, p3) € DAYV, p1, p3) = OV, p1, p3)}.

Consequently, the systems (2.1)—(2.11) can be written as an abstract Cauchy problem in the Banach
space X by

derep) = AV, py, p3)(7), forall 1€ (0,00),
uy| furr) (usa
u3 Ui Uuspn
(V,p1, p3)©0) = ||uo|,|m13],| 33
Ui Ura] |U34

(2.12)

Recently, in our work [9], we have obtained the following results.

Theorem 2.1. Let A; > 0,6; > 0,N, > 0, and 0 < sup, (g ., 4;(x) < oo, j=1,3; r > 0; then system
operator A generates a positive Cy-semigroup e™" of contractions on X. Hence, system (2.12) admits a
unique positive time-dependent solution (V(t), p\(-, t), p3(-, 1)) that satisfies

V@), p1C, 0, p3C. 0l = 1, forall 1€ [0,c0).

Theorem 2.2. Let ui(-) = u; be a constant and A;,0;,u; > 0,N, > 0, j=1,3; r > 0, then we have the
following results:
1) All points in

1 A (G1+uD)I(y+D)(y+A3+63)]
sup { (OO A0+ +03)-1051 VP { o ’
A+ Dy+43+03) 130/ No(03+u3)  A301N0  0,605(1—No)ly+13+65]
Roy > o3| > Ros |or3l—u3 ’
Apa0 (1-No)ly+a+63 416301 +uply+1| A3ty +11 6165(1-No)
Ros(losl-u3) ’ o] > Roy ° osl-ps
B0 H)+ Do+ +0D] BIO+DO+U+O)] 13360, 65(1-No)
v E C o3| ’ Ros ’ 9&0;(|0'3|—,us) ’
01 No@1+11) L A361Ng  No(B3+u3)ly+di+61] A3Noly+4i+01]
|or1] > Roy o3| ’ Ro3 ’
(1 =N)I(y+ A1 +0D)(y+A3+603)|  A3puzs(1=No)l(y+A1 +61)(y+A3+63)] }
lo3|—u3 > Ro3(|o3l—u3) ’
03 Azps Ot A 1 A1
ly+1llosl—u3 > ly+1|Ro3(lo3l-u3)* o1l > Roy? |oil-u1 > Roi(loi|-m1)’

O3tz A3 63 A3 } _ _ _
o R s Fosteam) < L R0 >0, oyl > p;
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are belong to the resolvent set p(A*). In particular, all points on the imaginary axis except zero belong
to p(A), where o; =y + A; + 0, + 11,0 < Ny < 1, and Ry is the real part of y.

2)If A; < 0 + u;j, then zero is an eigenvalue of A with geometric multiplicity one.

3) Zero is an eigenvalue of A* with geometric multiplicity one.

3. Asymptotic behavior of the solution of system (2.12)

According to Theorem 1.96 of [12], if we can demonstrate that the intersection of the point spectrum
of the system operator (A and its adjoint operator A* with the imaginary axis is a singleton set containing
only zero, and that 0 is an eigenvalue of ‘A" with geometric multiplicity one, then we can conclude that
the time-dependent solution of system (2.12) strongly converges to its steady-state solution.

In this section, we first employ probability generating functions to demonstrate that O is an
eigenvalue of the system operator A, with a geometric multiplicity is 1. Subsequently, we apply the
boundary perturbation method of Greiner [10] to show that all points on the imaginary axis except for 0
fall on the resolvent set of A. Additionally, we directly prove that O is also an eigenvalue of the adjoint
operator A*, with a geometric multiplicity of 1. Consequently, the primary findings of this paper are
articulated by invoking [12, Theorem 1.96].

Lemma 3.1. Let 1; > 0,0; > 0, N, € (0,1), r > 0, and 0 < u;(:) < oo, j = 1,3. Then, 0 is an
eigenvalue of A with geometric multiplicity one.

Proof. Consider the equation A(V, py, p3) = 0, which is equivalent to

(A4 +61)010=065 Z f D3a(X)dx + 6:030 + f P11 (x)dx, 3.1
n=1 0 0
(A3 + 63)030 = NoVy + f p31(0)u3(x)dx, (3.2)
0
Vo = 6,01, (3.3)
V, =0, f‘” pia(x)dx, n>1, 3.4
0
d
P ;’;(x) = —[A; + 60+ (D)]p1a (), (3.5)
dpy,
L iéx(X) = [y + 0y + (D)1P1a(X) + Aiprai(x), 1> 2, (3.6)
d
P jl’;(x) = —[A3 + 6 + p3(0)] P31 (), (3.7)
dps,
P ;’X(x) = [ + 03 + (D] p3n() + 3psci(x), n>2, (3.8)
p11(0) = 4,010 + f P12 (x)dx, (3.9
0
P1.4(0) = f Pran (O (Ddx, 1> 2, (3.10)
0
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P3.1(0) = 13030 + N Vo + NoV + f P32 (X3 (x)dx, (3.11)
0
P3a(0) = Z Nk Vi + f Panr1(Ouz(x)dx, n>2. (3.12)
k=0 0

By solving the Eqgs (3.5)—(3.8), we have

e [ umrge O ()" .
pj’n(_x) =e (4+0;) fo uj(r)d mpj’k(()), ]j= 1,3; n>1. (313)
k=1 .

Due to the difficulty in finding the specific expression of V,, p;,(x), and p3,(x) and proving
whether 0 is the eigenvalue of the system operator A, we will solve this problem by introducing the
probability generating function.

P52 = ) P, V@)= ) Vi,
n=1 n=0

pi(@) :=ij,nz”, Pin :=f Pin()dx, j=1,3.
n=1 0

Multiply both sides of Eq (3.4) by z", n > 1, then sum n from O to positive infinity, and add Eq (3.3)
to obtain

V@) =Vo+ » VuZ"=Vy+6 f p1a(X)Z"dx
nZ::‘ ;‘ 0 (3.14)
=0,010 + 01p1(2).

Multiply both sides of Eqs (3.6) and (3.8) by ", n > 2, then sum n from 0 to positive infinity, and
using Egs (3.5) and (3.7), we have

02;0: p',n(.X)Zn 00 . (o] .
S = = ) 4 O+ 1P+ Ay ) P (DT
n=1 n=1
That is,
Opj(x,2)
—— =—[4;+6,+u; (x,2) + Aizp(x,
Ox [ j j ,uj(x)]p](x 2) JZPJ(X 2) (3.15)
=—[0;+ 4;(1 —2) —p;(X)]pj(x,2).
By solving the above equation, we obtain
pj(-xa Z) — pJ(O’ Z)e_[9j+/lj(I—Z)]x_fo",uj(T)dT’ _] — 1’ 3 (316)
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Using the boundary conditions (3.9), (3.10), and Eq (3.16), we have

P1(0,2) = > p1a(0' = pra©)z+ ) pra(0)7"
n=1 n=2
=z41 Q10 + f P12 (x)zdx + Z f Prast (O (x)Z"dx
0 ‘= Jo
=z41010 + Z f Pras1(Dp ()" dx
n=1 0

1 oo 0 00
=z4,00 + - f Z P10y (x)dx — f P10 (x)dx
0 4 0

1 lose) loe)
=z41Q1p + z f P1(x, D (x)dx — f P11 (x)dx
0 0

1 ~ - - X— * T)aT *
=z41Q1p + EPl(O, Z)f py(x)e =2l by @iy f P11 (x)dx.
0 0

That is,

(Z _ f /Jl(x)e—[01+/11(l—Z)]x_fO-"yl(‘r)dex)pl(0’ Z) — Z2/11 QI,O _ Zf pl,l(x)/xl(x)dx.
0 0

By Eqgs (3.2), (3.11), (3.12), (3.16) and

(59

Z N2 = Z o-opd (Aapdz)" _ o~A2pd(1-2)
=0 ' n=0 n! ,

we calculate that

p3(0,2) = D p3a(0)2" = ps1(0)z+ ) p3a(0)
n=1 n=2

= 23030 + zZN Vo + 2NV + f P32(X)zp3(x)dx
0
Z Ny Vi + f D31 (Ouz(x)dx| "
0

(o)
* )
n=2 L k=0

=2z4303 + Z 7 ; Ny Vi + Zl I) P31 ()" p3(x)dx

n=1

_ ~ 1 oo . 00
= 7243039 + V(2)e?"17) — VyN, + z f Z P3n(0)Z" uz(x)d — f P31 (0uz(x)dx
0 = 0

_ 1 0
= 243030 + V(2)e™P 179 — (13 + 63) Q3 + - f p3(x, Duz(x)dx
0

— 1 0 x
= [0 + 3(1 — 21030 + V(e + —p3(0, 2) f s (x)e 1O+l i@ g
< 0

(3.17)
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That is,

[z— f m(x)e‘[@“@“‘@“‘fox““”f”dx] p3(0,2) = —z[65 + A3(1 = 2)]Q30 + V(@)1 (3.18)
0

Notice that when z € (-1, 1), according to Rouche’s theorem, we deduce that there exists a unique

solution (for detailed proof, please refer to [6, Lemma 1]) to equation

Z:f e IRy =3,
0

we assume that the solution is y;. Then, by the above Eqs (3.17) and (3.18), we obtain ; and y; that

satisfy the following equations:
y1iQipo = f P (x)dx,
0

‘_/(73)6/1217[1(1—73)
Q30 = .
(05 + A3(1 = y3)]
Using the above Eqgs (3.16), (3.19), and (3.20), we have
410102z —y1)
2= [ et + (=)l [ i@ g

1(0,2) =

—z[0; + A3(1 — 2)] QS,O + Z‘_/(Z)e’lzpd(l—z)
= [ p13(x)e -0l e g
0

Hence, by Egs (3.16), (3.21), (3.22), and (3.15), we obtain

p3(0,2) =

pit) =timpi@ =tim [ pi(nads
z—1 =1 Jo
/ll Ql,OZ(Z _ yl) j(;oo e—[91+11(1—Z)]X—J;)X#1(T)d‘rdx
= lim .
z—1 z— j(; ﬂl(x)e—[01+/11(l—z)]x—f0 yl(T)d‘rdx
/llQl,O(l _ 71) fO‘x’ e—@lx—foxlll(‘r)d‘rdx
L= 7 (e b m g

ps(1) = lim py(2) = lim f ps(x, dx
z—1 7—1 0

. [=2(65 + A3(1 = 2))030 + Z‘_/(Z)e/lzpd(l—z)]
= lim

=l L fo"" p13(x)e 1O+ -Db= [ ps(r)dr g
% f 113(x)e OB s g
0

[-60:030 + ‘_/(1)] fooo /13(x)e—93x—foxll3(T)drdx
- 1 - j(;oo /J3(x)e—93x—fox/13(‘r)d-rdx

b

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)
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V() =limV(2) =600 + (1)

Qo1 —yy) [ etk mirgy (3.25)

= 01010+ 6 = s
1— ‘L 'ul(x)e—ﬁlx—fo m(dr g

Consequently, using Eqgs (3.19), (3.20), (3.23)—(3.25) and the normalizing condition Qo + Qs +
V(1) + pi(1) + p3(1) = 1, we can obtain the specific expression for Q10, which we have omitted here.
Notice that fom u j(x)e_"fx‘foxf‘f“)dex < 1, j = 1,3. Hence, the above discussions mean that O is an
eigenvalue of A.

In addition, since Eqgs (3.1)—(3.4) and (3.13), it is easy to see that the geometric multiplicity of zero
is one.

Next, we define the operator Ay with boundary conditions p;,(0) =0, j=1,3; n > 1 for systems
(2.1)-(2.11) as follows:

AO(‘/’pl’p3) = Am(‘/apl’p?)),

D(Ao) = {(V, p1, p3) € DAYV, p1, p3) = 0}

And find the resolvent set of this operator. For this objective, we consider the equation (yI —

A))(V, p1, p3) = (w,y1,y3) forall (V, py, p3) € X, where w = (21,0, 23,0, Wo, Wi, -+ ) and y; = (¥;1,yj2,° ),
J = 1,3. This equation is equivalent to

(y+4+6))010=210+65 Z f D3n(X)dx + 6:03 + f P10 (x)dx, (3.26)
n=1 0

0

(y+ A3 +603)030 = 230+ NoVo + j:" P31(0p3(x)dx, (3.27)

(y + DHVo = wo + 6,010, (3.28)

y+ DV, =w, +6 fom pia()dx, n>1, (3.29)

@ ;;(x) =~y + A+ 61+ 0 @]p1 ) + 1), (3.30)

dp;,;(x) = [y + A + 601 + @ ()1Pp1a(x) + 4p1ao1(X) + yia(x), 1 =2, 3.31)
dpjl,;(x) = —[y+ A3 + 63 + 13(0) ] p3,1(x) + y3.1(x), (3.32)

dpjijc(X) =~y + 3+ 03 + p3(0)]p3a(x) + Bp3p-1(x) + y34(x), n>2, (3.33)
pin(0=0, j=13n>1. (3.34)

Networks and Heterogeneous Media Volume 20, Issue 2, 590-624.



601

Solve the above Eqs (3.26)—(3.33), and using boundary conditions p;,(0) = 0, we have

(y+ Dy + A3 +63)

Qo = (y+Dy+A4+6)(y+A3+63) - 9193N0Z10
(y + Do
(7’ + Dy + A4 +60)(y+ A3 +63) — 9193N0
65Ny
+ Wy
(y+ Dy + 41 +0)(y + A3 +63) — 0,6:Ny
(y+ D(y+ 13 +63) foo » 1(x),ul(x)dx (3.35)
(7 + Dy + A4 +6)(y + A3 + 63) — 6,63N, ’
(y + Do foo
d
T DO+ 4 1000+ 4+ 6) BN Jy PO
1
N (y+ D(y + 43 + 63)65 Zf a0,
(y+ Dy + 41 +0)(y + A3 + 63) — 0,60:Ny
01Ny
Q3,0 = 21,0
(y+ Dy + 41 +0)(y + A3 + 63) — 0,6:Ny
(y+ Dy + 41 +6)
(7’ + Dy + A4 +60)(y+ A3 +63)— 9193N0
No(y + 41 +6y)
T DO+ 4+ 00+ A + 05) — 16N,
6, Ny f‘x’ (3.36)
+ 10 (x)dx
(y+ Dy + 41 +0)(y + A3 +63) —0:6:Ny Jy PrLitOm
o+ Dy + 4 +8) f“” P31 (03 (x)dx
(’}’ + Dy + A4 +6)(y + A3 + 63) — 6,63N, ’
6,6:N f
(X)dx,
()’ + Dy + 4 +60)(y + A3 + 63) — 6,63N, Z Ps.
Ve = O1(y + A3 + 63)
0 = Z1,0
(y+ Dy + A1 +0)(y + A3 + 63) — 0,0:Ny
0,05
+ 73,0
(y+ Dy + A1 +0)(y + A3 + 63) — 0,6;Ny
N Y+ +60)(y+ A3+ 63) "
0
(y+ Dy + A1 +0)(y + A3 + 63) — 0,6;Ny
(3.37)

N O1(y + A3 + 63)

Y+ Dy + 41 +00)(y + A3 + 63) — 0,16:Np
N 6,05

(y+ Dy + 41 +0)(y + 143 + 63) — 6,60: N

0,05(y + A3 + 63) Zf (),
T DO 4 +0)(y + A + 63 — 66N, Pan

f pr1(X0)u(x)dx
0

f P3.1(X0)uz(x)dx
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1 N 0, ®
W, + ——
v+ 1 vy+1Jo

n

P1a(X)dx,
X
Pj,l(x) — e—(7+/lj+9j)X—f0 ,Uj(T)de yj,l(.[.)e(7+/lj+9j)r+f0 yj(g)dng’ J = 1,3,
0
"X X T
pjn(-x) — e—(7+,1j+9j)x— fo pj(rydr f yjn(T) e(y+/1,-+9,-)r+ fo wi)d¢ dr
, ; :

X
i /lje—(?’*'/lj"'@j)X— Iy mjmdr f Pj,n_1(T)€(7+/lj+9j)T+ A KO gr > 1,
0

For convenience, we introduce E; as follows:
X
Ejf(x) = e—(y+/l_,-+9,-)x—f0 ,Uj(‘l')d‘rf f(T)e(')’+/lj+9j)T+J(; p_,(f)dgd,[_, J = 1,3,
0

for any f € L'[0, o). Then, if (yI — Ay)~! exists, then by Egs (3.35)—(3.40), we have

apg aip a3z 0 0 ) (710

Ay @ a3 0 0 230

(I = Ag)™ (W, y1,y3) = a(g)’1 agz a83 (1) 8 B

’ ’ m : oo W]

0 0 0 0 L flm

a4 E 0 0 0

arap2 E) 0 0 0 Vit
asaprEy 0 0 0 Yia
+ 6%901}512 ) 0 0 0 Vi3
EAQ‘O‘E;, HmsolElz 00 Vi
m/llngl y_+11/11901E1 yTll‘iDlEl 0 .

aisps +aepr drepr depr
Ar5¢p3 + A1 a1 Grepr | Es 0 0 ---\(ys
L |935%3 +asepr azepr azepr || BE; Es 0 ]|y
0 0 0 s /l%Eg /13E§ E; --- 33|’
O O () . . . . .
E, 0 0 --\(yu1) ( Es 0 0 --\(ys
MED Ey 0 o |lyvin] |BE; Es 0 ---||yan
/l%E? A]E% E, - yis|’ /l%Eg /13E§ E; .- 33|l

where

eif(x) = fo Jdx, @ f(x) = fo ) f(x)dx,  @3f(x) = fo p3(x) f(x)dx,

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)
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and . Lro
+ + 5+
4y =ars = y+ DO+ 43465 , (3.43)
(y+ Dy + A1 +0)(y + A3 + 63) — 0,0;Ny
+ 16
ayp =4dyjs = 9 )s s (3.44)
(y+ Dy + A4 +0)(y + A3 + 63) — 0,0;Ny
;N
ais = 0 : (3.45)
(y+ Dy + A4 +6)(y + A3 + 63) — 6,60;Ny
1
a6 = (y+ D(y + A3 +65)605 , (3.46)
(y+ Dy + A4 +6)(y + A3 + 63) — 6,0;Ny
01Ny
= = , 3.47
CIZREZ 0D + 4+ 0y + 45 + 05) — 6,0:N, G4D
+D(y+A,+6
trr = ays = (y+ Dy + 4, +6) , (3.48)
(y+ Dy + A1 +0)(y + A3 + 63) — 0,0;Ny
N, A +0
s = oy + 41 +61) ’ (3.49)
(y+ Dy + A +0)(y + A3 + 63) — 6,0;N,
0,0;N,
arg = SR : (3.50)
(y+ Dy + A4 +6)(y + A3 + 63) — 6,0;N,
0 A 0
4 = 1(y + A3 + 63) , (3.51)
(y+ Dy + A4 +0)(y + A3 + 63) — 0,0;Ny
0,65
= = , 3.52
B2 O Z 0D + 4+ 00y + s + 05) — 6,0:N, (552
+A4,+0 + A3+ 6
ays = (y 1 Dy 3 3) , (3.53)
(y+ Dy + A4 +6)(y + A3 + 63) — 6,0;Ny
O(y+A3+6
dyo = 1(y + A3 + 63) , (3.54)
(y+ Dy + A4 +6)(y + A3 + 63) — 6,0;Ny
0,:0:(y + A3+ 86
ase 16:(y + A3 + 63) (3.55)

D+ A 0Dy + A3+ 603) — 663N,
Lemma 3.2. Let 1; > 0,60; > 0, Ny € (0, 1), and p(x) : [0, 00) — [0, 00) be measurable and

0< i[%f),uj(x) <upj(x) < sup pj(x) <oo, j=1,3.
x€|0,00

x€[0,00)
Then, S =: [y € C| Ry + 1> 0, Ry + 0; +inf oo 1(x) > 0} € p(Ao).
Proof. The proof of this lemma is provided in the appendix.

Lemma 3.3. Let 1; > 0,60; > 0, Ny € (0, 1), and p(x) : [0, 00) — [0, 00) be measurable and

0< inf () <p(0) < sup puy(x) <oo, j=1.3.

x€[0,00)
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Ify €S, then (V, py, p3) € ker(yl — A,,) if and only if
Qo = a1,4p1,1(0)f 'ul(X)e—(7+/11+91)x—f(fu1(r)drdx
+a; 5P31(0)f s(x)e s T0x= Jo w37

A - "X
+ai6 Z Z P3n- k+1(0) %e—()’+ﬂ3+93)x—fo ﬂ3(T)de.x,
n=1 k=1 o k=1)!

Q3’0 = a2’4p1’1(0)f ﬂl(x)e—(7+/ll+91)x—f0 lll(T)dex

) 5P31(0)f 3 (x)e” st Jo w3t

A - "X
+ar6 Z Z D3 n- k+1(0) %e—()’+13+03)x—f0 m(,)dex,
n=1 k=1 o (k=1)!

Vo :a3’4p1’1(0)f Iul(x)e—(7+/11+91)x—f0X#1(T)dex

+as5p3.1(0) f s (x)e™ A0 b ms@ar g,

Azx x
+a3 6 Z Z D3n- k+1( ) f ((k3_)1)' —(7+/l3+93)x—j(‘) /J3(7-)d1-dx’
n=1 k=1

n
00 Pl k-1 x
E Pl,n—k+1(0) ﬂe—(‘ﬁﬂﬁ@l)x—fo ﬂl(T)dex’
0

Tyt 14 k-1
- i j)X— . i\T)at (/l x)k 1
pj,n(-x) = ¢t A+) INTGG% (k 1)'P1n w1(0), =13 n>1,

pj:(pj,17pj,2,')€ll’ j:1,3,

where the specific expressions for ay,, k =1,2,3; m =4,5,6 are given in Egs (3.43)—(3.55).

Proof. The proof of this lemma is provided in the appendix.

(3.56)

(3.57)

(3.58)

(3.59)

(3.60)

(3.61)

It is clear that the boundary operator Y is surjective. In addition, for y € §, we see that the operator

ker(yl—Ay) - ker(yl — A,,) — 0X,

is a reversible operator.

Now, for y € §, we define the Dirichlet operator D,, as follows:

D, = (¥ 19X — ker(yl — A,).

ker(yI-Ap) )

Volume 20, Issue 2, 590-624.



605

Then, for any y € §, using Lemma 3.3, we obtain the specific expression of the operator D,:

ayapomy | 0 0 0
as 4poMmy 1 0 0 0 P1.1(0)
as 4p2my | 0 0 0 P12(0)
S S Soim 0 0 0 0
D,(pi(0), p3(0)) = 79+1¢1 L1 . P130) | +
#1601”11,2 #1901”11,1 0 0 P1.4(0)
%901”11,3 %901”11,2 )%‘lel,l 0 :
aises +ajePr AdrePr areP1
Qrs5p3 + AreP1 QaeP1 o1 - (M3 0 0 P3,1(0) (3.62)
azs@3 + dzePr Azep1 azepr - ||M32 M3y 0 Pa,z(o)
0 0 0  --e|lm3z map m3; || p330))
0 0 0 | . . )
mp; 0O 0 --\(P110) (m3; O 0 --\(p3.100)
mip my; 0 I pi20)] [m3p mz; 0 ---]| p32(0)
miz mip my; oo || pi30) 2| msz msy mzy - || p3zO) ]|
where i
(/ljx) j —(y+A+0))x— " p(v)dr .
M= e e, =13 k2 L
Finally, by the definitions of operators ® and D,, we calculate that
®D,(p1(0), 75(0))
416, @2[my 2p1,1(0) + my 1 p12(0)]
10 @a[my 3p1,1(0) + my 2p12(0) + my 1 p13(0)]
T 0 || ealmiapii0) + mispia(0) + mizpis0) + myipaO)] |
A30, + Nyo3 + No%‘ﬁlml,lpl,l(o)
N>63 + Ny %3011’”1,1%,1(0) + No% S eimipiais1(0) (3.63)
T
@p3[mz2p3,1(0) + m3 1 p3,(0)]
w3[m33p31(0) + m35p32(0) + m3 1 p33(0)]
s [m34p3,1(0) + m33p32(0) + m32p33(0) + m31p34(0)] ]|’
where

T = N303 + Nz%%ml,lpl,l(o) + le% S eimiapiais(0) + Noy% S e api iz (0),
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01 = ayapamy 1p1,1(0) + ay s¢3m31p31(0) + a6 Z ©1ms3 , Z p3x(0),
s =1

02 = az 4pamy 1 p1.1(0) + azsp3ms 1 p31(0) + aze Z Q1ms, Z D3.4(0),

] =1
03 = azapamy 1p1,1(0) + az sp3ms 1 p31(0) + aze Z ©1m3 , Z P3(0).
s =

Based on a conclusion drawn by Haji and Radl [11], we know that the following result, Lemma
3.4, holds true.

Lemma 3.4. Ify € p(Ao) and there exists some yo such that 1 is not in the spectrum o(®D,,) of ®D,,,
then the conclusion

Yy €o(A) ifandonlyif 1€ o(®D,)
holds.
Hence, using Lemma 3.4 and Nagel [13, p. 297], we have the following result:

Lemma 3.5. Let 1; > 0,6; >0,N, € (0,1), r >0, and p;(x) : [0, c0) — [0, 00) be measurable and

0< i[l'(}f),uj(X)S,Uj(.X)S sup pj(x) <oo, j=1,3.
x€|0,00

x€[0,00)
Then, all points on the imaginary axis, except for 0, fall on the resolvent set p(A) of A.

Proof It we take y = ib, b € R\ {0}, A0 = (pii0)pi20),---) € [' and
73(0) = (p3.1(0), p32(0), - - -) € I'. The Riemann—Lebesgue Lemma states that for any f € L'[0, o) (i.e.,
f is an integrable function on [0, o), we have

00

I}im f(x)cos(bx)dx = 0, ;im f f(x)sin(bx)dx = 0.
—o Jo —o Jo

This means that as b approaches infinity, the integrals of f(x) with high-frequency cosine or sine
functions tend to zero. Using Euler’s formula e~ = cos(bx) — i sin(bx), the integral | fooo f (x)e‘”’xdx|
can be split into real and imaginary parts:

f ) f(x)e ™ dx
0

Then, according to the Riemann—Lebesgue Lemma, for sufficiently large ||, both of integrals of
Eq (3.64) tend to zero.
In addition, for any 0 < f € L'[0, ), we have

foo f(x)e ™ dx
0
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f ) f(x)cos(bx)dx — i f ) f(x)sin(bx)dx
0 0

< f ) f(x)dx. (3.65)
0
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Then, for any 0 < f € L'[0,00) and |b| > M, (where M is some sufficiently large constant),
according to Egs (3.64), (3.65), and the Riemann—Lebesgue Lemma, we can further obtain

00 2 00 2 ) 2
f f (X)e P*dx| = ( f f(x) Cos(bx)dx) + ( f f(x) sin(bx)dx)
0 0 0

N 5 (3.66)
< ( f f(x)dx) .
0
That is, for any 0 < f € L'[0, o0) and |b| > M,, we have
f f(x)e " dx| < f f(x)dx. (3.67)
0 0

Furthermore, through tedious calculations, we have found that the following inequality holds true
|[aral <1, |dzaxnl <1, (1 =Noasal <1, h=4,5,6, (3.68)

where the specific expressions for a;,(k = 1,2,3; h = 4,5,6) are given in Eqs (3.43)—(3.55) and
Ny = e2P4(< 1) is the probability of zero arrivals during phase 2. In fact,

|(ib + 1)(ib + A1 + 6,)(ib + A3 + 63) — 6,0:No|* — A3|(ib + 1)(ib + A3 + 63)
= D%+ b [20,6, + 67 + (A3 + 63)* + 1] + b*{22,0, + 67 + (A3 + 63)°
+(22,6; + 61) (A3 + 63)* + 2(1; + 0 + A3 + 05 + 1)6,6:N,}

+211 (A3 + 63)[61(A3 + 63) — 6,63N,] + [61(A3 + 63) — 0,6:Np]* > 0

)b + D)(ib + A5 + 03)]
= |iaal = — . . <1,
’ |(lb + 1)(lb + /l] + 91)(lb + /13 + 63) - 6193N0|

(3.69)

I(ib + 1)(ib + A, + 0,)(ib + A3 + 63) — 0,603N, |
=D+ b4 + 6))% + (A3 + 63)° + 1]+ D*{(A) + 61)* + (A3 + 65)°
(A + 0)(A3 + 0)) + 2(A; + 6) + A3 + 65 + 1)0,63N,}
+[(A1 + (A3 + 63) = 16N > R[5 + (A3 + 63)°] (3.70)
> [61(1 = No)PP[b® + (A3 + 65)°] = 161(1 = No)(ib + A3 + 63)°
= I = Nojasal =157 1)(1‘59;(;l +]\;i))|(lfbiﬂj319;3l) “ Ny <
Using the same method as Eqgs (3.69) and (3.70), we can prove that the remaining inequalities in

Eq (3.68) also hold true.
Hence, for any |b| > M, using Eqs (3.63), (3.67), and (3.68), the formula

[ee)

i —/l2pd 1> nd) 00 x
Z N, = Z ( 2pd) =1, f [91 +,Llj(x)]€_f0 Orens T g = 1, j=13
=0 0

r=0

1
Vbh2+1
IPD(71(0), g3(O)Il < Ayl allami 1llp1,i(0)] + Ailay sllosms i llpsi (0]
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608

+Aila 6l Z lp1m3 | Z |3, (O)] + l@amy ol p1,1 (O)] + lamy 1 l|p12(0)] + lgamy 3|1, (0)]

n=1

+pomy 2l|p12(0)] + l@amy 1[I p13(0)] + |pamy 4llpi1(0)] + l@amy 31l p12(0)] + |pamy 2l pi3(0)]
+lgamy 1]|p140)] + - - -

+3las allprm 1lp1 1 O + Aslas sllgsms il1ps. (O)] + Aslal ) leimsal D 1p34(0)
n=1 k=1

+Nilas allgams 1llp1 1 O] + Nilas sligsms lIps 1 O)] + Nilazl > lerms,l D p3 ()
n=1 k=1

lo1my 1l[p11(0)] + |3ms 2l p31(0)] + |3ms 1] p32(0)]

+N, o
%lib + 1]

+Nalaz allomy 111 p1,1(0)] + Nalas sllesms 1| p3,i (0)] + Nalas gl Z lo1ms | Z |p3 (0]

n=1 k=1

——|pimy 11|p1,1(0)] + Ny Z lorm kllpi12-—i+1(0)]

6
| b + 1| lib + 1]
+l3ms 3l [p31(0)] + |p3ms 2l p32(0)] + p3ms 1| p33(0)]

+Nslaz allpomy 111p1,1(0)] + Nslas sllesms || p3, (0)] + N3las gl Z l1m3 Z |3 (0]

n=1 k=1
0 0 -
1 1
+N Ol +N——— —k+1(0
23 el O+ M Z o1 llp1 21 (O)
Vo= Z erm1 P13t O] + ipsms allps ()] + lpsms 3lips (0]

+l3msa|lp33(0)] + |3ms 1|[p3a(0)] + - -

< Ailar allgam 111 1O)] + Ailar sligsms illps 1O + Aular gl ) lpims,l D 1psa(O)]
n=1 k=1

+ i lpomiullp1a(O)] + i lpomiullp12(0)] + i 2 ullp13(0)]
n=2 n=1 n=1
+ i lpami ullpra(O) + - -
n=1
+laz allgami 11111 (0)] + Aslaz sliesms 1l ps, 1 (0)] + Azlaz el i lp1ms i P34 (0)]
n=1 k=1
+ i Njlaz sloomy 11| p1,1(0)] + i Njlas sllsms 11| p3,1(0)]

J=1 J=1
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+ Z Njlasl Z] Q1| ; 3.0
= n= =

[ee)

0, 6,
+JZ:(;NJ\/b—|<P1m11||P11(O)|+JZ(;N e
S Nl + YN

= V1 ‘= VP +1
..

2
+ZN |¢1m11||p12<0>|+2 —
* i NjLwlmmupl,z(on + Z N—2

= Vb1 ‘= NP+ 1
o

(o)

0,
+ Y N———|
;‘ "N

+ZN

eimy1llp13(0) +

ZN'L
BV

0
|901m1%||P13(0)|+Z ; W)zl_l
+

+ PR
b3 NIl + Y N2
i~ ——I¥171 1 1,4 i —_—
NP NP
= 91 01
+ ) N; loim 5llp1aO) + ) Nj———
;‘ "V JZ:;‘ "V
4+ ...

lerm2llpr1(0)]

|901m1,4||p1,1(0)|

lo1m 21| p12(0)]

lermyallpr2(0)]

lo1m 21| p13(0)]

lo1my 4llp13(0)]

|901m1,2||p1,4(0)|

lo1my 41l p1,4(0)]

+ Z o3 allp3. (0)] + Z o35 allp3.2(0)] + Z I3 lps 5(0)]

n=2 n=1

* Z o3 llps a(O)] + -
n=1

< (03 INZREDY |¢3m3,n|] > 1ps4(0)
n=1 n=1 k=1
* [Z ol + 61 ) |so1m],n|) D P14
n=1 n=1 k=1

S|

n=1

(30"
(n—1)!

o (ib+23+65)x— Jy ma@dr dx
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o 00 (/l x)n—l P e 0
+ Z f ﬂ3(x)ﬁ€ (ibeda+02)x= o 4O g Z |p3.4(0)]
n=1 10 B k=1

) 0o /1 ' .
+(Z L ,Ul( )(( 10" D1 _(‘b+/11+91)x—f0 #I(T)deX

n=1
]Z P1.4(0)
k=1

< (0!

o (ib+A1+60)x— 5 ma(mdr dx
o (m—1)!

+6, i

n=1

b 00 n—1 .
< (93 Z (43) o~ H03)x= [ (@7

o (m—1)!

n=1

N Z f (/13)6) —(/13+03)x—fdvﬁ‘3(7)d7dx] Z |P3.4(0)]

k=1

[Z f (/11x) e—(mal)x—f;m(r)drdx

00 ﬂ n— "X =
+0, Z &e—(ﬂ|+el)x—fo us(r)dex] Z |p14(0)]
=1

Zi )y -1
0o 0 n—1 )

= 03f %e_(/13+93)x_£\ﬂ3(7)d7-d_x
0o L)

” N (/1 x)n—l - x— [ (0t N
+j; ﬂa(x)Zl me (40 |y ia@dr g ;|P3,k(0)|

* N (/11)6)"_1 (A +8)x- [ d
+ (x) 2 it o (@t g
Uo H Z (n—1)!

co 00 (/hx)n—l (g60) _f" 00
+0 1+00)x= Jy pa(0dt g § 0

n=1

= [ 1o e £y )
0 k=1

+ [ 10+ ot oy 1)
0 k=1

= 171(0), g3 (0)ll. (3.71)

That is, ||®D;,|| < 1. Inequality (3.71) means that when |b| > M, the spectral bound r(®D;;,) <
||®D;|| < 1. Thatis, we have 1 ¢ o(®D;,) if |b| > M. Therefore, by Lemma 3.4, we deduce that

{ib | 1b| > M} C p(A), {ib||b] <M;} C o(A) NiIR. (3.72)

On the other hand, since the semigroup e”™ is positive uniformly bounded by Theorem 2.1,
by [13, Corollary 2.3, p. 297] we see that o-(A) N iR is imaginary additively cyclic, which shows that if
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ib € o(A) N IR, then ibn € o(A) N iR for all integer n. Hence, from which, together with Eq (3.72) and
Lemma 3.1, we conclude that ib € o(A) N iR = {0}.

It is easy to see that the dual space X* of X is as follows (see [9]):

Vi = (010 Q50 Vi Vis ) €1,

P = (D1 P Pign e+ ) € L7[0,00) X L[0, 00) X L[0,00) X - - ,
X =V, plpd) | P3 = (P31 P30 Page o) € L7[0,00) X L¥[0, 00) X L7[0,00) X - - -,
V™, P, PN = sup{lQ’;,Ol, 103 0l sup s [V,

SUP 11 1P} llL10.00)- SUP o 1173 llzsfoy | < 00

Clearly, X* also is a Banach space.

Lemma 3.6. The adjoint operator A" of A is as follows:

-4+ 6) 0 0, 0 o --- >1k,0
03 —(/7.3 + 93) 0 0 0 s ;0
o 0 No -1 0 0 A
AV, P p3) = 0 0 0 -1 0 ||
0 0 0 0 -1 -—||w
0 0 0 0 )
w00 ywon [4o0 0 o ]
0 0 0 —|lpiOf [N N Ny Ny o[ P22
o 00 raol N NN Ny [P
: . 0 No Ny Ny p&‘{(o)
wx 0 0 6 0 0 0, 0 0 0 0 p1.4(0)
0 000 6 0 ol [ 0 0 o P;(0)
0 00 0 0 6 Vile]l 0 wmx 0 0 P} 4(0)
0 000 0 0 v 0 0 m® 0 P} 4(0)
G40 () & 00 Qi
* 3
0 {1 /ll Plz(x) 3>;O
o KO R | ) B SO | I
e, 00 0 0 v
0 0 00PN a0y (@
m3(x) 0 0 0 P3,(0) v
0w 00 @)D Sl e
0 : 0 0 & -||pLw]|

P34(0)
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where {; = % —[A4j+6;+ui(x)], j=1,3and

p;,() (n > 1) are absolutely continuous
D(A") = 1(q;-qy) € X" | functions and satisfy p3,(o0) = @, @ is
a nonzero constant which is irrelevant to n

Proof. For any (V, py, p3) € D(A) and (V*, p7, p3) € D(A*), we calculate that
yv,p,p P> P3
<*ﬂ(‘/7 pl’ p3)’ (V*’ pik’ p§)>

—(A1 + 601010 + 65 Z f P3a(X)dx + 0030 + f ,Ul(x)pl,l(x)dx] Oio
n=1 Y0

0

_l_

Q0

—(A3 + 63)03 + NoVj + f H3(x)p31(x)dx
0

+(=Vo +601010)V; + Z

n=1
00
f
0

[ee] 00 d .
+ szo [_ Pcll,x(X) — (4 + 61 + (X)) p1a(x) + /llpl,n_l(x)] P (x)dx

-V, + 6 f pl,n(x)dx] v
0

_dpia(x)
dx

— (4 +6, + ,ul(x))pl,l(x)] pi(x0)dx

=[ d
N f [_ pjil(X) ~ (A3 +6; + /13(x))p3,1(x)] P34(x)dx
0 X

o0 0 d .
+; fo [— ”jl’x(’” —ug+93+u3<x)>p3,n<x>+Alp3,n_1<x>] ph()dx
=+ 0001001 + 65 Y f PsnQlo(dx + 630500
n=1 0
v fo (P (IO, o dx

—(A3 + 63)0300; ¢ + NoVo Q3 + f u3(xX)p3,1(x) Q3 odx
0

#01010V5 = > VaVy + 6, Zf Pra(x)Vidx
n=0 n=1 Y0

dp

(o] o 00 * n(x)
+ > praO)pi, O+ > fo Pra(®) [ T = (6, m(x))pain(x)] dx
n=1 n=1

+/ll Z f pl,n(x)pirwl(x)dx
n=1 0

o o 00 dp* n(x)
+ ) p3a0p5, 0+ ) f pg,,Z(x)[ = (s + 6 +,u3(X))p§,,,(X)] dx
n=1 n=1+0

d
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+/132f p3,n(x)p§,n+l(x)dx
n=1 0

= —(A1 + 6101001 + 65 Z f P3n Q1 o(X)dx + 603007
n=1+0

+j(; u1(X)p11(x) Q) ydx

(A3 + 63)0300; ¢ + NoVo Q3 + f u3(x)p31(X) Q3 odx
0

+91 QLOV{; — Z V,,V:l< + 91 Z f pl,n(x)V;dx
n=0 n=1 0

+41Q10p1,(0) + Zf H1(X)P1ae1(0)p) L, (0)dx
n=1 0

o) 00 dp* n(x)
+Z_;f0 pl,n(x)l cli’x - (4 +6, +u1(x))PT,n(x)] dx

+/ll Z f pl,n(x)pirwl(x)dx
n=1 0

QO+ Y D NViap, 0+ Y [ P 93, O
n=1+0

n=1 k=0

dx

+/13Zf p3,n(x)p;,n+l(x)dx
n=1 Y0

Eq (3.73) means that Lemma 3.6 holds true.

) f Pa) | (4 05 + H3(x))p3,,(x) | dx
n=1 Y0

Lemma 3.7. Let A; > 0,6; > 0, N, € (0,1), r > 0, and 0 < u;(-) < oo, j = 1,3. Then, 0 is an
eigenvalue of A* with geometric multiplicity 1.

Proof. We consider the equation A*(V*, p}, p;) = 0. That is,

—(A; + gl)QT,O + 6, VS =0, (3.74)
0:070 — (A3 +63)03 + A3p3,(0) =0, (3.75)
NoQ = Vi + D Nep$4(0) =0, (3.76)
k=1
Vit Y Nipipn0 =0, nx1, 3.77)
k=0
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deal(X) * * * *
yrane [A1 + 61 + 1 (0D]p1 () + 4 pi,(x) + 61 V] + (00 =0, (3.78)
dp (%) \ \ ; .
i [+ 61 + 1 (0]1p1, (%) + 4Pl (0 + 6V, + i (x)py,(0)=0, n=2, (3.79)
dp;,l('x) % * * *
dx —[A3+ 65+ ,u3(x)]P3,1(X) + /13]?3’2()6) + 93Q1,o + ,U3(X)Q3,o =0, (3.80)
dp;n(x) * * * *
P [A3 + 05 + u3(0)]1p3, (%) + A3p3 01 (0) + 6307 o + 3(X)p3,,(0) =0, n=2,  (3.81)
Pin(@)=a, j=13nx1. (3.82)
It is easy to see that
a) (a) («a

V5, P13 = || ¢ 2| € DA,

is a nonzero solution of Eqs (3.74)—(3.82). In addition, Eqgs (3.74)—(3.81) are equivalent to

01(A3 + 63) A3Ny
(A1 + 01) (A5 + 63) — Nob:1 65 [/13 vo, PO F Z Nkpsk(o)] (3.83)

*
QI,O

% 61 93 /13N0
Q3,O (

o 000 + 0 =Nt | s+ 6,71 O F Z NkP3k(0)} (3.84)

_ (A1 +01)( A3 + 63) A3Ny
(A1 +01)(A3 + 63) — Nob,65 | A3 + 65

[ee)

0= Nipiea0), nx 1, (3.86)

k=0

p3,(0) + Z Nkpi,k<0)) , (3.85)
k=1

dpy (%)
dx

1

1 =+ 8+ (O + 61 ) Nepl e 0)

k=0

01(A3 + 63)u1(x) A3Ny °°
310+ D Nip3, (0|
(A1 +61)(A3 + 63) — Nob,63 | A3 + 63 P31 kz=1: kD3 k

Py, (x)

(3.87)

dpy ,(x)
dx

Pl n+l(x) /11

— (A + 61 + 1 (x)py,(x) + 6 Z Nkp;,sz(o)}
k=0 (3.88)
.Ul(x)

A

P3,-1(0), n=2,

P3, (%)
Pia(x) = 13[ S = (s 65 + ()P, (1)

N 0163(13 + 63) A3Ny
(A +601)(A3 + 63) — Nob,163 | A3 + 65

6163413(x) A3No N v
0) + N, 0 |l,
T+ 00(1s + 65) — Nob b (@ v, O Zk:l sl )H

PO+ Nkpé,k(O)] (3.89)
k=1
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; 1 [dps3,(x) ) *
P31 (X) = SN v (A3 + 63 + p3(x)p3 (%) + p3(x)p3,_,(0)
0:63(13 + 63) =N, oo (3.90)
1U3 3 3 31V
i 5000+ ) Nep3 (O], n=2.
(A1 + 6,)(A3 + 63) — Npb, 65 [/13 +6; P31 ) kZ:; 1P )]]

Consequently, Eqgs (3.83)—(3.90) mean that the geometric multiplicity of O is one.

Finally, using Lemmas 3.1, 3.5, and 3.7 and Theorem 1.96 of [12], we obtain the following
desired result.

Theorem 3.1. Let 1; > 0,6; > 0,N, € (0,1), r >0, and u;(x) : [0, 00) — [0, 00) be measurable and

0< inf pi(x) <pj(x) < sup pj(x) <oo, j=1,3.
XE[0,00) XG[0,00)
Then, the time-dependent solution of system (2.12) strongly converges to its steady-state solution,
that is,

im [[(V(@), piC, 0, p3(5 0) = V7, pi (), p3()), (V p1s p)ONV, pr(), p3()I = 0, (3.91)

where (V, p1(), p3(+)) and (V*, pi(-), p5()) are the eigenvectors in Lemmas 3.1 and 3.7, respectively, and
(V, p1, p3)(0)) is the initial value of system (2.12).

Proof. Theorem 2.1 establishes that the operator A generates a uniformly bounded Cy—semigroup on
the Banach space X. Furthermore, leveraging Lemmas 3.5, 3.1, and 3.7, we can readily deduce that

op(A)NIR = 0, (A") NIR = {0},

and that the set {y € C | y = ib,b # 0,b € R} is a subset of the resolvent set p(A). Additionally, zero is
an eigenvalue of A" with geometric multiplicity one.

Consequently, invoking Theorem 1.96 from [12], we conclude that the time-dependent solution
of the system (2.12) converges strongly to its steady-state solution. Specifically, the limit Eq (3.91)
holds true.

4. Conclusions

In this paper, we investigate the asymptotic behavior of the M/G/1 stochastic clearing queueing
model in a three-phase environment, specifically when the service rate of the server is a bounded
function. By employing probability generating functions and the boundary perturbation method of
Greiner, we demonstrate that all points on the imaginary axis, except for 0, fall within the resolvent
set of the system operator. Additionally, we highlight that O is an eigenvalue of the adjoint operator of
the system operator, with a geometric multiplicity of 1. This finding implies that the time-dependent
solution of the system strongly converges to its steady-state solution.

This theoretical result provides a solid foundation for understanding the long-term behavior of the
system. However, the implications of strong convergence for practical system performance metrics,
such as queue-length distributions, transient behavior, and the rate of convergence, are equally important
for real-world applications. Strong convergence implies that over time, the system’s transient behavior
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will closely approximate its steady-state behavior. This means that for sufficiently large times, the
queue-length distribution and other performance metrics will be well-represented by their steady-state
counterparts. In practical settings, this suggests that after an initial transient period, the system will
exhibit stable performance characteristics that can be effectively estimated using steady-state analysis.

However, for the more general case of the service rate function, where 0 < y;(-) < oo, we have
not yet determined whether the above results still hold. Furthermore, it remains unclear whether the
time-dependent solution exponentially converges to its steady-state solution. To address the exponential
stability of this system, we need to investigate the spectrum of the system operator on the left half of the
complex plane, as discussed in [14, 15]. These topics are among our future research endeavors.

The approach outlined in this paper is specifically tailored for queuing systems that are characterized
through partial differential equations [16]. It is not applicable to the queuing systems discussed in [17,18].
There have been extensive studies on the asymptotic behavior of semigroups (see [7,8,12,19]). which
are also of significant interest for our future research.
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A. Appendix: The proof of Lemmas 3.2 and 3.3

The proof of Lemma 3.2. For all f € L'[0, o), we compute

f IE, £ (0)ldx = f
0 0

00 i X .
< f o~ Ry+a;+0)x= [ pj(n)dr f ()] Ry +0)T+ [ 1 i@ g1
0 0

-1
Ry + 2, +6; + ui(x)
-1
- Ry +2;+6; + pi(x)
1
Ry +4;+60; + u;(x)

X —
o~ (Ry+4;+0,)x— Iy wi@dr f IF() Ry +4;+0)T+ INTIGS dr *
0

X
o~ A ) o mj(mdr f f(7) AT NG dtl dx
0

X
f ()] By +A+0)T+ NG5 drde~ RrHitopa= Iy ui@ar

x=0

o~ (Ry+2;+6;)x~ NG By +A+0))x+ N j(r)drl F(0)ldx

-1 o~ (By+a;+0))x= [ pj(0ydr fo " £ ()| Byt Jo mi©dé g

- hmx_"x’ Ry+A+0+1(x)

A e e L

lf(0)ldx

_ﬁ ‘Ry+/l]+9]+u](x)
1
< :
%’y + /lj + 6’j + ll'lfxe[(),oo) /lj(X)

IflLro.00y, 7 =1,3.

This means that {

IE;II < . ,
I %’y + /1]‘ + 9]‘ + lnfxe[o,m) /.lj(.X)

Then, for any (w,y;,y;) € X, using the inequalities [¢;]| <

SUP (0,00 43(X) and Eq (3.56), we estimate

Iy T = A9)™ (w, y1, y)

=|[(ai) +as; +az)zip+ (@i + azs + azn)zzp + (a3 + azs + az3)wo

1
)/+ o1 an +(a14 +axs +aza)prE1y;

0
+—1[501E1y1,1 + (L1 Efyry + @1E1y12)
v+ 1

+(A7e1 Eyis + L Efyia + @1 E1yi3)

+HB O Efyry + A0 Eiyia + Lo EDyiz + @ E1yrg) + -

j=1,3.

L llgall <

d

(A.1)

Supxe[o,oo) Hi (X), ||‘703|| <

+(ars + axs + az35)psEzysg + (a1 + ase + asg)l@1Esysg + (L1 ESysy + @1 Esysn)

+(301E3y31 + @1 ESysa + @1 Ezys3)

+(Bp1Edysy + 301 E3yzn + 1301 Ey3s + @1 Esysg) + -
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+(E1y11 + L EDy + Epyig + A{Ey ) + LEDy12 + Eiyis
+/1?E411y1,1 + /ﬁE?yl,z + ﬂlE%y1’3 +00)

+(E3ys3,1 + /13E§y3,1 + Ezy;n + /1§ E§y3,1 + A3 E§y3,2 T Eyysa
+/1§E§y371 + /1§E§y3,2 + BE3y33+ 0 )|

<lajy +axy +asgllzipl +laiz + axa + aspllzaol + laiz + axs + assllwol

i > al + lara + ava + asall@a MBIy o)
ly + 1|
n=1
91 2
eyl + Ak IEPIYL o

+HloE Y1 2llzio.00) + ANt IEP Y111l 0,000

+ il E PV 2l 0.0y + ot HEE Y131 0,000
+/l?||¢1””El||4||y1,1||L1[0,oo) + /l%||§01||||E1||3||y1,2||L1 [0,00)

+ 1l ME NP1y 311000y + ot E Y1 allzipo,00) + - ]

+ais + axs + asslllesllI Es|ll[ys.allzio.c)

+laie + are + a3,6|[||901||||E3||||y3,1||Ll[o,oo) + A3ll1 E3IP1Y3.1 112 [0.00)
+HleE3 Y3 2lli0.00) + Al ES P31l 10.00)

+3ll1 E3IP1y3 2112 0.00) + ot E3 Y3 31121 0,000

+ 311 E3I Y311z 0.00) + Al MESIP Y3 2111 0,00

+ 31l E5IPlys 5llipo.co) + Nt Eys allzifo.co) + -+ ]

HIE 11l 0.00) + ANENPIY 1121 0.00) + NE V12N [0,00)
+ANE Py 1Nz 000 + ANEIPIY 12N 10.00) + NE Y1311 [0.00)
+/l?||E1||4||)’1,1||L1[0,oo) + /1%||E1||3||y1,2||L1[o,oo) + /11||E1||2”y1,3”L1[0,oo)
...

HIE3y3,1ll0.00) + /13||E3||2||y3,1||u[0,oo) + 1E3|I1y3.211£1[0,00)
+E5 P31l 0.00) + BIESIPIY3 20,00 + 133 5110000
+BNE I 13111000 + BIE3IPIY3 2l 10,00y + ABNEIPIY3 31121 0.00)
L.

= a1 + axy +azllzipl + a2 + axn + aszllzzl

(o)
+la 3 + ax3 + assllwol + Z [Wal + lai 4 + aza + azalll@alllE Y1121 0,00)
n=1

ly + 1]
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91 N k-1 k N
el 2 A I 2 bl + lavs + @z + asslleslEslys oo
k=1

n=1

(9] (9]
k—1 k
Hars +ase + asglllpill D A NESI D llys allo

k=1 n=1

k-1 k k-1 k
+ AN Y IViallooes + D AT IESIE D Iysalluioe
k=1 n=1 k=1 n=1

<lapg +az) +asllziol + laiz + azp + assllzz ol
1 o
+la13 + a3 + azz||w +—ZW
la; 3 3+ azs|lwol Ry+12 Wil

SUP ye(0,00) M1 (x)
Ry + A1 + 0 + inf (g o) f1(X)
+ o !
Ry + 1 Ry + Ay + 6; +inf [0 c0) 111 (X)

- k=1 oo
/11 )
<2, - > Wtallioe
— (?%y + A+ 60) +inf oo (X)) 4 L1[0.00)

SUP re[0,00) H3(x)
Ry + A3 + 05 + inf ¢ [0 o) U3(X)
1
Ry + A3 + 05 + inf 1[0 o) 3(X)

= k—1 oo
/13 )
2 - > allos
= (%7 T+ 05 b () L DO

1
+ .
Ry + A1 + 61 + inf g 00) 11 (%)

k—1 oo
A
X ) i
Z (‘Ry + A, +0; + infxe[o,oo)ﬂl(x)) nZ:; 1y 1,011 2110.00)

k=1
. 1
%7 + /13 + 93 + infxe[()’oo) /13()6)

- k=1 oo
/13 )
2 ' > Wsallsos
P (%)’ + A3 + 05 +inf o0 p3(x) ) L Y3.nllL110,00)

+aja + ara + az 4l 1y1,1112110.00)

+lais + axs + as s 1y3,1112170.00)

+ai e + are + azgl

<supqlaiy +axy +asgl+lais +axy +azp| +laiz +axs + azzl + og——,
Ry +1

SUP 0,00y H1(X)
Ry + A+ 0; + inf .00y o1 (%)

lais + asy + az gl
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0, 1 1
+ : + - )
%’)’ +1 %’y + 60 + ll'lfxe[o’oo)/.ll(X) %’y + 6, + 1nfxe[0,w),u1(x)
|a ta ta | Supr[O,oo) /l3()C)
1.3 2 39 ?’\’y + /13 + 93 + infxe[(),oo) /13()6)
1 1

+lae + are + azgel

. + . [l(w, y1, y3)Il
Ry + 65 + lnfxe[o,oo)/l3(x) Ry + 65 + Inf 0,00) /13(X)} )3

{|()’ + Dy + A3+ 63) + 01No + 0,(y + A3 + 63)]
Ity + D(y + 41 + 00)(y + A3 + 63) — 0,6 Ny|
Iy + DO + (y + D(y + 41 + 6;) + 6,065]
Ity + D(y + 41 + 00)(y + 43 + 63) — 6,0;Ny
|63No + (y + 41 + 0)No + (¥ + 41 + 01)(y + 43 + 63)] N 1
I(y + D(y + 41 + 0)(y + A3 + 63) — 610Ny Ry+ 1’
I(y + D(y + A3+ 63) + 01Ny + 6,(y + A3 + 63)) SUP 1ef0,00) H1(X)
Ity + D(y + A1 + 01)(y + A3 + 603) — 616:Ng| Ry + Ay + 01 + inf 0,00y 11 (%)
N 6, 1 N 1
Ry + 1Ry + 6, +infoeoypt1(x) Ry +0; + inf g0y 1 (%)
Ity + )03 + (y + D(y + A, + 6;) + 6,65] SUP e[0,00) M3(X)
[(y + D(y + A + 0))(y + A3 + 63) — 0,63 No| Ry + A3 + 03 + inf e[0,00) 3(x)
I(y + D(y + A3 + 63)05 + 016; Ny + 0105(y + A3 + 653)| 1
Ity + D@y + 41 + 00)(y + A3 + 63) — 0,6 N Ry + 63 + inf [0 00y 13(x)
+ 1
Ry + 63 + inf 10,00y 3(x)

}Il(w,y1,y3)ll- (A2)

Inequality (A.2) means that the result of Lemma 3.2 holds true.
The proof of Lemma 3.3. We assume that (V, py, p3) € ker(yl — A,,), then (yI — A,,)(V, p1, p3) = 0.
That is,

(y+A4+6)Qi1p =065 Z f P3n(X)dx + 6:030 + f pr1(X0)u(x)dx, (A.3)
n=1+0 0
(y+ A3+ 63)030 = NoVop + f P31 (0us(x)dx, (A4)
0
(y+ DVy = 6,01, (A.5)
y+ 1DV, = Olf pia(x)dx, n>1, (A.6)
0

d

b ;’;(x) = —ly + Ay + 6+ (D]pr (), (A7)
dpl,n(x) _

e [y + 4+ 0 + 1u(0)1p1,(x) + Aiprp-i(x), n=2, (A.8)

d
b ;;(X) = —[y + A3 + 03 + (D)3 (), (A.9)
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dps.(x)
jlx [y + A + 05 + p3(0)]P3a(x) + A3ps3,oi(x), 02
By solving Egs (A.7)—(A.10), we have
st e o (A0 .
Pin(x) = e OO ) ik O = 133> 1,
=1 :

By Egs (A.3)—(A.6), we have

=—2 5 JOdxt —2 O —— dx,
Oio AL 10, nzlf(; D3n(x)dx AL 10, 030 L +6, P11 (x)dx

No 1

= V + d 5
O30 YT 16 0 YTk +93£ P3.1(0u3(x)dx

(oo

1
Vo= —— A(X)dx, > 1.
T ), P

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

Then, from Eqgs (A.11)—(A.15), by a simple calculation, we can obtain that Eqs (3.56)—(3.59) in

Lemma 3.3 hold true.

Moreover, since (V, py, p3) € ker(yl — A,,), using the Sobolev imbedding theorem [20, Theorem

4.12], we estimate

D PO < Z 1P jall=ro.ce

n=1

[59)

dpj,n
Z ||Pj,n||Ll[o,oo) + dx

=1

) <oo, j=1,3.
L'[0,00)

Hence, we conclude that Eqs (3.56)—(3.61) in Lemma 3.3 hold true.

(A.16)

On the other hand, if the Eqs (3.56)—(3.61) holds true, then for any positive constant M, and k > 1,

using the formula

00
_ k!
e Mox ki = ,
Mk+1
0 0

= (/le)k_l
(k - !

we estimate

—(y+/lj+9j)x—fox uj(ndr

dx

||pj,n||L'[0,c>o) :f e
0

< Z e 1).lpm 1 (0) f st OV g

k

Pj,n—k+1(0)

Z i O) D

(k— D)1 P R S0+ 6 + infreqom (0
/lk 1

B Z (Ry + A; + 6, + inf .00 11 j(X))

|p jin—k+1 0.

(A.17)
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To sum n from 1 to positive infinity on both sides of the above inequality and using the condition
Ry + 0; + inf (0. 1;(x) > 0, we have

k-1
/lj

Mo = : ket (0
D Ipjalliiioes Z;(%ﬁ T30 e g P ©)

n=1 n=1

k-1
/lj

B kZ:]: (%’y + /l] + 9} + infxe[(),oo) ,Llj(X))k

D 1pia(0) (A.18)
n=1

1
B %’y + Hj + infxelo’oo) M

pjn(0)] <o, j=1,3.
(x) Z; /
By taking the derivative of x on both sides of Eq (A.18), we can obtain

dpji(x) o
T v+ A+ 0.+ u (0o~ = [ (e
dx % j j ,u/(x)]pj,l( )e 0 (A.19)

=—[y+4;+6;+ux)lpji(x), j=1,3,

dp ',n(x) ]
—cjix = —[7+/1j+9j+ﬂj(x)]pj,n(x)+/ljpj’n_1(x), j=1,3; n>1. (A.20)

Combining the Eqgs (A.18)—(A.20), we derive

)

n=1

dpj,n
dx

< [m +20;+0;+ sup m(x)] D Ipalliiose (A21)
L'[0,00)

x€[0,00) =1

Therefore, Eqs (A.18)—(A.21) imply that y € p(Ap) and

(V, p1, p3) € ker(yl — A,).
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B. Appendix: List of notations

Table 1. List of notations.

Symbol First occurrence & Description

0;0(?) Page 2: The probability that there are no customers in phase
j (j = 1,3) and the server is idle at time ¢.

V(1) Page 2: The probability that there are n (n > 0) customers in
the system and the system is in phase 2.

Djin(x,)dx Page 2: The probability that there are n (n > 1) customers in
the system at time ¢ with the server busy serving a customer
whose elapsed service time lies in the interval [x, x + dx) in
phase j (j =1, 3).

A; Page 4: The arrival rate of customers when the system is in
phase j (j = 1,2, 3).

(x) Page 4: The conditional probability of completing a service
during the interval (x, x + dx) with elapsed time x in phase
JG=1,3).

0; Page 4: The residence rate of the system in phase j (j = 1, 3).

N, Page 5: The probability of r (r > 0) arrivals during phase 2.

X Page 5: The state space of systems (2.1)—(2.11).

X Page 24: The dual space of X.

0X Page 6: The boundary space of X.

A, Page 5: The maximal operator of systems (2.1)—(2.11).

D(A,,) Page 5: The domain of operator A,,.

o,V Page 6: The boundary operators of systems (2.1)—(2.2).

A Page 7: The system operator of systems (2.1)—(2.11).

A Page 8: The adjoint operator of ‘A.

Ay Page 12: The system operator with zero boundary conditions
for systems (2.1)—(2.11).

P(A) Page 8: The resolvent set of A.

o(A) Page 18: The spectrum set of A.

o p(A) Page 29: The point spectrum set of A.

Ry Page 8: The real part of .

D Page 16: The Dirichlet operator.
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