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Abstract: This paper has introduced a novel fully discrete hybridizable discontinuous Galerkin
(HDG) ensemble Monte Carlo method (FEMC-HDG) tailored for solving the heat equation with
random diffusion and Robin coefficients. The FEMC-HDG method solves a single linear system with
multiple right-hand side vectors per time step. We established stability analysis and error estimates
that are optimal in the spatial and first-order accuracy in time for the L*(0, T, L*(D))-norm error
estimate. Numerical experiments were included to confirm the theoretical convergence and showcase
the method’s efficiency.
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1. Introduction

This paper concentrates on the numerical simulation of a heat problem involving random diffusion
and Robin coefficients. The problem is to find u(z, X, w) and p(t, X, w) such that

k(t, X, w)p(t, X, w) — Vu(t, X, w) = 0, in[0,T]x D XxQ,

W _V - ptx, ) = £(5,%, w), in[0,T] x DX Q,

Pt X, ) -m =0, on [0, T] X dDy X Q, (1.1)
p(t.X,w) - n = p(t,X, w)(g(t, X, w) — u(t,x,w)), on[0,T]xID; xQ,

u(0, X, ) = u’(x, W), in D x Q.
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Here, D C R? (d = 2, 3) is a Lipschitz domain with boundary 4D = 8D, UdD,, where 8D, and 4D, are
two non-overlapping parts. The vector n is the unit outward normal to dD, and Q denotes the sample
space.

Many problems in engineering and physics involve uncertainty. For example, in heat transfer
dynamics, material properties, Robin boundary conditions (convective heat transfer coefficient),
thermal conductivity (diffusion coefficient), etc., are affected by various forms of uncertainty. These
uncertainties make the accurate prediction and analysis more challenging. For these problems, many
numerical approaches have been devised [1,2]. In addition to stochastic finite element methods [3],
stochastic collocation methods [4—7], and polynomial chaos methods [8], the Monte Carlo (MC)
method is widely regarded as another very important approach (see [9-12]). The advantages of the
MC method are that its convergence rate is independent of the dimensionality of the random
parameters, and it is easy to implement. For the MC method, we first perform M independent and

identically distributed (i.i.d.) samples of random variable w. The i-th (i = 1,2,--- , M) realization w;
satisfies
Kki(t, X)pi(t,X) — Vu;(t,x) = 0, in [0, T] X D,
Ou(t, .
uét 2 V- pi(t,x) = fi(t,x), in [0,T] X D,
pit,x)-n =0, on [0, T x AD,, (1.2)
pi(t, X) ‘n = pi(ta X)(gi(t’ X) - ui(ta X))a on [Oa T] X aDla
ui(0,x) = u)(x), in D,
where we assume that p;(t,x) = p(t,X,w;) and «;(¢,X) = k(¢t,X,w;) fori = 1,2,---, M, with similar
expressions to the other variables. The average
| X
Yy Mi(ta X)
W&

of the solution for problem (1.2) is used as an approximation of the solution for problem (1.1).

Although the MC method is simple and easy to implement, its convergence speed is very slow. To
improve this method, Jiang and Layton [13] proposed an ensemble approach for the random evolution
equation. Since its proposal, this method has been widely promoted and applied [12, 14-18]. In [16],
a parabolic problem with a random diffusion coefficient is solved by the ensemble MC and finite
element method. The error estimate is not optimal in space. To improve this, Yong et al. in [19]
presented an optimal error estimate using the finite element method with ensemble MC. For the same
problem as [16], Li and Luo used the ensemble MC and HDG method to approximate it and obtain
the optimal error estimate about space. Similarly, for a parabolic problem with random diffusion and
Robin coefficients, Yao et al. [18] used the ensemble MC and finite element method to approximate it
and find the sub-optimal error estimate in space.

The discontinuous Galerkin (DG) method is an excellent approximation method for problems
concerned with partial differential equations (PDEs). The DG method is particularly well-suited for
problems with discontinuous coefficients. However, the main disadvantage of DG methods is the
large number of degrees of freedom. The HDG method (see, e.g., [20]) approximates the solution’s
flux and trace by introducing numerical fluxes and numerical traces in a mixed formulation.
Compared to DG methods, HDG methods significantly reduce the number of globally coupled
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degrees of freedom. To date, the HDG method has been utilized for a variety of problems, including
convection-diffusion problems, flow problems, and hyperbolic equations (see, e.g., [15,21-23]).

In this work, we study the numerical approximate of a parabolic problem with random diffusion
and Robin coefficients by the ensemble MC and HDG methods. By introducing the flux p, the
parabolic problem with random Robin coefficients and diffusion coeflicients can be transformed into
problem (1.1). After using MC sampling, the problem involves solving a large number of
problems (1.2). Introduce two averages for the Robin coefficient and diffusion coefficient,
respectively, and construct an ensemble format. Then in the calculation of each time step, a coefficient
matrix can be shared, which reduces the computational complexity (the details can be seen in
Eq (3.12)). The FEMC-HDG method has first-order temporal accuracy and optimal L? convergence in
spatial space.

The paper is structured as follows: In Section 2, the necessary notations and preliminaries are
provided. In Section 3, we introduce the fully discrete HDG ensemble scheme for problem (1.2), along
with a comprehensive analysis of its stability and convergence. In Section 4, two numerical examples
are provided to illustrate the effectiveness of the proposed method. Finally, concluding remarks are
presented.

2. Preliminaries

In this section, we introduce some notations that will be used throughout this work.

Let (+,-) and || - || be the inner product and the L*(D) norm, respectively. We adopt the standard
Sobolev space notation W*9(D), with the corresponding norm || - ||ws4(py and seminorm | - [ysq(p), Where
s>0and 1 < g < co. For convenience, we use H*(D) := W*3(D). Specifically, the norm || - || ms(py and
semi-norm | - |ys(py correspond to H*(D).

We assume that (Q, ,P) is a complete probability space, where F C 2% represents the o-algebra
of events, and P : ¥ — [0, 1] denotes the probability measure. H € L]}E,(Q) 1s a random variable. The
expectation of H can be expressed as

E[H] := fH(w) dP(w).
Q
gonsider a d-tuple 6 = (61,---,04) with length |6] = Z,il 0;, where each ¢; € N*. Let the space
WP(D) = L{Pf(Q, W*P(D)) consist of random functions u# : Q X D — R, which are measurable with

respect to the o-algebra ¥ ® B(D), where B(D) denotes the Borel o-algebra on D. The norm in WP (D)
is defined as

1/p
) , 1< p<+oo.

Zf|65u|p dx
D

|o]<s

s, 2= (E Wil ) = [E

Ifu e W”’(D), then for almost every w, u(w,-) € W*?(D). Additionally, for |§| < s, the derivatives
A u(-,x) are in LY (Q) for almost every point on the domain D. Lastly, we define H*(D) = L3(Q, H*(D)).
We introduce the tensor product Hilbert space

X := L*(0,T; H'(D)) = L3(0,T; H'(D); Q),
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where the inner product is defined as

T
(u,w)x := E[f f(Vu -Vw + uw) dxdt].
0 Jbp
12
|2l x I—( [f f IVul* + u? dxdt]) .
D

Let 77, be a quasi-uniform triangulation of D. dDy N dD, are the triangulation nodes. Thus, D can
be written as the union D = | Jgcr, K, where each element K has a diameter hx. We further define h
as h = maxgey, hx. The set 07}, is defined as {0K : K € 7,}, and ¥, represents the collection of faces
F from elements K € 7. The space of polynomials of degree £ on K is denoted by P,(K). We then
introduce the following discontinuous finite element spaces:

The norm is expressed as

Vii={v e [LD)] : vk € [PUAK)I. VK € T,
W = {w € LA(D) : wlg € Pi(K), YK € T},
M. = {,u € LX(F3) : plr € Po(F),VF € ﬂ}

The inner products are defined as follows:

w7, 1= D 0wk, (oPary = D Pl &Phap, = D &oPakeam, -

KeT, KeTy, KeTy,

where (v, w)p := fD ywdx, and (v, W)sp = faD vwds. So we define ||w||§~h = (W, W),
We assume that the constant C is positive and changes throughout the paper for different
occurrences. Crucially, it does not depend on the discrete parameters M, At, or h.

3. The FEMC-HDG scheme for the stochastic heat equation

In this section, we begin with outlining several assumptions, then develop an FEMC-HDG scheme
for problem (1.2), and proceed to design the FEMC-HDG algorithm. Following this, we present results
on stability and error estimates for both the FEMC-HDG scheme and the FEMC-HDG algorithms.

The mean values of the Robin boundary conditions and diffusion coefficients across the ensemble
can be defined as follows:

1 M
px) = o ;pi (t,X), 3.1)
and
1 M
K%)= 02 ) k(%) (3.2)

respectively. In order to derive the stability and error estimates for the FEMC-HDG algorithm, we
draw on the work of [16] and make the following two assumptions:
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(H1) : Let kmax> Kmins Pmins and pmax be four positive constants such that for any ¢ € [0,T], the
probability is expressed as

P{w € Q; min«(t, X, w) > Kmin} =1, 3.3)
xeD
P {w € Q; max «(t, X, w) < Kmax} =1, 3.4)
xeD
and
P {w € Q; min p(t, X, w) > pmin} =1, 3.5
x€8D1
P {w € Q; max p(t, X, w) < pmax} =1. 3.6)
)CEC')Dl

(H2) : Let k., k_, p+, and p_ be four positive constants, such that for every ¢ € [0, T'], the probability
is stated as follows:
Pl € Qi < k(6% ) = Rlap < i} = 1, (3.7)

and
P{wi € Q;p_ <|po(t,X,w;) = Plewgp, < p+} = 1. (3.8)

Hypothesis (H1) ensures almost sure uniform coercivity, while hypothesis (H2) imposes a uniform
bound on |«(t, X, w;) — k(¢, X)| with a probability close to certainty. Similar properties are also assumed
to hold for p(¢, X, w;).

For a discretized physical space, problem (1.2) seeks (p(t, -), uu(t, ), uin(t, -)) € Vi x Wi x M{ such
that, for all (ry,, vi, i) € Vi x Wi x ML,

(&iPin> 1), + Wins V - 1), = CUins T - MYr, = 0,
Oin, Wi, + (Pins VWi) g, — (Pin - m, Wh)afrh = (fi- Wi, » (3.9)
Pin M, ) g, + Pillins ) op, = Pi&is ndop, »i = 1,2, , M.

The numerical flux p;, is defined by:
Pin = pin — T(uy, —up)n,  on 97, (3.10)

where 7 represents the stabilization parameter. In this work, we set 7 = 1 since we do not address
multiple physical scales. Substituting Eq (3.10) into Eq (3.9), we obtain the semidiscrete HDG
scheme of problem (1.2), which seeks (pi(t, -), uin(t, -), un(t,-)) € Vi x Wi x M. such that, for all
(s Vi i) € VEXWEXME i=1,2,--- | M,

(KiDin- rh)Th + (ujp, V - rh)T,, - @h, ry - 11),37-h =0,
(Oins W), + (Pins YW, = Pin - W Wi g, + {Tin = Uin), Wi)ar, = (fis Wi, » (3.11)
(Pin 0, ) o, — T = Uin)s i) g, + Oillins M )gp, = (Pi&ir Mr)ap, -
We divide the interval [0, T'] into N equal parts, with a length of Az for each part. Denote ¢, = nAt
forn = 1,2,--- ,N. At each time t = t,, the functions u;, f;, g, pi, ki» p, and k are denoted by

u?, ', g, pl, k!, p", and k", respectively. Using the backward Euler method to approximate the time
derivative of Eq (3.11), we can get the fully discrete non-ensemble MC HDG (FNEMC-HDG) scheme.
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Here, we omit the details. By applying Eqs (3.1) and (3.2) to (3.11) and performing simple algebraic
calculations, we can obtain the FEMC-HDG scheme: Seek (p?, u’,,w),) € Vi x W x M} such that, for
all (l‘h, Vh,/.lh) € Vf; X W}f X Ml[z’

(u?h’v'rh)'rh+(I_(np?h’r/’l)‘7“h_(ﬁ?h’rh'n>57-h :_((K?_R’l)p?h_l7rh) , = 172”' ’Nv (3.123)

Th
n n—1
ui B ui n 7 n =
(%’ Wh) = (V- Pl Wh)7-h +{Py, - n’:uh>afrh + (T, — Ug), wh — :uh>a¢h + @sz?h’ﬂh%pl
Th
= (K Wiy, + 0188 o, = ((0F =Pty s pan),,y o = 1,2 N, (3.12b)

o .. . 1 — —
The initial conditions are given by u), = '), p% = —Vu), and u), = ‘4, where II"*! and I
K

represent the L? projection operators I1*! : LX(K) — Py (K) and TI¢ : L2(F) — P,(F), respectively,
which satisfy:

(I wovn) = nv . Vv € Peaa(K), (3.132)
<ﬁ€+lW,#h>F =W, up)p, Y € Pe(F). (3.13b)

To solve the stochastic partial differential equation (SPDE) (1.1) using the FEMC-HDG scheme,
we first employ the MC method to generate i.i.d. samples. Subsequently, we apply the FEMC-HDG
scheme to solve the resulting Eq (1.2). The solution of Eq (1.2) is used to compute the expected value
of the solution to the SPDE (1.1). We present the FEMC-HDG algorithm which consists of three main
steps:

Step 1. Generate an i.i.d. sample set for the initial conditions, boundary conditions, source term,
diffusion coeflicients, and Robin coefficients. For the i-th realization, these samples are denoted as

u? = uO (" (l)i), 8i=8 (" ) (l)i), ﬁ = f(’ ) Cl),‘), K = K(" K] wi)a and Pi=p ('7 K) (U[), reSPeCtiVely-

M M
Step 2. Calculate p" = t i; p(t,X,w;) and K" = ﬁ > k(t,,X,w;). For the i-th sample, solve

= i=1
Eq (3.12a) and (3.12b) to determine uy, and Pl forn=1,---,N.

M M
Step 3. Forn = 1,--- , N, compute i IR i 2. P, to approximate the expectation E[u"], E[p"],
i=1 i=1

respectively.

The FEMC-HDG algorithm effectively combines the scheme (3.12a)—(3.12b) with the random
sampling method. It preserves the benefits of the ensemble approach used for deterministic PDE:s,
such as employing the same coeflicient matrix for all simulations at each time step. As a result, this
approach involves solving a linear system with several right-hand side vectors, significantly reducing
computational expenses (refer to [16]).

4. Stability and convergence analysis
In this section, we carry out the stability analysis and error estimates.

4.1. Stability
The FEMC-HDG scheme (3.12a)—(3.12b) has the following stability results.
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Theorem 4.1. Assume that f; € L2 (0, T: LZ(D)), g €L? (0, T; LZ(BDI)), and u) € 12 (H ! (D)), and that
hypotheses (H1) and (H2) are met. The FEMC-HDG scheme (3.12a)—(3.12b) is stable if

Kmin — ks >0, and ppin —p+ > 0. “4.1)

Moreover, the numerical solution to (3.12a)—(3.12b) satisfies the following inequality:
N
max E (|03 l17, ] + B (Il — w11, | + Arz [ vVeG, =)l |

1<n<N
n=1

N
+ (kin = k)AL Y E [P35, ] + kninAt max El1p 117, |

n=1

N
+ WA; Z E [|[i¢7h||§D]] + UminAt glnegjivE [|[i¢7h||§D]] 4.2)

n=1
N N
< C(AIZE[||87||§DI] + AtZE[”fin”gTh] 4 E[Ilu?hll,%_h]
n=1 n=1
+ A (IR, | + A 1)), | )

Proof. By selecting (ry,, wy, up,) = (pl,, h) in scheme (3.12a)—(3.12b), we obtain

R Pl D)7 + U, V - Pl — W Pl - War, = (& = RP5 Y Pi) 7 4.3)
ugl__ugzl n n n 7 - n - n -
A wy | = (V- Pl V)7, — (Pl - g Yo, + (T(uy, —wyy), uhy, — wy dor,
Th
+ "Wy Wy o, = (fI U7, + <018} W Yap, —(0f — PV, - o, - 4.4)

Applying the polarization identity (a — b)a = 3[a* — b* + (a — b)’] to Eqs (4.3) and (4.4), and then
integrating over the probability space, we derive that

m([ 5, = B 0, )+ 5, = a1
+ E [I1V7 @y, =TI, | + EL® B )7 | + B B0, 1 ap, |
= —5|(6 —Rpl B, |~ B (<00 = 0 T | + B i)
+ B (078!, o, .

By utilizing the condition (3.6), and applying Young’s inequality and the Cauchy-Schwarz inequality
on the right-hand side of Eq (4.5), we obtain for any ¢; > 0 (i = 1,2, 3) that

4.5)

~B (& =R ), | - B! - 2w

< B[ = &l 1Bl | + E|lof = B, [Ty llon, 1 1o, | (4.6)
1 €

w—mmp( P15, + ‘||p:’h||2¢,,) 10} = Pl (£|W{1H§Dl+52|u,7h||§D1)],
2

<E +E

Networks and Heterogeneous Media Volume 20, Issue 1, 65-88.



72

E[(f uj)r] + B0} gi widan 11 < E LI 7 llullz,] + pmaxE [1g7 lop, [Willon, ]

< SB[, |+ 5B W, | + B g, | + 2 (1T,

By combining the estimates given in Eqs (4.6) and (4.7), applying the conditions (3.3), (3.5), (3.7), and
(3.8), and multiplying Eq (4.5) by At, we find that forall 0 < o7y < 1,

%(E[Ilu?hll%] E (Il ||Th])+1E[||u,h—u U5, + AE [IVTGe, = )15, ]

K €
+ At (Kmino'l - 2—;)E [”p?h”?rh] + At (Pmin0'1 }20—22 - —3) [lr"hllaDl]

4.7)

+ Atkmin(1 = o) (E I35, | - B[ P51, |) + Ae (Kmma o) - ZK—EI) (125715, (4.8)

+ Atpmin(1 = o) (B I35, | - E [I025 15, ) + At (pmma o) - —) [zl

< %AﬂE [l 1] +

AE g1, | + S (1713, ]

According to the condition (4.1), choosing

p max
26

_1 _ _ _pmin_p+
o1=7; e=6=1 =——7—,

from Eq (4.8), we obtain

% (E [”ulnhll%_h] [” ||7_, ]) lE [“uzh - u ||7—h] + AfE [” \/_(Mlh ih)”(%(]—h:l
o [, + Atp—‘“‘“4 B (I B, ) + A2 (21 8, - B 13, )
+ A [y I | + AR (E [lr’znm] B[ 5, |) + AR [ G

P A |lg1E, | + ?E [DAEAE

+ At

4.9)

1 n 2
< SAE |l 1] + ——
Summing Eq (4.9) up fromn = 1 ton = N, we get

N

gﬁgﬁllﬂﬂl%h E (Il — ||¢h]+2AfZE[”\/_(”zh Tl |

1

n

N
+ At{Kmin = K:) Z B (1P}, | + Atkinin max E 119717,

N
AP~ P Z B (12155, + Atomin max E[I7115,, | (4.10)

n=

< a0 S B[ | + pa—— A’ZE [1g715
n=1

N
+ At Z E [Ilf,-nll(zrh] +E [Ilu?hllzﬂ] + AtpminE [I[ﬁ?hlléDl] + AtkpinE [||p?h||,2rh] ,
n=1
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Finally, applying Gronwall’s inequality to the inequality in (4.10) yields the desired result.

Remark 4.1. According to condition (4.1), for the sequence {K,-},’-Zl, the gap between k; and k should not
exceed the fixed value of K, A similar condition applies to the sequence {p;}!" . If this criterion is not
satisfied, it becomes imperative to partition the ensemble into multiple smaller groups and employ the
FEMC-HDG algorithm on each subset. Throughout this procedure, upholding the stability requirement
within each subgroup is crucial.

4.2. Error analysis

Under the assumption of sufficiently smooth solutions to the heat conduction equation, we provide
error estimates for the FEMC-HDG algorithm. Let U n = % Zf‘il u}, and Q’;M = ﬁ Zf‘il P}, denote the
results obtained from the FEMC-HDG algorithm, which approximate the expected exact solutions. We
now proceed to estimate the error E [u;(2,)] — U v and E [pit)] - 1, 1 various norms. For simplicity,
we drop the subscript i in E [u;(2,)] — U v, and E [pi(t,)] - Q’}Wh and consider these errors in two separate
terms:

E [ui(t,)] = Uy, = B [u(t)] - E[u)]) + (E[uy] - Tyy,) = & + Ely. (4.11)
E[pi(t)] = Qi = E[pt)] - E[p7]) + (E[2}] - Qi) = 8] + &l (4.12)

The term SZ" =E [u(tn) - uZ] represents the combined error due to HDG and time discretization. The

Mh
deriving an error estimate for the FEMC-HDG algorithm, we undertake some preparatory work. First,

we review standard error estimates for the L? projections I, and ﬁ[ .

second term, &Y, = E[uz] — U7, denotes the statistical error. & and &7, are analogous. Before

Lemma 4.1. [24] Assume € > 0. Then there exists a constant C, which is not dependent on K € T,
such that

llu; = T uillx < Ch™ Mgl e ), Yu; € H*'(K), (4.13a)

oty = W ulloxe < Ch™ M]3, Vu; ee H*2(K). (4.13b)

K)’

Next, for any 7 € [0, T, let (I}, p;, T, u;) represent the HDG projection of (p;, u;). Here, II, p; and
I, u; are the components of the HDG projection of p; and u; into V! and W/, respectively. For each
K € T, the pair (I, p;, IT{, u;) satisfies the following equations:

(M pi.r), = (i1 Vr e [P (KT, (4.14)
(i, w) = e Wi Vw € Pr_y(K), (4.14b)
(Wyp; - = Tlllyus ) = (pi-m = T, 1) Vi € Py(F), (4.14c)

for every face F of the simplex K. When ¢ = 0, the Eq (4.14a) and (4.14b) become trivial, and the
projections are solely governed by Eq (4.14c¢). For these projections, they have the following property
(Lemma 4.2), which is established in [20].
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Lemma 4.2. Suppose the polynomial degree meets the requirements £ > 0 and v > 0. Then the
system (4.14) has a unique solution (va,, €v”i)' Moreover, there exists a constant C > 0, which is
independent of both K and 7, such that

£ by +

I p; = pillx < C (R 1pilyeno gy + O o ) -
.+ Cp.

TSy = willx < C (R lul s oy + 2NV - pil o )

for t,, €, in[0,£].

Lemma 4.3. For everyn =1,2,--- , N, the subsequent equations:

(KnHVpl ’ rh)T + (Ha,u?, v rh)‘T - <ﬁ€u;’, T'n- n>a‘Th

4.15)
((K - I pr, rh)T (K" (Hth pf’) , rh)'rh
and Hf no__ Hf n—1
( wl; v wli ,Wh) (V va,,wh) <val ”uh>?‘Th
h
+ <‘r (Hf;vu? - ﬁ[u?) ,Wh — ,uh>(9 <p”H£ ”,,uh> @i

= (f} »Wh)rrh + <pigi’/'lh>8D1 +

,Wh)
At Th

= @t wi)y, + (o1 = ), = (o) = PO ),
hold for all (ry, vy, ) € Vf: X W}f X Mﬁ andi=1,2,--- , M.

Proof. By the definition of IT., in Eq (4.14a), T’ in Eq (3.13b), and IT¢, in Eq (4.14b), we get

(*myp) )+ (M, V- ry) —(Tufryom),

= ( ”val,rh)ﬂ + (W, V 1)y = (Ul ry Y,

= (_"HvPl,rh) — (Vi 1)y, = ( "Hqurh) - (&P )y,

- (TGl (4 )+ (B, — 60
The initial identity has been established.

Going forward, we shall demonstrate the second identity. First, by the definition of IT, and IT}, in
Eq (4.14c), we have

<HVpl "uh>afr,, B <T (H€Vui - ﬁfulr'l>’ﬂ> <an€ l"uh>

n 11l n n n_n (417)
= <Pi (I — ”i),ﬂh>aDl + <pigi’ﬂh>8D1 ’

and

(V I pr, wh) <T (Hﬁ,uf - ﬁguf) , wh> = (s wh)ar, = (O}, wi) g, - (4.18)

Th 0Th
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Adding Eqgs (4.17) and (4.18) yields
{ _n { _n € n ol n nyyl, n
_ (V I, p;, Wh)‘Th + <1'[Vpi . n’/lh>0'rh + <T (HWui —ITu; ) , Wy — 'u>aT,, + <pil_[ u; "uh>0D1 4.19)
= (s Wn)ag, = Bty Wi)gr, + <0781 n)ap, + <P?(H€“? - M?)"uh>0D1 '

Therefore, combining with Eq (4.19), we have
(Ha,u:‘ — Hﬁ,u?‘l

At OTh

+ <T (Ha,uf -~ ﬁfu?) s Wh = ﬂh>m + <ﬁnﬁ£”?"uh>anl
6w — 116, u!

= (f,-",wh),rh + @?g?’#h>5[)1 +( — At —

+ <P:l (ﬁfu? - M:Z) ’:uh>0D1 + <ﬁ"ﬁ€M?’ﬂh>aDl B <p?ﬁ€u?"uh>w1 '

This proves the second identity.

o) = (VT o), (1Tt )
Th

n
) Wh) - (alui s Wh)B’Th
Th

Subtracting the outcome of Lemma (4.3) from the FEMC-HDG system (3.12a)—(3.12b) yields the
subsequent error equations.

Lemma 4.4. Let & = ul, — I ul, &0 = p. — Wp!, and &7 =W, — TI'u!. Then we have that the

ih
following error equations:

—n le M" "Zn
K'E r) +(. V-r) —<. r-n>
( ihoTh T f,h; h T é:th’ h o7

(4.20)
= (=) (g = i), = (e (067 = 7)),
and i -
[ . _At - ’Wh] -(7v g’Wh)‘Th * <§5: ' ""“h>a'rh
Th
+ <T (gtuh - f?hn)’wh _'uh>afrh * <pn§g’l’”h>6D1 4.21)

4 14 -1
— (a un Wh) _ (I_IWMZ1 B HW”? Wh)
- tYi» T s
' At 7

—(or (0 =)o),y + {0 =) (0} = ) ),
hold for all (ry, v, pp) € Ve X Wi x M and i = 1,2,--- , M.

Here, we determine the estimates of 8,’;", 8%, 851’" , and 85"; to establish an error assessment for the
FEMC-HDG algorithm.

Theorem 4.2. Let (u}, p!) and (u,, p},) denote the solutions to systems (1.2) and (3.12) at time t,,
respectively. Assume that f; € L*(0,T; L*(D)), g; € L*(0,T; L*(8D,)), u° € L>(H***(D)), and that the
condition (H1) and (H2) are met. Consequently, there exists a positive constant C such that

N
u'" (|2 P2 2642 2
max 181 + (ko — kAT Y IE] 1I7, < € (247 + A7), (4.22)

n=1

provided the stability conditions Ky, — ks > 0 and pnin, — p+ > 0 are satisfied.
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Proof. First, by selecting (ry,, wy, ) = (ff-;,n, A ?Z) in Egs (4.20) and (4.21), we obtain

_n pn pn W pn _ T pn )
(Kf-h» ) +(§ih’v ih)Th <§ih’ ih nm—

= (7 —K)(val )&, — (e (mopr - ). &h) (4.23)
and

( ] ~(V-€han),, + (6 nen),,

+(t (f,h —&n). fh:;f &), €,

_ (0 u' u”) _ nguf B Hfu?_] é\;u”
t%i>Sin T At > Sih -
[

(o (0w = uy). &5, + (Cof =" (T = ui ). €0,

By summing Eqgs (4.23) and (4.24), applying the polarization identity, and integrating over the
probability space, we derive

(E [uf,,,nf,h] E|ligh 17,]) + ﬁE (g — & 12| + E[I1Ve&n — €y, |
+E[®E &), |+ E[(6 8 £ an, |
= [('31 k") HvPl p?h_l)’ i)ﬂ]_E[( (Hvl’l i)’é:f;:)rrh] (4.24)
n IT; zr'l_H[ ?_1 u' n '
(@M?, lL;l)frh _( = At = ’fih)Tl E[( i (ng — U ) i >6D1]

h
B[ - (T - ). €0),,, |

+E

Utilizing the Cauchy-Schwarz inequality, the conditions (3.6) and (3.4), and Young’s inequality on the
right-hand side of Eq (4.24), we obtain the following five inequalities forany €, > 0 (i = 1,2,--- ,6):

E (K _Kn)(HvPl P?h_l)’ f;zn)ﬂ] :E[((K?_W)(He(p?_p?_l)_ 5:_])’ Z’H)Th]
- E[(6 e o o0 ), || -0,

< E[IK = Rl ol (2} = P2~ ) I €6 | + B (167 = Rl pliEl) N S | (4.25)
< 2B =R (5 - 5116, | + 2 1] 16
+E(|¢—k"|w,0)(zi€2n ol + e ||f,,)]

| ( (pt - p1). ), | < SB[t pt - g, + 2 1R, . (4.26)
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I u® — T16 u!
n o gu Wi Wi u"
El:(atui’fih )7.], - ( At 5§ih )Tl
h

= 8 (ous - S )| o (- ). ) @21)
_ -1
< Bl ~ I R -~ (W~ M) I3 ] + SE (12, .

-E [(py (= )5 ., | < P [ = a1l 15 s

. (4.28)
< ‘:;“—6415 I = w12, ] + B [1€01E,, |
and _
B|((or -5 ([ - ). 65) |
=B - 0T (- ). 85, | - B[ (et - 6, |
1 n_ =n2 o (,m -1\ 12 2 (4.29)
< G Bl =R T (] = ™) 15, + B [5G, |
+ 2%615 (10F = 5" Lo i 1B, | + SB[ 107 = 5" 151, -

By substituting Eqgs (4.25) through (4.29) into Eq (4.24), and additionally applying the conditions (3.7),
(3.8), (3.3), and (3.5), we obtain the following for any 0 < oy < 1:

(B[, - Bl 12, ]) + 5E [l - & 8, ] + A [ivee - gy,
+Ar(Kminm—%m—a—eg)E[nf{;”n%f,,]+An<mm<1—m)( ez 1z, | - E[ner12,])

€ —
+Ar(/<mm<1 01)——) 154 ||2¢,,]+Ar(pmmm—§p+—64—eS)E[||§31||§DI]

+ Mtpmin(1 = 1) (E|l€5 15, | = B{1€5 135, ) + At (pmm(l o) - 2—) g 18s,] (430

2 n n—1
Px ¢ (.n rnax 712 n Wi T U 2
< AILEE I, (57 = p") 117, | + A = [||val il | + AE [na,u,. - T”Th]

+ A%E [Iluj-1 —u" (Hﬁvu — T ul™ 1) ||T,] + — [”fzh”fr,,]
2
+Atf—€+5E[||ﬁf(u;?— - l)llaD]+Athzx [||ﬁ[u?—u?||§l)l],

According to the condition (4.1), we choose

i r el = fmnTKe o Kmn K
2 4 8
64 — pmin —P+, 65 — pmin —,0+.
4 8

Networks and Heterogeneous Media Volume 20, Issue 1, 65-88.



78

Then, from Eq (4.30), we obtain

3 (B[00 ] - B e )+ 32 e - 0]+ A 1 e - €
+At"mm— E[li, ||T/]+Atkm'“( [GACA R A
.\ Atkrm% (g3, ] + =P vk 15 12,

+ A (B[ 15, | B 165 16, ]) + AP 1651 |

(4.31)

2 2K
< Atd}—imE [llnfz (Pf’ )||rr,] + Alm [”Hvl’: i”‘ZTh]
+ ATE [Ilatu:’ - ”I_A—tnﬂ E [l =™ = (T = TG~ ) I, | + tE (AT
2
sa— P g B I (= ') 3, + At P B |ITuf = w135,

Pmin — P+ — P+

Additionally, the following estimates pertain to temporal errors:

o 2
AE ||TT (u — ") |12 :AtE[ f [ f aH"u,-dz] ds}
[ ( ) aDI] o I (4.32)

2 4 2
< CArE [||6,H ”i”LZ(zn_l,zn;L2<aDm]’

f U oMy pid ] ‘ (4.33)

< CAPE |lo11,p!;

AE[IN (pf - p7') I, ] = AE

L2 ([n—l SIn ;LZ(D)):I >
and

A%E [l = ™" = (Tady = T ~") 112, | = AC'E

tn 2
f [ f 0t(u,-—H€Vu,-)dt] dx]
D [Jr-!

n
<CE [f 10, (u; = H%ui)ll%dt],

In-1

(4.34)

n

w' —u!
;”Zﬁ] = A 'E

AtE|||0u —
|:|| tul At

1ty 2
f[f f 8,,ui(s)dsdt] dx}
1 Ji (4.35)

< CAPE |19l

Lz([n 1sIns LZ(D)):I
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Summing Eq (4.31) up from n = 1 to N and using Egs (4.32)—(4.35), we arrive at

N
-1
max E [l 1, +Z_;E €5 — & 1Iz, +2ArZ [REGAESIF-

K N p N
min min
Fon ZXear S E 1D ] + “Ar B I5 16,
n=1 n=1

N 2
P C n2
<A E[lgnz, | + TP AL AT
n=1 (4.36)
4k Al
— ArZE I P} — P = P |+ APE 100t 22y 71200y |
min n=1
In 4p2
+CE f 10,u; = )l | + ~————ArE (AT —
n—1
pmax e, n
+ T A I — u?)2
Prmin — P+ Z |

n=1

Applying Gronwall’s inequality to Eq (4.36), and utilizing Lemma 4.1 along with Lemma 4.2, we
obtain

max B [I1€5117, | + (uin ~ mmZ 15117, | < € (R + AP). (4.37)

1<n<

Decomposing E" as
E[u - ujy] = E|u - Ty | - B &5 ],
and & as
E[p - pj) = E|p} - Wy p}| - &,

and applying the triangle inequality, Jensen’s inequality, and Lemma 4.2, we derive the expected
result (4.22).

Remark 4.2. As far as we know, the previous other research has only provided a suboptimal L?
convergence rate for ensemble solutions u;, for the heat equation with a Robin coefficient. In contrast,
our result in Eq (4.22) achieves the optimal L*(0, T; L*(D)) convergence rate on a general polygonal
domain D.

The statistical errors 8“M" and 85"; can be obtained using the standard estimation method (refer to [1]).

Thegem 4.3. Given thaL the condition (H1), (H2), gnd the stability condition (4.1) hold, along with
fi € L*(0,T; L*(D)), g; € L*(0,T; L*(0Dy)), and u) € L*(H"**(D)), then there exists a positive constant
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C such that N
gnggl(vE [”8%”%] + (Kpin — K4 )AL Zl E [”851]/:”%7,]
c/ & ) al ) 02 (4.38)
< M(AtZE 1212, | + A D B2, |+ E I 2,
n=1 n=1

+ B[ 55, | + AE [P, )

ull
éznl

Proof. We first analyze E [| frh], forall 1 <n < N. It is easy to see that

(4.39)
1 M M
c S B[ ( ) Bl ), |

n

Given that u}(-, wy), -+, uj(-, wy) are 1.i.d., the expectation of (]E[uZ] —u), Elu)] - u;’h) is zero when

i # j. Thus, we obtain

M
u||2 1 n Y . .
Ey Th] =0 E E [(E [uf] — uly, B [up] - ”ih)'rh] .
i=1

]E[|

Let M = uj, and M = E[M], from which we can infer

E [(M - M M= M) ] - E [llMll?rh ~2(MM), + ||M||%]

Th

=E[IMI, | - IMIE, <E[IMI|.
2

= el < 57zl |

Regarding E [”8%”27,,]’ the situation is similar. From Theorem 4.1, we derive the result (4.38).

As a result, we arrive at

n
Ui,

u}'l
Ey

By combining the space error, time error, and the MC sampling error, we can derive the total error
of the FEMC-HDG algorithm.
Theorem 4.4. Let f € I*(0,T: LA(D)), g € L* (0, T: L*(0D))), and u° € L* (H'**(D)). Assume that the
condition (H1), (H2), and the stability condition (4.1) are satisfied. Then there exists a constant C > 0
such that

N
max E [IE [u(t)] = Upll7, | + i = )1 3 E[IE[pi1)] = @il

n=1
N

N
= %(At S E[IgEp, | + Ar Y B[IA712,] + E[Iud 2] (4.40)

n=1 n=1

+ MBI 155, | + AE |55 ] ) +C (I 4 AP).
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Proof. Employing Young’s inequality along with the triangle inequality on the first term of the left-
hand side of Eq (4.40), we obtain
)

| <2(|lewer-Eiw
Applying Jensen’s inequality to the first term on the right-hand side of the preceding inequality yields
J == [l ] ==l -]

Thus, by employing Theorem 4.1, Theorem 4.2, and Theorem 4.3, the desired outcome is obtained.
Likewise, the term

a|[e w1 - 0, | +2|lew- o,

nl2

E [||]E [u"] - E [u}]

N
Aty B[IE[pt)] - Qi |
n=1

on the left-hand side of Eq (4.40) can be deduced in a similar way.

Remark 4.3. The method outlined above attains first-order accuracy in time. Higher-order temporal
accuracy can be achieved using numerical algorithms like the BDF(k) (backward differentiation
formula of order k) scheme, with k > 2 [25-27], which can be adapted for use with ensemble
algorithms for the uncertain heat equation. However, these may demand more stringent stability
conditions than those outlined in Eq (4.1). A stable numerical scheme can be constructed using
similar methods, and its convergence theory is also analogous.

4.3. Postprocessing

As defined in [28], the element-by-element postprocessing is as follows: Find u)" € P ;(K) such
that for all
(21, i) € [Prs1(K)]™ X Po(K),

(Vi Van)g = (K P Van)g »
(u:l};k’ W/’l)[( = (M?ha Wh)K )
where
[P (K1 = {2y € Pt (K)lzn, Dk =0} ,n=1,--- ,N,i=1,--- , M.
After such postprocessing, we can use - Z u in place of L Z u}, in the FEMC-HDG algorithm.

From the numerical experiments presented later it can be observed that, after such postprocessing, the
discrete solution achieves a super-convergent rate under certain conditions on the domain. For instance,
a convex domain is adequate.

5. Numerical test
In this section, we verify Theorem 4.4 through numerical simulations and highlight the advantages
of the FEMC-HDG algorithm over the FNEMC-HDG approach. In particular, we examine the heat

equation (1.1) with random coefficients, defined on the unit square [0, 1]?, with boundary conditions
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0Dy = {xo = 0} U {x, = 1} and dD; = {x; = 0} U {x; = 1}. Our numerical simulations utilize the
open-source software NGSolve [29], which can be accessed at https://ngsolve.org/.
We conduct the experiment using the exact solution
u(t,x, w) = (1 + w) cos(2mx;) cos(2mx,) sin(z),
where w 1s uniformly distributed over [0, 1] and ¢ € [0, 1]. The coefficients are set as

KX, w) = p(X, w) = 8 + (1 + w) cos(x;x,).

5.1. Tests of convergence order of time and space

The FEMC-HDG scheme is applied in this experiment to simulate the ensemble with M = 30.
Define

|-

M N
n 1
Ef = max Jﬂ D i) =y g2, BE = \Z 1piCt) = B, 612
o i=1

n=1

1l
—_

M
D bt = iy

i=1

S
Il
—_

M=
N

M
., 1 n
w o n 2 P ._
E{ := max J i D lit) =y (B, ER = \
- i=1

1 M 1 M
u™ nx (12 u nx 112
Eg = max 4| -7 El lui(tn) —wi gll7 . Ey = max |- El llui(tn) — iy I
= 1=

where (u}, ., P}, ) and () o, p, ;) denote the non-ensemble solution and ensemble solution,
respectively. In the experiment, both time and space are partitioned uniformly. We use ¢ = 0, where
the time step is set to A7 = h. For £ = 1, the time step is set to At = k. The spatial step size & is varied

from % to % The corresponding errors and convergence rates are shown in Table 1.

From Table 1, it can be seen that when Ar = h and ¢ = 0, the convergence rate of both the FEMC-
HDG and FNEMC-HDG schemes is O(h + Af) = O(h). Additionally, when At = h3 and £ = 1, the
convergence rate for both schemes is O(h* + Af) = O(h?). Further observations reveal that, under the
same spatial discretization parameter /, the errors for both the non-ensemble and ensemble schemes are
of the same magnitude. Notably, after postprocessing, the convergence rate of u}, reaches O(h* + At) =

O(h*) when At = h*, which demonstrates spatial super-convergence.

We chose a sample size of M = 100, with a mesh size of & = %, ¢ =1, and a time step At = %
The mean solution at t = 0.5 is calculated. The results are displayed in Figure 1 (left). To assess the
efficiency of the FEMC-HDG algorithm, we compare its results with those from simulations using the
FNEMC-HDG algorithm, employing the same sample values. The difference in the mean solutions

between FEMC-HDG and FNEMC-HDG is depicted in Figure 1 (right).
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Table 1. Errors and convergence rates (At = h for £ = 0; At = h? for € = 1; M = 30).

(a) FEMC-HDG method

Degree V2 Error Rate Error Rate Error Rate
2-1 1.72147E+00 6.63799E-01 8.17718E-01

272 3.35280E-01 2.36 2.82738E-01 1.23 8.64218E-02 3.24
t=0 273 1.73353E-01 0.95 1.45335E-01 0.96 4.98378E-02 0.79
274 8.68186E-02 1.00 7.13858E-02 1.03 2.62287E-02 0.93
273 4.51054E-02 0.94 3.66211E-02 0.96 1.43155E-02 0.87
2! 1.51705E+00 4.56279E-01 5.81619E-01
272 1.11939E-01 3.76 7.44930E-02 2.61 3.97105E-02 3.87
=1 273 2.47416E-02 2.18 1.89130E-02 1.98 4.88681E-03 3.02
274 5.42893E-03 2.19 4.40070E-03 2.10 4.96631E-04 3.30
273 1.36441E-03 1.99 1.11908E-03 1.98 6.44694E-05 2.95

(b) FNEMC-HDG method

Degree L EMN EZ’ EuN
& V2 Error Rate Error Rate Error Rate
21 1.72230E+00 6.63280E-01 8.18437E-01

272 3.35085E-01 2.36 2.82734E-01 1.23 8.59583E-02 3.25
=0 273 1.73201E-01 0.95 1.45360E-01 0.96 4.94796E-02 0.80
274 8.67049E-02 1.00 7.13961E-02 1.03 2.59940E-02 0.93
273 4.50339E-02 0.95 3.66238E-02 0.96 1.41820E-02 0.87

27! 1.51785E+00 4.56149E-01 5.81860E-01
272 1.11923E-01 3.76 7.44951E-02 2.61 3.96944E-02 3.87
t=1 273 2.47406E-02 2.18 1.89131E-02 1.98 4.88301E-03 3.02

274 5.42888E-03 2.19 4.40070E-03 2.10 4.96169E-04 3.30
273 1.36440E-03 1.99 1.11908E-03 1.98 6.44069E-05 2.95

3.0e-01

I —~

J e 1 -
_mry L

-1.6e-06

Figure 1. FEMC-HDG algorithm simulations. Left: Mean. Right: Difference between the
mean of FEMC-HDG and FNEMC-HDG.

The difference between the FEMC-HDG and FNEMC-HDG algorithms is around 107, which
indicates that the FEMC-HDG algorithm delivers a similar level of accuracy to that of the
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FNEMC-HDG algorithm. This suggests that the FEMC-HDG approach performs comparably in
terms of precision.

5.2. Test of reducing computation cost

For further evaluation of the FEMC-HDG algorithm, we adopt piecewise constant elements (£ = 0).
We conduct a comparative analysis with the FNEMC-HDG algorithm. For a fair comparison, results
from both algorithms are obtained under the identical conditions that the same time step and spatial
dimensions are adopted. As illustrated in Table 2, the evaluations are performed with a mesh size
At = %, and a time size of & = %. Given the moderate size of the discrete system, LU decomposition
was employed.

1
Table 2. CPU time (s) (At=h = —,{ =0).

247
M 30 60 120 240 480
FNEMC-HDG 332.62 523.69 974.76 1672.21 4625.02
FEMC-HDG 91.29 171.33 346.98 602.20 1029.98

From Table 2, it is evident that the FEMC-HDG algorithm surpasses the FNEMC-HDG algorithm in
terms of CPU time. The FEMC-HDG algorithm improves computational efficiency by approximately
70% compared to the FNEMC-HDG algorithm.

5.3. Test of Monte Carlo convergence speed

Next, we investigate the convergence rate of MC for the FEMC-HDG algorithm. Using the FEMC-

HDG algorithm, we calculate the mean of the solution with My, = 12,000 samples as the reference

benchmark, where £ = 0 and h = At = i

By adjusting the values of M in the FEMC-HDG simulations, we assess the approximation errors
to the benchmark. Furthermore, this error analysis is conducted for J = 10 independent runs, and the
mean of the resulting errors is calculated.

Let U}/, w., represent the FEMC-HDG solution at time ¢, for the m-th independent trial, given by

1 M
nm § n,m
U th ’
i=1

where ;" is the result of the m-th experiment using the FEMC-HDG scheme. We also define the error
measure

MC . —_ [Jm12
¢ mJ ZHUW UiilF

We performed 10 independent runs and reported the experimental results of EMC for
M = 10,30,90, and 270 in Figure 2. The convergence rate observed in the experiments with respect
to M is approximately —0.5, which is consistent with the results derived in Theorem 4.4.
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107t

S.M(‘

10—2 4

10! 102

Figure 2. Convergence rate of the MC sample.

6. Conclusion

In this study, we introduced a fully discrete HDG ensemble Monte Carlo algorithm that effectively
tackles Robin boundary conditions and stochastic diffusion in heat equations. In the preparatory
phase, the coefficient matrix for the linear systems is computed and preserved once, albeit requiring
substantial computational effort. This methodology facilitates the swift assembly of linear systems in
the operational phase, independent of the ensemble size. This marks the inaugural application of such
an algorithm to address heat problems characterized by random diffusion and Robin coefficients. The
performance of this method has been thoroughly validated and assessed.

The model described by Eq (1.1) is also relevant in robust optimal boundary control challenges as
state equations (see [30, 31]). Efficient resolution of the model in Eq (1.1) is paramount for
numerically addressing the associated optimal Robin boundary control issues. Both theoretical
analyses and numerical tests confirm the efficacy of the FEMC-HDG algorithm in resolving (1.1).
Additionally, the FEMC-HDG algorithm extends to nonlinear random heat equations, demanding
further exploration into stability conditions. Therefore, it is pertinent to investigate additional
applications of the FEMC-HDG algorithm in random contexts, which we highlight as a valuable
direction for subsequent studies.
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