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Abstract: We considered the simulation of isentropic flow in pipelines and pipe networks. Standard
operating conditions in pipe networks suggested an emphasis to simulate low Mach and high friction
regimes—however, the system was stiff in these regimes and conventional explicit approximation
techniques proved quite costly and often impractical. To combat these inefficiencies, we developed
a novel asymptotic-preserving scheme that was uniformly consistent and stable for all Mach regimes.
The proposed method for a single pipeline followed the flux splitting suggested in Haack et al., in which
the flux was separated into stiff and non-stiff portions then discretized in time using an implicit-explicit
approach. The non-stiff part was advanced in time by an explicit hyperbolic solver; we opted for the
second-order central-upwind finite volume scheme. The stiff portion is advanced in time implicitly
using an approach based on Rosenbrock-type Runge-Kutta methods, which ultimately reduced this
implicit stage to a discretization of a linear elliptic equation. To extend to full pipe networks, the
scheme on a single pipeline was paired with coupling conditions defined at pipe-to-pipe intersections
to ensure a mathematically well-posed problem. We showed that the coupling conditions remained
well-posed at the low Mach/high friction limit—which, when used to define the ghost cells of each
pipeline, resulted in a method that was accurate across these intersections in all regimes. The proposed
method was tested on several numerical examples and produced accurate, non-oscillatory results with
run times independent of the Mach number.
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1. Introduction

This paper focuses on the development of a novel numerical method for gas flow in pipelines and
pipe networks. To describe the gas transport, we use the isothermal/isentropic Euler equations with a
source to account for the friction along the pipe walls:

pl‘ + (pu)x = O’
K
(o), + (pu” + p) —5 Pl

X

(1.1)

where x is the (one-dimensional) spatial variable, ¢ denotes time, p is the fluid density, u denotes the
fluid velocity, p = p” is the pressure under the isentropic assumption, in which vy is the ratio of specific
heats, and « denotes the Fanning friction coefficient. In the one-dimensional approach, which is quite
common when modeling gas flows in pipes due to the ratio of pipe length L and cross section D (see
e.g., [1,2]), the unknowns p and u are averaged over the (assumed constant) cross section.

The standard operating conditions hold the gas flow at moderate velocities (see e.g.,), [3], where
they note a reference Mach number around 0.001; and, thus, we must account for the low Mach
number or high friction regimes of system (1.1). However, the limiting solution as this parameter goes
to zero brings about a number of difficulties—the most notable of which is that the underlying system
becomes very stiff. This makes designing efficient and accurate methods to approximate the solution
quite challenging. For example, conventional explicit schemes applied to system (1.1) would greatly
over-resolve the solution in time, as the wave speeds of the system are proportional to the inverse of
the reference Mach number—further implying that the Courant—Friedrichs—Lewy (CFL) stability
restriction is proportional to this small parameter; see, e.g., [4—6]. Hence, explicit schemes may prove
quite computationally expensive, especially in the low Mach/high friction regimes. Moreover, in the
context of pipe networks, separate pipe segments may be in different regimes. Thus, to avoid (i) the
high computational cost of explicit schemes in low Mach regimes; and (ii) the potentially-expensive
nonlinear solvers of implicit schemes in segments not near the asymptotic state, one may require
different methods dependent on the location in the network.

One alternative to avoid this over-resolution issue (and, thus, the potential need of separate
simulation codes dependent on location) is asymptotic-preserving (AP) schemes. By the definition
in [7, 8], a scheme is AP if the discretization of the continuous system remains consistent and stable
regardless of the value taken for the underlying singular parameter (denoted by & in this paper).
Furthermore, AP schemes allow for the space and time discretization to be independent of ¢; i.e., the
CFL condition for stability does not depend on the small parameter in the system.

Due to the potential speedup when discretizing with AP methods, they have attracted a lot of
attention in the numerical and engineering community. AP schemes have been extensively studied for
the kinetic equations; see, e.g., [9-15] and references therein. More recently, AP methods for the
kinetic equations have been further extended to use AP Monte Carlo methods to reduce numerical
diffusion effects [16, 17], and to use AP neural networks to solve the underlying partial differential
equation (PDE) system [18, 19]. There has also been extensive development of AP methods in the low
Mach regime of the isentropic Euler system [20-27], compressible Euler equations [28-33], and
Navier-Stokes systems [34-37], as well as in the low Froude regime of the standard shallow water
equations [38—43] and variants with additional sources [44—47].
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The number of studies significantly shrinks, though, when it comes to the consideration of nonlinear
friction terms that remain in the limiting solution. When this nonlinear friction term, such as that in
system (1.1), remains in the low Mach/Froude regime, it adds the difficulty that this source must be
discretized implicitly in some manner. If discretized naively, this requires a nonlinear solve, which
would preferably be avoided. To our knowledge, only the studies in [44,48] consider some nonlinear
friction term, in which only [44] avoids a nonlinear solve via their proposed semi-implicit hybrid finite
volume/finite element method.

Furthermore, the number of studies of AP schemes in the extension to pipe networks is also quite
limited. To our knowledge, there are only two such developments. In [49], they present an AP hybrid
discontinuous Galerkin method on networks for the linear convection-diffusion equation. The work
in [48] proposes a finite element AP method applied to the barotropic Euler equations with a nonlinear
friction term on pipe networks. However, the aforementioned method does opt for an implicit time
discretization reliant on a nonlinear solver.

In this paper, we propose an AP scheme for the isentropic Euler equations with a nonlinear friction
source on pipe networks. The method on a single pipeline uses the hyperbolic flux splitting proposed
in [26,47] to split the stiff and non-stiff parts of the system, which are then treated through an implicit-
explicit approach. The non-stiff portion of the system is advanced in time explicitly and discretized in
space using the second-order central-upwind (CU) finite volume scheme developed in [50,51]. The
stiff part of the system is advanced in time implicitly using an approach related to Rosenbrock-type
Runge-Kutta methods seen in, e.g., [52,53]. This, in combination with the selected flux splitting
of [26,47], ultimately reduces this implicit stage to an elliptic equation that can then be solved linearly
after discretizing in space via standard central difference. The proposed scheme for a single pipeline
is extended to pipe networks by defining coupling conditions, such as those in [54], at pipe-to-pipe
intersections to ensure a mathematically well-posed problem. We show that the coupling conditions
remain well-posed in the low Mach/high friction regimes and use them to define the ghost cell values
of each pipeline. The resulting first-order in time, second-order in space method is tested on several
numerical examples of pipe networks and produces accurate and non-oscillatory results, in addition
to running significantly faster than the analogous fully explicit scheme in the low Mach/high friction
regimes.

This paper is organized as follows. In §2, we discuss the asymptotics of the isentropic Euler
equations (1.1) on pipe networks and associated numerical difficulties. We then develop an AP
scheme for the underlying system in §3. We present the performance of the proposed scheme on three
examples in §4, and make some concluding remarks in §5.

2. Dimensional analysis
To look at the asymptotics of system (1.1), we non-dimensionalize the system by introducing
characteristic time f,, characteristic density pg, characteristic velocity wy, and characteristic pressure

Do, along with using the pipe length L as the characteristic length. Therefore, the dimensionless
quantities for system (1.1) read
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Taking wy = L/ty, substituting these quantities into system (1.1), and dropping the hat notation for the
sake of simplicity, we obtain the dimensionless isentropic Euler equations with a friction source term:

Pt (pu)x = O’
K

1
2 —
(pu)t + (pu + Mazp)x - _2_5pu|u|,

D
Ma=w |2, §==,
Po L

are the reference Mach number and the ratio of the cross section to the pipe length, respectively. We
then choose to take the reference Mach number Ma = ¢, and follow the suggestions of [3,48,55] in
taking § = £%/Cs, where C; is a constant, resulting in the parameterized system

pt + (pu)x = 0’

where

1 Csk 2.1)
(pu), + (pu2 - ;p) = —Spulul,

which can otherwise be written in the following vector form:

U, + F(U), = SU), F(U):( P 2], S(U):( 2.2)

pu? + ple —%PMM) ’

where U := (p, pu)", F(U) denotes the flux, and S(U) is the source due to friction along the pipe walls.

Remark 2.1. Note that in the limit € — 0, it is clear that system (2.1) approaches a state where the
spatial derivative of pressure balances the friction source due to the pipe walls. This follows a classical
limit commonly seen in the modeling of pipelines and pipe networks; see, e.g., [3].

2.1. Continuous extension to pipe networks

To simulate an entire pipe network, we must of course consider appropriate boundary conditions at
each pipe entrance and exit—the most complicated of which are at pipe-to-pipe intersections. These
are obtained by defining some coupling conditions at the pipe-to-pipe intersections or junctions; see,
e.g., [54,56]. In this section, we briefly describe some suitable condition options that may be prescribed
at pipe junctions. The following coupling conditions presented are commonly used examples for the

mathematical framework of pipeline networks; see, for example, [57] and references therein.
(k) (k)

Let us denote the entrance and exit of pipe k = 1,...,K as x.”” and x;’, respectively, and the
variables in pipe k as U® = (p®, (ou)®)T. Consider a single junction in which pipes with indices
1,...,m denote the ingoing pipelines and those with indices m + 1, ..., K are the outgoing pipelines,

as depicted in Figure 1. Then, at the junction, one must have the coupling condition for:
Conservation of momentum:

m K
D ewPG,n = > w0, (2.3)
k=1 {=m+1

paired with one of the following:
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(a) Equal pressures (see, e.g., [54]):

p(p(k)(xl(ck), t)) = p(p([)(x([), t)) Vk=1,...,m, t=m+1,...,K; 2.4)

i

(b) Equal momentums (see, e.g., [58,59]):

1 1
(PP ), 0 + 5 p(p® P, ) = (00w )) 0 + pp“ ", 1)
& € (2.5)
Yk=1,...,m, t=m+1,...,K;

(c) Geometry or flow-dependent pressure loss (see, e.g., [1,60]):
1 1
Sp(eP0.0) = Sp(e P 0) e, Yk=1,...m.  C=m+1,....K, (26)
e &

where /., denotes the pressure loss at the junction.

Notice that the e&-dependence remains in the coupling conditions, as it arose from the
non-dimensionalization of system (1.1).

Figure 1. Illustration of a pipe network junction with m ingoing pipelines and K —m outgoing
pipelines.

The isentropic Euler system (2.1) paired with (2.3) and one of systems (2.4) and (2.5) has been
proven a well-posed problem under the condition that the initial data (i) is not in a vacuum state
(0P (x,t = 0) > 0 Vk); (ii) has a flow direction that does not change (u®(x, ¢ = 0) > 0 Vk); and (iii) is
under subsonic conditions (u®(x,t = 0) < ¢ Vk) [54,59]. These coupling conditions are implemented
into the boundary conditions of each pipe k; we present how this is done for the proposed scheme in
§3.5.1, following the rich literature in this field, e.g., [61-69].

2.2. The low mach/high friction limit

To investigate the asymptotic behavior of system (2.1) inside each pipeline, we take the asymptotic
expansion of variables p and u. Note that for simplicity, we removed the superscript (k) introduced in
the previous section for now, as the coupling conditions are only introduced on the boundaries. Thus,
the associated asymptotic expansions of our unknowns are

p=p0 120 1.

u=u?+u? +---.
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Consequentially, we can obtain the asymptotic expansion for pressure p = p” using Taylor series:

p=(p") + &) o+ 2.7)

Note that the &' terms are skipped since there are no O(e™') terms appearing in system (2.1).
Substituting the expansions of p, u, p into system (2.1) and collecting like powers of &, we obtain the
asymptotic behavior of the isentropic Euler equations with a friction source:

O CIF [(p(°>)7]x = _%p(o)”(0)|”(o)|»

0(1) . pEO) + (p(O)u(O))x =0,
(00u®) + [p(O)(u<0>)2 4 y(p(O))V‘l p<2)]x

= _%(pa)u<0)|u(0>| " p<0>u(2>|u<0>| + p(0>u<0)|u(2)|).

(2.8)

Here, note that the O(s~2) asymptotic is exactly that discussed in Remark 2.1.

Similarly, we consider the £ — 0 case on the coupling conditions at the pipe intersections. It is clear
that (i) the condition related to conservation of momentum will remain as it is e-independent; and (ii)
regardless of your selection of coupling conditions (2.4), (2.5), or (2.6), all simplify to requiring equal
pressures at the junction at the low Mach/high friction limit. Note that the different limiting equations
have already been presented, e.g., in [3]. The main aspect here is on their numerical treatment.

2.3. Numerical Difficulties in Low Mach/High Friction regimes

By computing the eigenvalues of the Jacobian dF/0U, one can find that the wave speeds of

system (2.2) are
1
{M + \/P'(P)}-

In turn, this implies that if one was to solve system (2.1) using some standard explicit method with a
uniform mesh spatial discretization with cell size Ax, the corresponding time-step restriction due to the

CFL condition would be
Ax

me{Iul . W(p)}

where 0 < v < 1 denotes the CFL number. On top of this, explicit schemes typically have numerical
diffusion of O((Ax)” /&) [26], where p is the order of the method, further implying that one would need
to select Ax = O(g'/?) to combat excessive numerical diffusion in the results. Therefore, to obtain
unsmeared results, the time-step restriction for explicit schemes would need to be At., = O(g'*'/?). In
other words, explicit schemes are quite inefficient in the low Mach and high friction regimes due to the
significant computational cost.

An alternative to avoid the heavy time-step restriction seen in system (2.9) would instead be to
advance in time using an implicit method. However, this also could prove quite costly, as the
nonlinearity of system (2.1) implies a dependence on some nonlinear iterative solver of an N X N
system of equations, where N is the number of cells in the spatial discretization.

Aty <V = O(gAx), (2.9)
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Thus, we want a scheme that removes this e-dependence in the time-step restriction, converges to
the asymptotics in system (2.8), and maintains the correct coupling conditions at the € — 0 limit. The
scheme proposed in the following section aims to meet these desired properties on the discrete level.

3. Asymptotic-preserving scheme

To form an AP scheme for the system (2.1) on a single pipeline, we follow the hyperbolic flux
splitting idea from [26,47]. To do so, we separate the slow and fast dynamics into two parts, resulting
in the corresponding split system:

o +alpu), + (1 —a)pu), =0,
(ou), + (Pu2 T C;(t)p) + i?px = —&;pulul- G-D
F> 2¢e

X

Equivalently, the split form Eq (3.1) can be written into an updated vector form, which reads

U, + F(U), + FU), = S(U), (3.2)
where
— apu _ (1 — a)pu
FWU) = [ » P a(t)p], FUU) = [ a(t)p ] (3.3)
pu + —82 82

are the slow (non-stiff) and fast (stiff) dynamics parts of the fluxes, respectively, and S(U) is defined in
Eq (2.2).

To guarantee the non-stiff subsystem U, + F (U), = 0 is indeed non-stiff and hyperbolic, a and
a(t) must be chosen appropriately to remove the 1/&* dependence on the wave speeds. Computed by
finding the eigenvalues of the Jacobian OF /U, the wave speeds of this subsystem are

{u + \/(1 — o) + M} (3.4)

Thus, to ensure the eigenvalues of the non-stiff subsystem are real and are O(1) instead of O(g72), as in
the original system (2.1), we take

o= and  a(f) = minp'(p), (3.5)

and b > 2. In turn, the new wave speeds in system (3.4) now avoid the dissipation and time-step issues
seen in original system (2.1), allowing the slow dynamics to be discretized using any appropriate
hyperbolic solver. We describe the hyperbolic solver we use in §3.2.

Remark 3.1. Note that, in comparison to the work of [26,47], we have less freedom in the selection
of this parameter b arising in Eq (3.5). This is due to the fact that the asymptotic behavior shown in
Eq (2.8) allows for a nonconstant p® when & — 0, meaning [p’(p) — a(t)] is O(1).
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3.1. Time discretization

To discretize the split systems (3.2) and (3.3) in a way that relaxes the time-step stability restriction,
we use the implicit-explicit (IMEX) approach; that is, we approximate the non-stiff flux terms FU),
explicitly, and use an implicit approximation for the stiff flux terms Fi (U), and the friction source S(U).
Since the source term S(U) is nonlinear, we opt for a time discretization related to Rosenbrock-type
Runge-Kutta methods, which will still allow the system to be solved without the need of nonlinear
solvers; see, e.g., [52, 53] and references therein. To this end, we use the following first-order IMEX
time discretization:

n+1

P =p

el + (- a)(pw) =0, (3.0)
w)"™! = (ou)" —ap\" a Csk, v

The influence of the Rosenbrock-type method appears in the discretization of the source of
system (3.7), in which only the pu term is evaluated at time #**'. For simplicity and notation purposes,
let us define

R" := (R”",R*"" = —F(U),.

One can then solve Eqs (3.6) and (3.7) for p"*! and (ou)™*!, respectively, to obtain

P = p" + AR — At(1 - a)(pu)™, (3.8)
1 a' At
(ou)"' = e [(pu)n + AtRP — ?pyl], (3.9)
where c
P(x) = 1+ At- 2—;’2(|u”| (3.10)

is always greater than 1. Following then that of [23], we then differentiate Eq (3.9) with respect to x

and substitute this into Eq (3.8) to obtain an elliptic equation for p™*! :
At 2 n+1 n + AtRPw"
w81 a'(l —a) e =p" + AtR*" — At(1 — @) lpu)” + AR . (3.11)
&2 P ) pr .

Assuming all values at time " are known, this implies that the choice of the Rosenbrock-type method
in Eq (3.7) results in just a linear equation for the unknown p"*!. Furthermore, the time discretization
in Eq (3.7) in combination with an appropriate spatial discretization, such as that further detailed in
§3.2 and §3.3, will result in Eq (3.11) being a linear system that can be solved for p"*!. This solution
of p"*! is then substituted into Eq (3.9) to obtain (pu)™*!.

3.2. Spatial discretization of non-stiff flux terms

We use the CU finite volume scheme to discretize the non-stiff flux terms F(U). For each pipe in
the network, we split the domain into N finite volume cells C; = [x JRE ], where Ax = x el T XL
Assume that at time level ¢ = ¢", the solution is realized in terms of its cell averages

— 1 0
Uj_EijU(x,t)dx.
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Then, we approximate the contribution of the non-stiff flux terms R := —F(U), in each cell using
F i —F i1
R = _M’ 312
I Ax (3.12)

where %;: | are computed using the CU fluxes; see, e.g., [50,51,70]:

o F(U]T+l ) -5 F(U;T+l) s* ST
2 2 2 2 Jt3 Jt3 —

LA, PR i e (Uf U,

1 1 S.1 7S, 2 I3

Jt3 Jt3 Jt3 Jt

7., - ) (3.13)

[NT]
o5}
0=

Here, U;, are one-sided point values of U at the cell interface, computed at time ¢ = " using the
2

piecewise linear reconstruction
l7"(x) = ﬁj + (Ux);f(x - xj), xeC;.
Therefore, the values of the reconstruction at the interface x; 41 are
_ —n Ax Ax, .,
U, = U, + S W UL =Usy = WU, (3.14)

where the slopes (U,)’; are computed using a nonlinear limiter to avoid oscillations. In this paper, we
use the generalized minmod limiter (see, e.g., [71-73]):
Ujn-U; U -Upi JU;-U

U, " = mi d| o s B
(U); = minmo Ax 2Ax Ax

where the minmod function is

min(zb 22, ) if Zi > Oa VI,
miand(Zh 225 .- ) = maX(Zla 225" ) if Zi < 07 Vla

0 otherwise,

and is applied component-wise. Lastly, s;—_’+l of Eq (3.13) denote the one-sided speeds of propagation,
2

estimated at time ¢ = ¢ using the largest and smallest eigenvalues of the Jacobian OF /U seen in

Eq (3.4):
allen) =<}

~ h_\\_
I\)T'_‘
Il
8
1}
5
——
=
L
+
-
—_—
|
Q
N
—_
=
_
(3]
+
%

(3.15)

j+

[75)
|
=
Il
=
=
—_——
<
<
+
|
-
[a——
|
R
N
—_——
<
<
+
ST
N —
[\*]
+
%
—
’.c\
—_—
©
~
i
N —
|
Q
B
I\,—J
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3.3. Fully discrete method

To obtain the fully discrete AP scheme for cell C;, we take the elliptic equation for p"*! in (3.11)
and the equation for (pu)**! in (3.9) and (i) compute non-stiff flux terms R" = —Fi (U), using the
CU numerical fluxes described in §3.2; (ii) discretize the first spatial derivative terms using standard
second-order central difference; and (iii) use a standard finite difference approximation for second
derivatives on the term (p”+1 / ‘I’") Thus, the fully discrete AP scheme for p”+1 reads

— (Af)?
Pj (Ax)2e2

2

a'(l - )[¢" 1/371} - (;bj% Y ._Tll]
(3.16)
=7+ - - - )|
J

where R’} = (R?’", R?”’")T is defined in Egs (3.12) and (3.13), ¥ = ¥"(x;) from Eq (3.10),

§j+1 é:j

D.gj = 2Ax

is the discrete central difference operator, and

. 111
¢f+%_2\1m ¥

j+l1

is used for the evaluation of 1/ ‘I’” : to keep the second-order spatial approximation in the elliptic
solve. Note that the definition of ‘P" in Eq (3.10) results in 0 < ¢” < 1, in turn implying that

the corresponding matrix to be formed on the righthand side of Eq (3 16) is non-singular (by the
Gershgorin theorem).
After solving the linear system in (3.16) for { ”“} it can be directly substituted into the spatially

discretized version of Eq (3.9) to obtain the fully discrete approximation for @);f”:
. | B wn  A'At
(,ou)]frl = @[(pu)j + Aﬂ(? " — =2 Dxpj”]. (3.17)
J

3.4. Numerical diffusion and stability

In this section, we describe how the proposed method addresses the numerical difficulties of explicit
schemes previously discussed in §2.3.

The stability of the proposed AP scheme is ensured by Lemma 3.1 of [26], which states that if
each piece (the implicit and explicit portions) of the split method is stable, then the full method is also
stable. For the fast (stiff) dynamics, one can show that implicit discretization in time, seen in Eqs (3.6)
and (3.7), is stable for all p" and u". Thus, stability of the proposed AP scheme is controlled by the
time discretization of the slow (non-stiff) dynamics. The CFL condition for the slow dynamics can be
found using the eigenvalues from Eq (3.4), resulting in the following time-step restriction:

A
Ainp < v al , (3.18)

mflx{lul + \/(1 - a)u*+ %[p’(p) - a(t)]}
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in which, due to the selection of @ and a(r) made in Eq (3.5), the denominator is independent of &.

To ensure Atap is completely e-independent, we must also confirm the numerical diffusion of the
proposed scheme does not have a ! dependence or worse. To do this, we analyze the leading order of
numerical diffusion of the CU spatial discretization described in §3.2, and substitute this into the full
discretization in Eqgs (3.16) and (3.17). We start by rewriting the CU flux in Eq (3.13) in the form

7 _FU)+FU,)

1 2 Ay
where
S+
1 j+% - = =n = =n
o, :—[ZF(U_ - FT) - F(Uj+1)]
2 _ Jt3
2(sf L =S 1)
Jt3 Jt3
(3.19)
g T R A
o [2F(Uj+£) _FT) - F(Uj+1)] ; ﬁ(vj+é - UM),
2(sj+; B Sj+;) 3 Jj+3
is the numerical diffusion term of the CU discretization, with O" , := (Z)? " Z)j )7 to denote the
2 2

different components. Here, S* . are defined in Eq (3.15) and U++, are defined in Eq (3.14). To

compute the leading order of the numerical diffusion in Eq (3. 19) we introduce the following
asymptotic expansions:

o On 2 D
pj=p; tEP;T + >

+ 0),+ 2 (1)—
= +e +-
} TPy TEP

N

The asymptotic expansion of «’; and u— , follows analogously, and the discrete asymptotic expansion

of the pressure term follows the same form as that in Eq (2.7). In addition, we expand @" in a way that
follows its definition in Eq (3.5):

Q)n

y—1
(O)") +aP" ...,

a' = mm y(p

where a®* is a constant in space at time ". Using these expansions, we can obtain the leading order
of the numerical diffusion (3.19) for p:

N
as’
no_ i+ 2,0 O _ (On O _ (O O
j+i N _ ’Oj+% j+i Pj U J+1 T+l
st =57,
Jt3 J*3
as’
Jt2 0),+(0),+ ©0).n_ (0),n 0),n_ (0),n
e LT Y L L (3.20)
+ _ Jtz  Jt3
2t — 5 1)
Jt3 J*t3
S};% s;+% O+ (0
++—_(p. =0 ])
N 1 N 1 j+2 j+2
Jta Jta
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Since @ = &, b > 2 from Eq (3.5), this is O(1) by the last term of Eq (3.20), as p is generally not
constant in space. Similarly, one can compute the leading order of numerical diffusion (3.19) for pu,
which comes from the O(s72) portion of the flux F (U) seen in Eq (3.2). However, since a" and its
expansion are related to p’(p) and p(p) = p?, it is clear that the expansions to compute the diffusion
will not result in any cancellation of the £72 term. Thus, Z)p = O(e7).

Finally, substituting the CU fluxes into Eq (3.12), we can obtain the following approximations to
R
J

R = =D FP(U?) + O((Ax)), (3.21)
(AX)Z)

R‘;”’" = F””(U") + O( (3.22)

where F := (F P, F PT and D, again represents the central difference operator. Here, the O((Ax)?) term
in Eq (3.21) and the O(¢7>(Ax)?) term in Eq (3.22) come from the leading orders from the diffusion
Z)’J_ " and Z)” ", respectively, and the (Ax)? piece arises since these diffusion terms are introduced via

the second orcfer CU discretization.

Normally, this O(£72(Ax)?) diffusion term is concerning. However, if we substitute Eq (3.22) into
the fully discrete AP scheme seen in Eqs (3.16) and (3.17), we see that this O(s 2(Ax)?) diffusion term
is always paired with a division by ¥/. Then, since ¥} defined in Eq (3.10) is O(£7?%), the dependence
of ¢ in the leading order diffusion term cancels. This e-independence within the numerical diffusion,
in combination with the denominator of Eq (3.18) being independent of &, implies that the time-step
restriction of the proposed AP scheme is indeed independent of €. Furthermore, it is sufficient to take
Atap = O(Ax) (as opposed to the O(¢Ax) restriction on explicit schemes) to enforce stability.

3.5. Boundary conditions on pipe networks
3.5.1. Coupling conditions at pipe intersections

The algorithm described in §3.1-§3.3 is applied to every pipe within the network of interest. To
extend to a full network, we must implement coupling conditions (2.3), with one choice of
Eq (2.4), (2.5), or (2.6), on the boundaries of each pipe that meets at the intersections. To obtain the
boundary values corresponding to the junction, we solve the so-called half-Riemann problem:
Assume a set of coupling conditions from §2.1 and given constant initial data (U°)® for each pipe k.
We then seek the values U* satisfying the coupling conditions such that the half-Riemann
problem [74]

UY + F(UY), =0,

U, if x <0, (3.23)

Ux0)= {(U0)<’<>, if x>0,

admits a self-similar solution in which all generated waves have nonnegative speeds. Here, U and
F(U) are defined in Eq (2.2). Then, if considering coupling conditions (2.3) and (2.4), this amounts to
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solving the following nonlinear system for (o*)®:

L )(k) )(k),L+ (pﬂ)(k); (UO)(k) -
Z i ) o

p(H®) =p(@)"), k%t

where the known states are (U°)*® and (U")", and the functions L7, denote the forward and reversed
I-Lax curve and 2-Lax curve for the isothermal Euler equations in Eq (2.1) with p = p” (see,
similarly, [59]):

0 2

=0 («/p o) - NpP'®), ifp<p,
Li(p;p.q) =
£q- \/4,) Plre) - p@.  ifp>F
(3.25)
gﬁ— ilp —(Vr@ - Vp). ifp<p.
Ly(p;p.q) = , >
£g+r \/;<p Pl - PP ifp>P.
p &e\p

The construction of system (3.24) would follow analogously if we instead used the coupling conditions
in (2.5) or (2.6).

The known states (U")® seen in system (3.24) are selected by taking the cell value nearest the
junction at time ¢ = ; i.e., we take (U")® = (U%)® for ingoing pipelines and (UM® = (U")® for
outgoing pipelines. The nonlinear system (3.24) is solved via Newton’s method with initial guess
U* = (U)®, in which the Jacobian within the Newton iteration is invertible if the initial guess is
subsonic [59]. Note the 1/& dependence in the 1-Lax curve and 2-Lax curve only arises due to
considering the non-dimensionalized system (2.2) and does not destroy the nonlinear solve of
system (3.24). This is further verified in Lemma 3.2. For the numerical experiments conducted in this
paper, we observed convergence to a tolerance of 1078 within ~2—-3 Newton iterations.

Once (p*)® is computed, we can directly calculate (p*u*)* using

(p*u*)(k) - LE((P*)(]()Q (pn)(k),LT((pn)(k); (UO)(k))).
The results of the nonlinear solve (p*)® and (o*u*)® are then prescribed as the ghost cell values in the
spatial discretization described in §3.2.

Lemma 3.2. At the limiting case € — 0, the nonlinear system (3.24) with Lax curve definitions (3.25)
remains a well-posed problem.

Proof. Since the second condition of system (3.24) is e-independent, we only need to focus on the first
condition. For brevity, let us first rewrite the Lax-curve definitions in system (3.25) as

P~ . —_ p 1 . —_

ﬁq__g(p/\) lfp<p’ 5q+5g(p,@, lfp<p,
Li(p;p,q) = , | and L;(0;p0,9) = , .

=q - —h(p.p), ifp>p, =G+ =h(p.p). ifp>7p,

0 £ 0 £
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where g(p, p) and h(p, p) are taken such that these are equivalent to system (3.25). In this proof, we will
only consider the case in which p > p for both L} and L7, and the proofs for the other three pairings
follow analogously. Following this assumption, Lax curves for this case read

— p~ 1 I o 1
Li(p;p,q) = 54- ;h(P,@ and  Ly(p;p,q) = 54 + gh(l?,ﬁ)-
Note that in the context of the nonlinear system (3.24), the case in which p > p for both L} and L7 is

equivalent to having (0°)® < (p")® and (p")® < (p*)®. We can then use this specific case of the Lax
curves and substitute directly into system (3.24) to obtain the nonlinear system:

i (p)® [W")
£ (pm® [ (p0)®

p(©E)%) = p(E)), k=t

This system with € > 0 has already been proven to be a well-posed system in [59]. We then multiply
the first equation of system (3.26) by & and take the limit & — 0 to obtain an equivalent nonlinear
system in which we wish to solve for (p*)®', which reads

@ = LH(@ ")) |+ h((0), (0" P) =0,
E E

(3.26)

K *
k=1

p()%) = p(0)°). k=t

(3.27)

This is equivalent to that of system (3.26) with (¢°)® being taken as zero. Therefore, this is also
already proven as a well-posed problem by the work in [59]. Hence, the system (3.24) is well-posed at
the limiting case € — 0.

Remark 3.3. As stated in §2.2, the other coupling conditions (2.5) and (2.6) reduce to the pressure
balance coupling condition in (2.4) at the limiting case € — 0. Thus, Lemma 3.2 is additionally valid
for coupling conditions (2.5) and (2.6), as their corresponding nonlinear systems would also reduce to
Eq (3.27) at the low Mach/high friction limit.

Remark 3.4. There exists also other approaches to discretize the coupling conditions. Here, we
mention the possibility to do so fully implicit in time [75], using finite-element based approaches [76],
finite difference discretizations [77, 78], linearization approaches [79], or central scheme type
discretizations [80]. As the previous lemma shows that the treatment using half-Riemann problems is,
however, sufficient to guarantee the asymptotic-preserving property of the scheme, we therefore do not
investigate those alternative approaches.

3.5.2. Additional boundary condition requirements

In addition to defining the ghost cell values for p and pu at the single point where the pipes meet,
the algorithm described in §3.1-§3.3 requires defined values for (i) the reconstructed values on both
sides of the cell interfaces x(lk) and xxi 15 and (ii) the central difference derivative of numerical fluxes
near pipeline boundaries. : ’
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The requirement for reconstructed values at the domain boundaries x ) and x . of each pipeline is
2

standard and directly needed within the numerical flux evaluations; see Eq Q3. 13) These evaluations
are trivial at the inlets and outlets of the pipe network, as they typically involve Dirichlet or Neumann
boundary conditions. Again, the difficulty lies at the junctions of the network. Since we do not have
enough information to form a piecewise-linear reconstruction (via Eq (3.14)) of the ghost cells sitting
at the junctions, we instead opt for the first-order reconstruction; that is, at pipe intersections, we take

Wy,

D¥=U" and (WUDP=U
for ingoing and outgoing pipelines, respectively. Here, U* denotes the solution to nonlinear
system (3.24).

The other boundary condition issue lies in the central difference within the fully discrete method
to calculate p”“ As seen in Eq (3.16), we require a central difference of R’;”’", which by Eq (3.12)

implies the need to evaluate the unknowns F 1 and F ; 3 for each pipe. This would require even more
ghost cell evaluations than the reconstructions on the boundaries. Thus, we instead assume a zero-
extrapolation of R?”’" for cells Cy and Cy,; and use the extrapolated values in the central difference
seen in Eq (3.16); that is, we use

oS AR A e [ )
b ¢ Ax| ¥} ‘I’O y Ax| ¥V b SV

N+1

Both this and the first-order reconstructions at pipe intersections imply a first-order method at the
junctions and, thus, everywhere in the domain. In the near future, we intend to expand upon this, the
first-order time discretization, and the piecewise-constant initial data within the half-Riemann
problem (3.23) to enhance the proposed scheme to be fully second-order accurate.

3.6. The discrete low mach/high friction limit
3.6.1. The asymptotic-preserving property

In this section, we show that in the limit as € — 0, the method converges to the asymptotic state
in Eq (2.8). Consider the following asymptotic expansions for the discretization of p, u, and p, which
follow from §2.2:

7! _p(O)n_I_gZp(Q)n_l_.” ,

n (0) n 2. (2)n

Wp=u; +HEUT A+, (3.28)

p@) = (00) + Ao P

and analogously at time #"*!. We want to show that as the proposed method advances in time, it keeps
the asymptotic state up to the predicted order of accuracy. To this end, we wish to find a bound on the
asymptotic expansion for the time-advanced solution

(0),n+1

[(5(0),n+1)7] +%—(O),n+lu(0),n+l ‘

j 7 Pj j

Since the pressure to friction balance in the asymptotic state arises from the momentum equation in

system (2.1), we start with a slightly manipulated form of the discrete approximation for (p_u);?“ in
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Eq (3.17):
2

£ aAt
At

——\n u,n —n+1 n—n+l| _
((pu)j + AR — ?D,doj+ - Wi ) =0.

2

Note that the left-hand side is effectively the local truncation error multiplied by £°. Here, we first

substitute in for R7™" using Eq (3.22), resulting in the form

82

At

aAt
£2

& AH(Ax)?
D} - ‘PJ(P”)J'H) A Ci 2

(@)’; — AtDF™(U") -

where C; comes from the leading order of diffusion Z)j Zf’ that appears within the O(£7%(Ax)?) term of
2

Eq (3.22). Substituting in I::p”(U;?) from Eq (3.3) and ‘I”,‘ from Eq (3.10), we obtain

=C; - (Ax)*.

B Dx(puz)’; - Dx(P(ﬁ?) - anﬁ;!) - a"Dx[)'J%“ — %@);ﬁ] M';

| @) - @0y
At

We then apply the asymptotic expansions from Eq (3.28) and take £ — 0, resulting in

(ORC

Ol = @D, (" - P ) = €y - (Ax)?.

—(0),n)Y CoK_0pns1_ (0)n+1
D"[(p' )]+ Pj uj J J

J 2 Vi J

Since D, represents the second-order central difference operator, we equivalently have

0)n

_ Y Csk_
[(p(p),n)] + LK Omnel st u

i 2 ¥ j

= d'(p" =) +(C = Ci)(B),

where C, represents the the leading error coeflicient from using central difference. Lastly, applying
Taylor series to the terms at time #* about time #**!, we obtain

[(}530),“ 1)7] N % pOnH O

(0),n+1
J

= C3At + (C, — C)(Ax)%.

Here, C; denotes the leading error term from the Taylor series. Therefore, we can bound the asymptotic
expansion at time ¢**!:

— Y C(;K_
7]« e

=5, ¢ Ol

‘ < C(At + (Ax)D),

with C = max {|C;|, |C, — C4|}, hence, implying that the proposed method preserves the asymptotic
state up to the order of the scheme.

The limiting scheme is accompanied by the (limiting) coupling conditions (3.24) at the boundary
implemented again using ghost cells. Note again that by the discussion made in §3.5.2, the pipe entries
and exits occurring at intersections would have a bound that is instead first-order in both space and
time.
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3.6.2. Full discrete scheme at the low mach/high friction limit

We now present the reduced form of the proposed scheme shown in Egs (3.16) and (3.17). As we
will show, this reduced form properly approximates the system (2.1) at the limit € — 0, which reads

o+ (ou), =0,
Csk (3.29)
Px = —Tpulul

Prior to the limiting discretization, we would like to note that in the actual numerical
implementation, any division of € is replaced with max {g, €"}, with €” denoting machine precision, to
avoid any division-by-zero errors. Furthermore, all numerical divisions by € = 0 are safe, including
that within ¥/ in Eq (3.10). We bring this up since the limit

lim 1 2
im = ,
£—0 82‘1’" AtCsklu’]

arises often in the limiting scheme—and although the above appears problematic, the true numerical
implementation of the above limit reads

lim

m C n _1
0 2 (6 A= W ') :

and is free of issues when ¢ =
proceed as if € = 0 is not replaced by the machine precision parameter €”, and continue knowing any

We start by looking at the limiting scheme for (,ou)’]’fr1 written in Eq (3.17). After applying the above
limit and simplifying the numerical fluxes R7"" when & = 0, we obtain

2
C K|M"|

(ow)t! = [ D.p}+d'D,(p}" - p}) + —((Z)"”) - (05", 1)] (3.30)
where D, again denotes the central difference operator, and (Z)g”);l denotes the diffusion term from
2

Eq (3.19) for the pu numerical flux at the limit € — 0, and reads

)" ]+l - n, - n n—n n n—n
(Dg ),-+1 - - [2(pj+' —da Pj+1)‘ (pj ‘“P/‘)‘(Pjn ‘“Pj+1)]
2o2st, =T ? ’

5 i
S_ 1
Jta n n n—=n

- —2[2(17;; —d'pl,, ) (7} -a'p}) - (P} —a pj+1)]-
Z(SJ,' =S 1)
Jt3 Jt3

We again can see that the limiting scheme (3.30) does indeed satisfy, with first-order accuracy, the
limiting equation for p, seen in Eq (3.29) and, thus, the AP property. The limiting scheme for ,0’“rl
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looks fairly similar to the original scheme written in Eq (3.16), as the majority of terms do not contain

&. The resulting limiting scheme for p’}” reads

At
—n+1 n n  —n+l n n —n+1 o —ntl
e (O i (ORI e el
2 1 " . (3.31)

where

G, = |+
Vs T ol T 1)

j+l
While it is unclear in the limiting scheme, one can show Eq (3.31) satisfies the following equation up
to the first-order consistency error:

B 2
pt - C5K|I/t|px x9

which is equivalent to Eq (3.29) after a substitution.
4. Numerical results

In this section, we demonstrate the accuracy and performance of the proposed AP scheme on pipe
networks in several numerical experiments conducted on the isentropic Euler equations in (2.1). For
all examples, we follow the CFL condition in (3.18) and take the CFL number v = 0.45; in the source
term of (2.1), choose Cs = 1; take the minmod parameter 6 = 1.3; and set the tolerance for the Newton
solve at the junctions to be 1075,

We start with a test on a single pipe with zero friction in Example 1 to compare to previous work.
In Examples 2—4, we will conduct verifications on the two types of T-junctions—the so-called 1-to-2
T-junction, which has one pipe entering and two pipes leaving the junction, and the so-called 2-to-
1 T-junction, which has two pipes entering and one pipe leaving the junction. Illustrations of these
are presented in Figure 2. While we only consider the example T-junction networks with all pipes
having the same length, the method is of course not restricted to this and can be extended to large and
more complex pipe networks, such as those in which there are different speed regimes in different pipe
segments.

Note that according to [26], @ from Eq (3.5) must be O < @ < 1. Thus, in any & = 1 case considered
in the following examples, we follow [26] and take & = 0.5 instead of using & = &” as in Eq (3.5).

Figure 2. Illustrations of the 1-to-2 T-junction (left) and 2-to-1 T-junction (right).
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4.1. Example 1—Shocktube problem

In this first example, we look at a single pipe with no junctions and turn off friction; i.e., we set k = 0
to confirm the proposed method against existing AP methods. Note that in the presence of no friction
and no junctions, the proposed method simplifies to that of [26]. We follow the initial conditions of the
first example of [25], which considers the Riemann problem

1+& x<05

1 otherwise,

(pu)(x,0) =1, p(x,0) = {

on the domain [0,1] with y = 1.4 and Neumann boundary conditions. Note that since [25] defined their
system slightly different than that in Eq (2.1),  in this paper corresponds to &* in [25].

We compare results to the exact solution of the Riemann problem for € = 1,0.1, and 0.01 at the end
times of t = 0.125,0.02, and 2.5x1073, respectively, in Figure 3. The coarser mesh sizes are selected,
1.e., taking 50 discretization cells for € = 1, 125 cells for € = 0.1, and 500 cells for € = 0.01, are taken
to match those in [25], and the refined meshes are included for further comparison. As expected, the
results shown in Figure 3 are more diffusive as € approaches zero. This is due to the fact that the stiff
portion of the system (3.1), computed with an implicit method, significantly outweighs the non-stiff
portion of the system as € — 0.

P 14 P
1.0001 T
—Exact 1 kY — Exact
—n=125 —n =500
"""" n=1250 1.00008 X ~n = 5000

- 1.00006

1.004 - 7 1.00004

1.002 1.00002

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

1.005

1.004

1.008

1.002

1.001

-------- n = 5000

[n = 1250 1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Figure 3. Example 1: Solutions to p (top row) and pu (bottom row) for the Riemann problem
with &€ = 1 at r = 0.125 (left column), € = 0.1 at t = 0.02 (middle column), and € = 0.01 at
t = 2.5 x 1073 (right column).

4.2. Example 2—Convergence tests

In this first example including junctions, we consider a problem with a smooth density and velocity
profile to confirm the convergence rate of the proposed AP method. We consider both the 1-to-2 and 2-
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to-1 T-junction setups with ¥ = 5/3 and k = 1073, For ingoing pipelines, we take the initial conditions

04
1.1 x< —
£
04 0.8
u(x,0) =0, p(x,0) =491+ 0.1sin (Ex) —<x< —,
0.8 £ &
0.8
1 X > T
£

and for outgoing pipes we take the initial conditions p(x, 0) = 1, u(x,0) = 0. We will take each pipe to
have a length of 7!, as we are more interested in the investigating behavior near the junction than the
inlet/outlet boundaries. These pipe lengths allow for the smooth profile to pass through the junction
before the final time of # = 0.2, but the smooth profile will not reach the inlets/outlets by final time.
At the inlets, we take a Dirichlet boundary condition of p = 1.1, and at the outlets we take Neumann
boundary conditions.

Table 1. Example 2 (1-to-2 T-junction): L' errors and corresponding experimental
convergence rates.

Ax [lo(x, Dax2 = p(x, Daxll Ratey,(0) [lCx, Daxj2 = u(x, Daxll Ratea (1)
e=1 1/80 3.54e-04 — 2.44e-04 -
1/160 1.82e-04 0.96 1.46e-04 0.75
1/320 9.29¢-05 0.97 8.25e-05 0.82
1/640 4.65e-05 1.00 4.36e-05 0.92
1/1280 2.32e-05 1.00 2.27e-05 0.94
e=0.1 1/10 1.43e-02 - 1.39¢-01 -
1/20 7.72e-03 0.89 7.57e-02 0.88
1/40 3.89¢-03 0.99 3.93e-02 0.94
1/80 1.97e-03 0.98 2.05e-02 0.94
1/160 9.85¢-04 1.00 1.05e-02 0.96
£=0.01 1/10 8.59¢-02 - 1.20e+01 —
1/20 3.08e-02 1.48 3.43e+00 1.81
1/40 9.53e-03 1.69 1.08e+00 1.67
1/80 2.82e-03 1.76 3.08e-01 1.80
1/160 9.65e-04 1.55 9.94¢-02 1.63
£ =0.001 1/10 2.89¢-02 — 8.21e+00 —
1/20 9.10e-03 1.67 1.38¢+00 2.58
1/40 3.06e-03 1.57 5.28e-01 1.38
1/80 1.01e-03 1.60 2.22e-01 1.25
1/160 3.64e-04 1.47 1.04e-01 1.09

Since the exact solution is unknown, we obtain the experimental L' convergence rates by computing
the solution on a number of different meshes, then use the Runge formula

s 1 x s 1 X
Rates, (o) = logz( llo(x, Dax — p(x, Doaxlli )’

lloCx, Dax2 — p(x, Daxlli

where p,, denotes the density solution computed on a uniform mesh with all cells having width Ax.
The convergence rates for u# can be computed analogously. We present the L! errors and rates for p
and u for the 1-to-2 junction in Table 1 and for the 2-to-1 junction in Table 2, both of which confirm
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the expected first order of accuracy when the fluid passes through the junction. Note that for the € = 1
case, we use a more refined grid to indeed confirm the first-order convergence for . In addition, note
that as € — 0, there seems to be a partially higher order convergence rate in Tables 1 and 2. However,
this appearance is only due to the evolution of u being near zero everywhere (in this case, starting at
u = 0). In the case when u = 0, one can show that the resulting asymptotic scheme in Eq (3.31)
approaches second-order accuracy, but this is only specific to small # and is not expected otherwise.

Table 2. Example 2 (2-to-1 T-junction): L' errors and corresponding experimental
convergence rates.

Ax [loCx, Daxso — pCx, Daclli Rate,(p) [leCx, Daxn — uCx, Daglly Raten (1)
e=1 1/80 3.44e-04 — 2.65e-04 —
1/160 1.76e-04 0.97 1.54e-04 0.78
1/320 9.02e-05 0.96 8.84e-05 0.80
1/640 4.53e-05 0.99 4.70e-05 091
1/1280 2.27e-05 0.99 2.47e-05 0.93
e=0.1 1/10 1.49¢-02 - 1.41e-01 —
1/20 6.98¢-03 1.10 8.33e-02 0.76
1/40 3.35e-03 1.06 4.42¢-02 0.91
1/80 1.67e-03 1.01 2.27e-02 0.96
1/160 8.42e-04 0.99 1.14e-02 0.99
e =0.01 1/10 9.23e-02 — 1.19¢+01 —
1/20 3.84e-02 1.26 3.01e+00 1.98
1/40 1.19e-02 1.69 9.56e-01 1.66
1/80 2.99¢-03 1.99 3.12e-01 1.61
1/160 9.44e-04 1.66 1.21e-01 1.37
£ =0.001 1/10 2.93e-02 - 8.16e+00 -
1/20 9.33e-03 1.65 1.35e+00 2.60
1/40 3.18e-03 1.55 5.12e-01 1.40
1/80 1.07e-03 1.57 2.11e-01 1.27
1/160 4.02e-04 1.42 9.78e-02 1.11

4.3. Example 3—Inlet discontinuity

For the next example, we look at the evolution of an initial jump discontinuity that starts at the
inlets, resulting in a wave that travels through the junction. For all pipelines, we consider the initial
conditions

po(x,0) =1, u(x,0) =0,

with y = 5/3, k = 1073, and each pipe having a length of 100. At the inlets, we take a Dirichlet
boundary condition of p = 1.3, and prescribe Neumann boundary conditions at the outlets. We look at
this initial set up for both the 1-to-2 and 2-to-1 T-junction networks.

We use the proposed AP scheme to compute the solution for & values of 0.1, 0.01, and 0.001 to
the final times of = 10, ¢t = 1, and ¢ = 0.1, respectively, to capture the behavior of the discontinuity
through the junction. The resulting solutions for p and u when taking a spatial mesh of 4000 cells
in each pipeline are presented in Figure 4 for the 1-to-2 T-junction and in Figure 5 for the 2-to-1 T-
junction. In these figures, the influence of the friction source term is very clear, as it appears as if the
flow did not yet reach the junction in the € = 0.001 results. This is, however, not the case and is only a
result of the strong friction; see Figure 6, where we plot the outgoing pipeline results for € = 0.001 at
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t = 0.1. In addition, we see that in the cases that produce discontinuities in the solution, there are no
spurious oscillations present.

Lastly, for this example, we run the simulation to long times to ensure we obtain the expected
behavior of density approaching a constant state. Due to friction, the steady state is p, = —%pulul and
takes quite long to converge. Therefore, we show this by plotting the densities for the 1-to-2 setup at
multiple times (¢ = 20,200, 500) for cases € = 0.01, € = 0.001, which are presented in Figure 7, and
clearly present a convergence to the constant state p = 1.3 as time approaches infinity.

1.2
1.1
E 200
1.3
1.2-
1.1
- 200
u
10—
5.
200 0. ~|
100 -~
PSP 100 150
0 o
y X

Figure 4. Example 3 (1-to-2 T-junction): Solutions for p (left column) and u (right column)
fore = 0.1 at t = 10 (top row), € = 0.01 at r = 1 (middle row), and € = 0.001 at r = 0.1
(bottom row).
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Figure 5. Example 3 (2-to-1 T-junction): Solutions for p (left column) and u (right column)
fore = 0.1 at t = 10 (top row), € = 0.01 at r = 1 (middle row), and € = 0.001 at r = 0.1
(bottom row).
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Figure 6. Example 3: Results for p (left) and u (right) of the outgoing pipeline(s) for the
1-to-2 T-junction (blue) and the 2-to-1 T-junction (red dotted).
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Figure 7. Example 3 (1-to-2 T-junction): Solutions for p for the € = 0.01 case (left column)
and the £ = 0.001 case (right column) at times ¢ = 20 (top row), ¢ = 200 (middle row), and
t = 500 (bottom row).

4.4. Example 4—Comparison with the CU explicit scheme

In this example, we test the importance of the &-independent time-step restriction and compare
the proposed AP scheme against the CU finite volume discretization with a forward Euler time-step.
The forward Euler time-step was selected so that the explicit scheme matches the first-order in time,
second-order in space accuracy of the proposed AP scheme.

We consider the 1-to-2 T-junction with the same v, «, initial conditions, and boundary conditions as
that of Example 3, and run both the proposed AP scheme and the related explicit scheme to a final time
t = 10 for the € values of 0.1, 0.01, and 0.001 on various spatial discretizations. We present the run
times of both schemes in Table 3. In the run times, we see that for £ = 0.1, the run times for the two
methods are on the same order of magnitude. However, the difference becomes drastic as € — 0. It is
clear in Table 3 that the AP scheme keeps all run times roughly the same for varying €. Conversely,
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the explicit scheme has the expected e-dependence within the experimental run times—which, for
e = 0.001, results in simulations that are a daunting 140X slower than that of the AP scheme.

Table 3. Example 4: Run time comparisons of the proposed AP scheme and CU
discretization with forward Euler time-stepping for various & and mesh sizes.

Ax AP Scheme Run Time Explicit Scheme Run Time
e=0.1 1/20 244 s 4.05s

1/40 9.14s 16.1s

1/80 3745 65.5s
e=0.01 1/20 2.89s 46.8 s

1/40 11.0s 1925

1/80 44.0s 782s
e =0.001 1/20 291s 406 s

1/40 11.0s 1610 s

1/80 43.7 s 6450 s

5. Conclusion

In this study, we developed a novel asymptotic-preserving method for the isentropic Euler equations
with a friction source on pipe networks. As a direct result, this would allow the simulation of full
network—possibly containing flow in different regimes in different segments—to be computed in its
entirety using solely the proposed method.:- To address the difficulties and stiffness of the system
in low Mach or high friction regimes, we split the flux into pieces that represent the slow and fast
dynamics. This allows for an explicit time-step on the non-stiff (slow) dynamics portion, and, by
using a method based on Rosenbrock-type Runge-Kutta schemes, allows for an implicit time-step
for the stiff (fast) dynamics that do not require a nonlinear solver. In turn, we were able to confirm
both experimentally and theoretically that the proposed scheme is AP in the sense that it provides
a consistent and stable solution in low Mach and high friction regimes. Most importantly, the CFL
stability restriction is only dependent on mesh size, rather than requiring dependence on both the
mesh and the small limiting parameter & within the system. This method within each pipeline is
then extended to entire pipe networks, in which coupling conditions must be used at pipe-to-pipe
intersections to ensure a mathematically well-posed problem. We show that, even in the limiting
regime, the coupling conditions remain well-posed. These coupling conditions are used to set the
ghost cell values on each pipeline, thus allowing a seamless coupling of the AP method across pipe
junctions within the network.

Since the AP method is combined with a friction source term and pipe junctions, both the asymptotic
state in the low Mach/high friction regime and the boundary conditions are nontrivial. Because of this,
in addition to a first-order approximation in time, the scheme is currently limited to first-order. The
second-order extension to the proposed method is, to our knowledge, nontrivial, as it would require,
e.g., one-sided reconstructions, adjustments to the half-Riemann problems, and approximating fluxes
in the ghost cells. In future work, these difficulties are something we plan to address in hopes of
making a fully second-order AP scheme for isentropic flow in pipe networks. In addition, there is a
question in the consideration of making the scheme well-balanced; i.e., preserving the discrete steady
states of the system exactly, in addition to asymptotic-preserving property. However, due to the flux
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splitting, and different spatial discretizations within the stiff and non-stiff portions, we believe this to be
nontrivial. Thus, ensuring the combination of the well-balanced and asymptotic-preserving property
for pipe-networks is also planned to be addressed in future works.
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