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Abstract: Several Krylov subspace methods are based on the Arnoldi process, such as the full
orthogonalization method (FOM), GMRES, and in general all the Arnoldi-type methods. In fact, the
Arnoldi process is an algorithm for building an orthogonal basis of the Krylov subspace. Once the inner
products are performed inexactly, which cannot be avoided due to round-off errors, the orthogonality of
Arnoldi vectors is lost. In this paper, we presented a new analysis framework to show how the inexact
inner products influence the Krylov subspace methods that are based on the Arnoldi process. A new
metric was developed to quantify the inexactness of the Arnoldi process with inexact inner products.
In addition, the proposed metric can be used to approximately estimate the loss of orthogonality in
the practical use of the Arnoldi process. The discrepancy in residual gaps between Krylov subspace
methods employing inexact inner products and their corresponding exact counterparts was discussed.
Numerical experiments on several examples were reported to illustrate our theoretical findings and final
observations were presented.
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1. Introduction

Consider the solution of large and sparse linear systems of the form

Ax = b, (1.1)

where A ∈ Rn×n is a nonsingular matrix, b ∈ Rn is a given right-hand vector, and x ∈ Rn is the unknown
vector that needs to be computed. Many numerical methods have been discussed to solve the linear
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system (1.1) in [1–4]. For example, the basic iterative methods (Jacobi, Gauss-Seidel, Successive
Over-Relaxation (SOR)), the Krylov subspace methods (FOM, GMRES, Conjugate Gradient (CG),
Bi-Conjugate Gradient (BCG)), the incomplete LU (ILU) factorization preconditioning techniques, etc.
In addition to solving linear systems like Eq (1.1), Krylov subspace methods, such as the Arnoldi-type
algorithm, are widely used for approximating eigenvalues and eigenvectors of large matrices. These
methods provide an efficient way to compute a subset of eigenpairs for large and sparse systems.

In recent years, the application of inexact Krylov subspace methods based on the Arnoldi process has
obtained extensive attention (e.g., [5–10]). Specifically speaking, if only the matrix-vector multiplication
is performed inexactly in the Arnoldi process and the other arithmetic operations are carried out with
exact computations, then we obtain an inexact Arnoldi relation

(A + Em)Vm = Vm+1Hm, VT
m+1Vm+1 = Im+1, (1.2)

where Im+1 ∈ R
(m+1)×(m+1) is an identity matrix, Em ∈ R

n×n is the perturbation matrix evolving with m,
Hm ∈ R

(m+1)×m is an upper-Hessenberg matrix, and Vm ∈ R
n×m is a basis matrix whose column vectors

are the basis vectors of the Krylov subspace Km(A + Em, v1) with v1 = b/∥b∥. For more details, refer
to [8,11,12]. It is clear that the Krylov subspace is generated by A+Em and not by the coefficient matrix
A in the considered linear system (1.1). However, the matrix Vm has the same property as in the exact
computations, that is, its column vectors are mutually orthogonal. One natural question is how to control
the accuracy of the inexact matrix-vector multiplication within Krylov subspace methods in such a way
that the efficiency is preserved, without affecting the convergence or the final achieved accuracy in a
substantial manner. There is a vast literature related to this question, (e.g., [5–9, 13] and the references
therein). Relaxation strategies proposed in [5, 13, 14] have shown to be surprisingly effective for a range
of different Krylov subspace methods, and their empirical results have been confirmed by Van Den
Eshof and Sleijpen in [7]. They argue that the success of a relaxation strategy depends on the underlying
way that the Krylov subspace is constructed and not on the optimality properties for the residuals.
Simoncini and Szyld [8] have provided a general framework to understand the inexact Krylov subspace
methods for the solution of the linear system (1.1), as well as for certain eigenvalue calculations.

Rounding errors in inner products represent a concern in Krylov subspace methods like Arnoldi-type
and GMRES. Due to finite floating-point precision, these errors cause discrepancies between exact
and computed inner products, leading to a loss of orthogonality in the Krylov basis and affecting the
algorithm’s stability and convergence. Accumulated errors can degrade performance. In the Arnoldi
process, for instance, the classical Gram-Schmidt (CGS) method suffers from loss of orthogonality
due to inner product rounding errors, which led to the development of reorthogonalized Gram-Schmidt
algorithms to mitigate these effects. If only the inner products are performed inexactly in the Arnoldi
process, and the other arithmetic operations are carried out exactly, then it has an inexact Arnoldi
relation as showed in [10]

AVm = Vm+1Hm, VT
m+1Vm+1 = Im+1 + Fm+1, (1.3)

where Fm+1 ∈ R
(m+1)×(m+1) is an error matrix and Vm ∈ R

n×m is a basis matrix with its column vectors
being the basis vectors of the Krylov subspace Km(A, v1), v1 = b/∥b∥. It is easy to find that the Krylov
subspace is generated by A in Eq (1.3), not the matrix A + Em as given in Eq (1.2). The basis matrix-
sequence {Vm} in Eq (1.2) holds the orthogonality, but the basis matrix-sequence {Vm} in Eq (1.3) loses
the orthogonality in general. Similarly, one question is how the accuracy of the inexact inner products
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computed in Krylov subspace methods influences the convergence rate or the final accuracy achieved by
the iterates. Gratton et al. [10] have investigated this question and derived implementable conditions by
bounding the loss of orthogonality in GMRES with inexact inner products, where they have adapted
techniques used in the rounding-error analysis of the modified Gram-Schmidt (MGS) algorithm [15–17]
and of the MGS-GMRES algorithm [18–20].

In our view a further analysis is of interest concerning the properties of the Arnoldi relation, when
using inexact inner products in the Arnoldi process. Here a new analysis framework is provided for
understanding the extent to which inexact inner products affect the convergence and final accuracy of
several Arnoldi-based Krylov subspace methods. Our work focuses on the following items:

• We introduce a transition matrix between the basis vectors of the Krylov subspace Km(A, v1) with
exact inner products and the basis vectors of the Krylov subspace Km(A, v1) with inexact inner
products, and we analyze its properties.
• We discuss the perturbation of the upper-Hessenberg matrix caused by inexact inner products

operations.
• We investigate the effect of an approximately computed inner products on the convergence and

accuracy of several Krylov subspace methods, by providing bounds regarding their residual gaps,
including FOM, GMRES, and Arnoldi-type methods.

The remaining sections of the paper are structured as follows. In Section 2, we begin with a standard
Arnoldi process, and establish a connection between it and the Arnoldi process with inexact inner
products by introducing a transition matrix. In Section 3, we discuss the perturbation of the upper-
Hessenberg matrix and then analyze the residual gaps between exact and inexact inner products versions
of the FOM, GMRES, and Arnoldi-type methods. In Section 4, we present several numerical experiments
to give practical evidence of our theoretical results. Finally, conclusions and final observations are
reported in Section 5.

2. Analysis for the Arnoldi process with inexact inner products

It is well known that many Krylov subspace methods are based on the Arnoldi process, such as
FOM, GMRES, and Arnoldi-type methods. The standard Arnoldi process can be described as in
Algorithm 1 [1, 4].

If all the arithmetic operations in the standard Arnoldi process are computed exactly, then we have
the following Arnoldi relation

AV (e)
m = V (e)

m+1H(e)
m , V (e)T

m+1V (e)
m+1 = Im+1, (2.1)

where V (e)
m = [v(e)

1 , v
(e)
2 , · · · , v

(e)
m ] ∈ Rn×m is a basis matrix whose column vectors are the basis vectors

of the Krylov subspace Km(A, v) and H(e)
m ∈ R

(m+1)×m is an upper-Hessenberg matrix. For the Arnoldi
process with inexact inner products, as given in [10], we could suppose the inexact inner products
computed as

hi j = v(e)T
i w + ηi j, h j+1, j =

√
wT w + η j+1, j, (2.2)

where ηi j and η j+1, j can be regarded as random errors. Comparing Eqs (1.3) and (2.1), it is easy to
see that the Arnoldi vectors in V (e)

m obtained by exact inner products are orthogonal, while the Arnoldi
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vectors in Vm obtained by inexact inner products have lost their orthogonality. However, it is worth
noting that both the basis matrix V (e)

m and Vm are generated from the same Krylov subspaceKm(A, v), that
is, both the Arnoldi vectors v(e)

1 , v
(e)
2 , · · · , v

(e)
m and v1, v2, · · · , vm represent a basis for the Krylov subspace

Km(A, v). Since we observe only a change of basis, there necessarily exists a unique transition matrix
Tm ∈ R

m×m such that Vm = V (e)
m Tm. Based on this fact, we deduce the following interesting propositions.

Algorithm 1 Arnoldi process with modified Gram-Schmidt
Require: A ∈ Rn×n, v = b ∈ Rn,m ∈ N

1: β(e) = ∥v∥
2: v(e)

1 = v/β(e)

3: for j = 1 to m do
4: w = Av(e)

j
5: for i = 1 to j do
6: h(e)

i j = v(e)T
i w

7: w = w − h(e)
i j v(e)

i
8: end for
9: h(e)

j+1, j = ∥w∥
10: if h(e)

j+1, j = 0 then
11: break
12: end if
13: v(e)

j+1 = w/h(e)
j+1, j

14: end for

Proposition 2.1. Assume that the Arnoldi process and its inexact inner products version do not break.

Under the above notations, we have H(e)
m = Tm+1HmT−1

m and Tm+1

[
Im

O

]
=

[
Tm

O

]
.

Proof. Using the relation Vm = V (e)
m Tm and Vm+1 = V (e)

m+1Tm+1, the equation AVm = Vm+1Hm in Eq (1.3)
can be rewritten as

AV (e)
m Tm = V (e)

m+1Tm+1Hm. (2.3)

Since the transition matrix is invertible. Multiplying both sides of Eq (2.3) by T−1
m to the right and by

V (e)T
m+1 to the left, we have

V (e)T
m+1AV (e)

m = V (e)T
m+1V (e)

m+1Tm+1HmT−1
m . (2.4)

Substituting Eq (2.1) into Eq (2.4), it is easy to obtain

H(e)
m = Tm+1HmT−1

m . (2.5)

On the other hand, because of the fact that Vm and V (e)
m are the top m columns of Vm+1 and V (e)

m+1,
respectively, we deduce the expressions

Vm = Vm+1

[
Im

O

]
, V (e)

m = V (e)
m+1

[
Im

O

]
. (2.6)

Using the relations Vm = V (e)
m Tm and Vm+1 = V (e)

m+1Tm+1 again, we find

V (e)
m+1Tm+1

[
Im

O

]
= V (e)

m+1

[
Tm

O

]
. (2.7)
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Since V (e)
m+1 is a column full rank matrix, we obtain the result

Tm+1

[
Im

O

]
=

[
Tm

O

]
. (2.8)

From Eqs (2.5) and (2.8), we complete the proof of the current proposition.

Proposition 2.2. Assume that the Arnoldi process and its inexact inner products version do not
break. Under the above notations, Tm+1 is an upper triangular matrix whose main diagonal entries are
all positive.

Proof. We would prove this proposition by mathematical induction. In the case of m = 0, the result is
obvious. Suppose this proposition holds when m = k − 1(k ≥ 2), that is, Tk is an upper triangular matrix
whose main diagonal entries are all positive. Then, when m = k, we have

Tk+1 = V (e)T
k+1 Vk+1 =

[
V (e)T

k
v(e)T

k+1

] [
Vk vk+1

]
=

[
Tk V (e)T

k vk+1

v(e)T
k+1 Vk v(e)T

k+1 vk+1

]
. (2.9)

From Eq (1.3), we observe AVk = Vk+1Hk and thus

vk+1 =
1

hk+1,k
(Avk − hk,kvk − · · · − h1,kv1). (2.10)

Since v(e)
1 , v

(e)
2 , · · · , v

(e)
k+1 are orthogonal basis vectors of the Krylov subspaceKk+1(A, v). It is clear that

the vector v(e)
k+1 is orthogonal to the Krylov subspace Kk(A, v) = span(v(e)

1 , v
(e)
2 , · · · , v

(e)
k ) = span(v1, v2,

· · · , vk). Consequently we deduce

v(e)T
k+1 Vk = O, v(e)T

k+1 vk+1 =
1

hk+1,k
v(e)T

k+1 Avk.

In addition, from the relation vk = Vkek, where ek = [0, · · · , 0, 1]T ∈ Rk×1, we obtain

v(e)T
k+1 vk+1 =

1
hk+1,k

v(e)T
k+1 AV (e)

k Tkek. (2.11)

Furthermore, using Eq (2.1), the equality AV (e)
k = V (e)

k+1H(e)
k holds and we have v(e)T

k+1 AV (e)
k = h(e)

k+1,ke
T
k .

Then, Eq (2.11) becomes

v(e)T
k+1 vk+1 =

h(e)
k+1,k

hk+1,k
eT

k Tkek.

By the induction hypothesis, Tk is an upper triangular matrix with its main diagonal entries are all
positive, we have eT

k Tkek > 0. Combining with h(e)
k+1,k > 0 and hk+1,k > 0, we infer v(e)T

k+1 vk+1 > 0. Hence,
the matrix Tk+1 is also an upper triangular matrix with its main diagonal entries are all positive, which
means that the claimed thesis holds when m = k. By mathematical induction, the proof is completed.

The relation Vm+1 = V (e)
m+1Tm+1 can be seen as a QR factorization of the matrix Vm+1. Generally

speaking, the QR factorization of a matrix is of course non-unique. However, once the R factor is an
upper triangular matrix with all positive diagonal entries, the QR factorization of any column full rank
matrix would be unique [21]. According to Proposition 2.2, as the R factor, the matrix Tm+1 is an upper
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triangular matrix whose main diagonal entries are all positive. Therefore, the QR factorization of the
matrix Vm+1 is unique. Also, the basis matrix V (e)

m+1 could be obtained by QR factorization of Vm+1 that
does not involve inner products operation, such as Givens rotation QR factorization [22] or Cholesky
QR factorization [23].

Moreover, according to Proposition 2.2, we can further explain why the basis vectors v1, v2, · · · ,
vm+1 generated from the Krylov subspace Km+1(A, v) with inexact inner products are impossible to be
orthogonal, i.e., the basis matrix Vm+1 loses its orthogonality as given in Eq (1.3). Because if Vm+1 is an
orthogonal basis matrix, then from the uniqueness of its QR factorization, it is easy to have Vm+1 = V (e)

m+1
and Tm+1 = Im+1. If this case Vm+1 = V (e)

m+1 holds true, then there is no inexact computations in the
Arnoldi process. Hence, the Arnoldi process with inexact inner products inevitably leads to the basis
matrix Vm+1 loses orthogonality. And the discrepancy Vm+1 − V (e)

m+1 can be interpreted as the perturbation
caused by inexact inner products applied to V (e)

m+1 obtained through the standard Arnoldi process. It
is natural to use ∥Vm+1 − V (e)

m+1∥ to quantify the perturbation induced by inexact inner products on the
Arnoldi process. Additionally, because of the unitary invariance of the spectral matrix norm ∥ · ∥, that is,
the induced l2-norm, we have

∥Vm+1 − V (e)
m+1∥ = ∥V

(e)
m+1(Tm+1 − Im+1)∥ = ∥Tm+1 − Im+1∥.

It follows that ∥Tm+1 − Im+1∥ can be regarded as a new metric to quantify the impact of inexact inner
products on the Arnoldi process.

On the other hand, it is worth mentioning that ∥Tm+1 − Im+1∥ not only can be used to estimate the
inexactness of inexact inner products, but also can be applied to exhibit the loss of orthogonality caused
by the inexact inner products, that is, ∥Tm+1 − Im+1∥ has a relationship with the loss of orthogonality
∥VT

m+1Vm+1 − Im+1∥ presented in [10]. Again, using the unitary invariance of the spectral norm ∥ · ∥, it is
easy to see that ∥VT

m+1Vm+1 − Im+1∥ = ∥T T
m+1Tm+1 − Im+1∥. By the triangle inequality and compatibility of

norm, we have

|∥Tm+1 − Im+1∥ − ∥T T
m+1Tm+1 − Im+1∥| ≤ ∥Tm+1 − T T

m+1Tm+1∥

≤ ∥Im+1 − T T
m+1∥∥Tm+1∥

≤ ∥Im+1 − Tm+1∥ (∥Im+1 − Tm+1∥ + 1) .
(2.12)

From Eq (2.12), if ∥Tm+1 − Im+1∥ is small enough, then ∥Tm+1 − Im+1∥ and ∥VT
m+1Vm+1 − Im+1∥ are close

enough. In other words, to some extent, ∥Tm+1 − Im+1∥ can replace ∥VT
m+1Vm+1 − Im+1∥ to represent the

loss of orthogonality.

3. Analysis for several inexact Krylov subspace methods

According to Proposition 2.1, H(e)
m = Tm+1HmT−1

m , it is clear that there exists a multiplicative
perturbation with respect to the upper-Hessenberg matrix H(e)

m . Since many Krylov subspace methods
use the information stored in the upper-Hessenberg matrix to solve the linear system in Eq (1.1), it is
significant to study the perturbation of the upper-Hessenberg matrix H(e)

m and then investigate the residual
gaps between exact and inexact inner products versions of the FOM, GMRES, and Arnoldi-type methods.
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3.1. Perturbation of the upper-Hessenberg matrix

In the present section, we analyze the multiplicative perturbation of the upper-Hessenberg matrix
H(e)

m based on the following two lemmas.
Lemma 1. ( [24], Corollary 3.1.3) Let A ∈ Cm×n be given, and let Ar denote a submatrix of A obtained
by deleting a total of r rows and(or) columns from A. Then,

σk(A) ≥ σk(Ar) ≥ σk+r(A), k = 1, · · · ,min{m, n} (3.1)

where for X ∈ Cp×q we set σ j(X) = 0 if j ≥ min{p, q}.
Lemma 2. ( [25], Theorem 6.6) Let A, B ∈ Cm×n, their singular values are

σ1 ≥ · · · ≥ σn ≥ 0, τ1 ≥ · · · ≥ τn ≥ 0 (3.2)

respectively, then |σi − τi| ≤ ∥B − A∥, i = 1, 2, · · · , n.
Proposition 3.1. Under the above notations, if ∥Tm+1 − Im+1∥ ≤ ϵ (ϵ < 1), then

∥Hm − H(e)
m ∥ ≤

2ϵ
1 − ϵ

∥H(e)
m ∥. (3.3)

Proof. According to Proposition 2.1, we have Hm = T−1
m+1H(e)

m Tm. Then, the following chain of
relationships holds

∥Hm − H(e)
m ∥ = ∥T

−1
m+1H(e)

m Tm − H(e)
m ∥

= ∥T−1
m+1H(e)

m Tm − T−1
m+1H(e)

m + T−1
m+1H(e)

m − H(e)
m ∥

≤ ∥T−1
m+1∥∥H

(e)
m ∥ (∥Tm − Im∥ + ∥Tm+1 − Im+1∥) .

(3.4)

Since Tm − Im is a submatrix of Tm+1 − Im+1, obtained by deleting the last column and the last row,
from Lemma 1, we deduce

∥Tm − Im∥ = σ1(Tm − Im) ≤ σ1(Tm+1 − Im+1) = ∥Tm+1 − Im+1∥ ≤ ϵ. (3.5)

On the other hand, according to Lemma 2, it has |σmin(Tm+1)− 1| ≤ ∥Tm+1 − Im+1∥ ≤ ϵ. Then, we have

1
1 + ϵ

≤
1

σmin(Tm+1)
= ∥T−1

m+1∥ ≤
1

1 − ϵ
. (3.6)

Combining the inequalities in Eqs (3.4)–(3.6), we proved the result in Eq (3.3).
Let f (x) = 2x

1−x , 0 ≤ x < 1. It is easy to see that the function f (x) is monotonically increasing on the
interval [0, 1) and f (0) = 0. Therefore, if the upper bound ϵ of ∥Tm+1 − Im+1∥ decreases, the perturbation
of H(e)

m diminishes as well. In particular, when ϵ = 0, there is no perturbation with H(e)
m . Next, we employ

the result concerning the perturbation of the upper-Hessenberg matrix for analyzing several inexact
Krylov subspace methods.

3.2. GMRES with inexact inner products

Based on the standard Arnoldi process, GMRES [26] is a classical method for solving the linear
system (1.1). First of all, let us briefly review the GMRES when all the arithmetic operations are
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performed exactly as given in Algorithm 2. The core idea of GMRES is searching a solution xm

such that
min

xm∈Km(A,b)
∥b − Axm∥ = min

y∈Rm
∥V (e)

m+1(β(e)e1 − H(e)
m y)∥ = min

y∈Rm
∥β(e)e1 − H(e)

m y∥, (3.7)

in which β(e) = ∥b∥ and e1 = [1, 0, · · · , 0]T ∈ Rm+1. Finally, the algorithm is reduced to solve the least
square problem associated with the relation H(e)

m y = β(e)e1.

Algorithm 2 GMRES for solving Ax = b
Require: A ∈ Rn×n, b ∈ Rn,m ∈ N

1: Obtain V (e)
m and H(e)

m by Algorithm 1.
2: Compute the solution y(e) of the least squares problem H(e)

m y(e) = β(e)e1, where β(e) = ∥b∥.
3: Compute x(e)

m = V (e)
m y(e).

In the inexact inner products GMRES, we could not acquire the same result as shown in Eq (3.7)
since Vm+1 is not a orthogonal basis matrix. Therefore, it is flawed that we solve the least square
problem Hmy = βe1 like in the exact GMRES. Now we analyze the inexact inner products GMRES by
perturbation analysis of the least square problem. A lemma regarding the least square problem and its
perturbed least square problem is given as follows.
Lemma 3. ( [27], Theorem 9.7) Let Ax = b and Āx = b̄ represent least square problem and perturbed
least square problem respectively, where A, Ā ∈ Cm×n and b, b̄ ∈ Cm. Additionally, xLS and x̄LS

are the least square solutions for the above least square problems, respectively, ∆A = Ā − A, and
∆b = b̄ − b. Suppose ∥∆A∥ = ϵA∥A∥ and ∥∆b∥ = ϵb∥b∥, with Rank(A) = p ≤ min{m, n}. If κAϵA < 1 and
Rank(Ā) = Rank(A), then with ∆x = x̄LS − xLS ,

∥∆x∥ = κ̄A

(
ϵb
∥b∥
∥A∥
+ ϵA∥xLS ∥ + κAϵA

∥r∥
∥A∥

)
+ κAϵA∥xLS ∥, (3.8)

where κA represents the spectral condition number of A and κ̄A = κA
1−κA

.
Consider the least square problem H(e)

m y = β(e)e1 generated from GMRES when all arithmetic
operations are performed exactly and the perturbed least square problem Hmy = βe1 obtained from
GMRES with inexact inner products. Let y(e)

LS and yLS represent the least square solutions of the above
least square problems respectively. Assume r(e) = β(e)e1 − H(e)

m y(e)
LS , ∆H(e)

m = H(e)
m − Hm, ∆β(e)e1 =

β(e)e1 − βe1, ∆y(e)
LS = y(e)

LS − yLS , κH(e)
m

is the spectral condition number of H(e)
m and κ̄H(e)

m
= κH(e)

m
/(1 − κH(e)

m
).

Then, in the following proposition we provide a bound for ∥y(e)
LS − yLS ∥.

Proposition 3.2. Under the above notations, if ∥Tm+1 − Im+1∥ ≤ ϵ (ϵ < 1), then

∥∆y(e)
LS ∥ ≤ κ̄H(e)

m

 ϵ1 − ϵ
∥b∥

∥H(e)
m ∥
+

2ϵ
1 − ϵ

∥y(e)
LS ∥ +

2ϵ
1 − ϵ

κH(e)
m
∥r(e)∥

∥H(e)
m ∥

 + 2ϵ
1 − ϵ

κH(e)
m
∥y(e)

LS ∥. (3.9)

Proof. For completing the proof of the inequality in Eq (3.9), we analyze the perturbation of the right
side term β(e)e1 in the least square problem H(e)

m y = β(e)e1. Because of b = Vm+1βe1, multiplying the two
sides by V (e)T

m+1, we find β(e)e1 = Tm+1βe1 by using the relation Vm+1 = V (e)
m+1Tm+1. Thus, we can bound the

perturbation of β(e)e1 as

∥βe1 − β
(e)e1∥ ≤ ∥T−1

m+1 − Im+1∥∥β
(e)e1∥ ≤ ∥T−1

m+1∥∥Tm+1 − Im+1∥∥b∥. (3.10)
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If ∥Tm+1 − Im+1∥ ≤ ϵ, then the relation ∥βe1 − β
(e)e1∥ ≤

ϵ
1−ϵ ∥b∥ holds by using the result in Eq (3.6).

On the other hand, as shown in Proposition 3.1, we have ∥H(e)
m − Hm∥ ≤

2ϵ
1−ϵ ∥H

(e)
m ∥. Hence, by

Lemma 3, we obtain

∥∆y(e)
LS ∥ = κ̄H(e)

m

(
∥∆β(e)e1∥

∥H(e)
m ∥

+
∥∆H(e)

m ∥

∥H(e)
m ∥
∥y(e)

LS ∥ + κH(e)
m

∥∆H(e)
m ∥∥r(e)∥

∥H(e)
m ∥

2

)
+ κH(e)

m

∥∆H(e)
m ∥

∥H(e)
m ∥
∥y(e)

LS ∥

≤ ∥κ̄H(e)
m

 ϵ1 − ϵ
∥b∥

∥H(e)
m ∥
+

2ϵ
1 − ϵ

∥y(e)
LS ∥ +

2ϵ
1 − ϵ

κH(e)
m
∥r(e)∥

∥H(e)
m ∥

 + 2ϵ
1 − ϵ

κH(e)
m
∥y(e)

LS ∥.

According to Proposition 3.2, the right-hand side term of the inequality (3.9) can be regarded as a
function of the parameter ϵ. Let this function be

ϕ(ϵ) = κ̄H(e)
m

 ϵ1 − ϵ
∥b∥

∥H(e)
m ∥
+

2ϵ
1 − ϵ

∥y(e)
LS ∥ +

2ϵ
1 − ϵ

κH(e)
m
∥r(e)∥

∥H(e)
m ∥

 + 2ϵ
1 − ϵ

κH(e)
m
∥y(e)

LS ∥.

It is easy to find that ϕ(ϵ) is a strict monotone increasing function on the interval [0, 1) and ϕ(0) = 0.
In other words, the smaller ϵ is, the smaller the error in computing y(e)

LS is.
Let x(e)

m and xm denote the solution of the exact GMRES and the GMRES with inexact inner products,
respectively, and res(e) = b− Ax(e)

m and res = b− Axm represent their residual vectors, respectively. Now
we can bound the residual gap ∥res(e) − res∥ as follows.
Proposition 3.3. Assume that GMRES with inexact inner products is used for solving the linear system
Ax = b. Under the above notations, if ∥Tm+1 − Im+1∥ ≤ ϵ (ϵ < 1), then

∥res(e) − res∥ ≤ ∥H(e)
m ∥

[
(1 + ϵ)ϕ(ϵ) + ϵ∥y(e)

LS ∥
]
. (3.11)

Proof. Using the relations xm = VmyLS , x(e)
m = V (e)

m y(e)
LS , Vm = V (e)

m Tm, and AV (e)
m = V (e)

m+1H(e)
m , we find

∥res(e) − res∥ = ∥(b − Ax(e)
m ) − (b − Axm)∥

= ∥Ax(e)
m − Axm∥

= ∥AV (e)
m y(e)

LS − AVmyLS ∥

= ∥AV (e)
m y(e)

LS − AV (e)
m TmyLS ∥

= ∥V (e)
m+1H(e)

m y(e)
LS − V (e)

m+1H(e)
m TmyLS ∥

= ∥H(e)
m (y(e)

LS − TmyLS )∥

≤ ∥H(e)
m ∥

(
∥Tm∥∥y

(e)
LS − yLS ∥ + ∥Tm − Im∥∥y

(e)
LS ∥

)
.

According to Proposition 3.2 and the assumptions, the inequality in Eq (3.11) follows.
Furthermore, (1+ϵ)ϕ(ϵ) is a non-negative monotonically increasing function when ϵ ∈ [0, 1), because

it can be seen as the product of two nonnegative monotonically increasing function defined on [0, 1).
Hence, from Proposition 3.3, we see that the residual vector res of the inexact GMRES approaches the
residual vector res(e) of the exact GMRES when the upper bound ϵ tends to 0.
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3.3. FOM with inexact inner products

For the FOM with all arithmetic operations performed exactly, we need to seek a solution xm ∈

Km(A, b) such that b − Axm ⊥ Km(A, b). The key point is to compute the linear system H̃(e)
m y = β(e)ẽ1,

where H̃(e)
m ∈ R

m×m is a nonsingular submatrix formed by the top m rows of the upper-Hessenberg
matrix H(e)

m , with β(e) = ∥b∥ and ẽ1 = [1, 0, · · · , 0]T ∈ Rm. Usually, we obtain the exact solution
y(e) = (H̃(e)

m )−1β(e)ẽ1, which results in r̃(e) = β(e)ẽ1 − H̃(e)
m y(e) being the zero vector.

Similarly to GMRES, when the Arnoldi process with inexact inner products is applied into the FOM
iteration, a perturbed linear system H̃my = βẽ1 is generated with H̃m being a nonsingular submatrix
constituted by the top m rows of the upper-Hessenberg matrix Hm. By Lemma 1, the perturbation of
H̃(e)

m is such that the subsequent relationships stand

∥H̃(e)
m − H̃m∥ = σmax(H̃(e)

m − H̃m) ≤ σmax(H(e)
m − Hm) = ∥H(e)

m − Hm∥ ≤
2ϵ

1 − ϵ
∥H(e)

m ∥.

On the other hand, as analyzed in the proof of Proposition 3.2, we also have the perturbation of the
right-hand term β(e)ẽ1 equipped with the inequality ∥βẽ1 − β

(e)ẽ1∥ ≤
ϵ

1−ϵ ∥b∥.
Let x̃(e)

m and x̃m denote the solution of the exact FOM and the FOM with inexact inner products,
respectively, and r̃es(e)

= b − Ax̃(e)
m and r̃es = b − Ax̃m represent their residual vectors, respectively.

Then, as discussed above, we can bound the residual gap ∥r̃es(e)
− r̃es∥ as performed in the

following proposition.
Proposition 3.4. Assume that FOM with inexact inner products is used for solving the linear system
Ax = b. Under the above notations, if ∥Tm+1 − Im+1∥ ≤ ϵ (ϵ < 1), then

∥r̃es(e)
− r̃es∥ ≤ ∥H(e)

m ∥
[
(1 + ϵ)ϕ̃(ϵ) + ϵ∥y(e)∥

]
, (3.12)

where ϕ̃(ϵ) = κ̄H(e)
m

(
ϵ

1−ϵ
∥b∥
∥H(e)

m ∥
+ 2ϵ

1−ϵ ∥y
(e)∥

)
+ 2ϵ

1−ϵ κH(e)
m
∥y(e)∥.

Proof. The proof is similar to that of Proposition 3.3.
Similarly, it is easy to find that (1+ ϵ)ϕ̃(ϵ) is a monotonically increasing function on the interval [0,1).

According to Proposition 3.4, when the parameter ϵ tends to 0, the residual vector r̃es of the inexact
FOM approaches the residual vector r̃es(e) of the exact FOM.

3.4. Arnoldi-type method with inexact inner products

The Arnoldi-type method is an efficient approximate method for computing the eigenvectors of
a matrix with the Arnoldi process as main core. For the eigenvector problem Ax = λx (x , 0), it
ultimately boils down to seeking a solution xm ∈ Km(A, v) that satisfies the optimality property

∥(A − λI)xm∥ = min
u∈Km(A,v),∥u∥=1

∥(A − λI)u∥. (3.13)

Algorithm 3 shows the exact Arnoldi-type method for solving the eigenvector problem (A− λI)x = 0.
In Step 1 of Algorithm 3, we obtain the basis matrix V (e)

m and the upper-Hessenberg matrix H(e)
m by

the standard Arnoldi process as given in Algorithm 1. In Step 2 of Algorithm 3, a singular value
decomposition of the matrix H(e)

m − [λIm; O] is performed. In Step 3 of Algorithm 3, we get the right
singular vector s(e)

m corresponding to the minimum singular value σmin(H(e)
m − [λIm; O]). Then, in Step 4

of Algorithm 3, an approximate vector x(e)
m = V (e)

m s(e)
m is obtained. Let σ(e)

m = σmin(H(e)
m − [λIm; O]), and
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res(e)
AT = (A − λI)x(e)

m be the residual vector of the exact Arnoldi-type method. As discussed in [28, 29],
the value of σ(e)

m can be used as a stopping criterion, i.e., σ(e)
m = ∥res(e)

AT ∥.

Algorithm 3 Arnoldi-type method for solving (A − λI)x = 0
Require: A ∈ Rn×n, initial nonzero vector v ∈ Rn, m ∈ N

1: Obtain V (e)
m and H(e)

m by Algorithm 1.
2: Compute H(e)

m − [λIm; O] = U (e)Σ(e)S (e)T .
3: Set s(e)

m is the right singular vector corresponding to σmin(H(e)
m − [λIm; O]).

4: Obtain x(e)
m = V (e)

m s(e)
m .

When the Arnoldi process with inexact inner products is applied into the Arnoldi-type method, we
obtain the basis matrix Vm and the upper-Hessenberg matrix Hm. Thus a perturbation of the matrix
H(e)

m −[λIm; O] is generated, which is denoted as Hm−[λIm; O]. Similarly, a singular value decomposition
for the matrix Hm − [λIm; O] is computed, and the right singular vector sm is obtained corresponding
to the minimum singular value σmin(Hm − [λIm; O]). Finally, an approximate vector xm = Vmsm is
computed. Let σm = σmin(Hm − [λIm; O]), and let resAT = (A − λI)xm be the residual vector of the
inexact Arnoldi-type method. Now we give an upper bound of ∥resAT ∥ as follows.
Proposition 3.5. Assume that the Arnoldi-type method with inexact inner products is used for solving
the eigenvector problem (A − λI)x = 0. Under the above notations, if ∥Tm+1 − Im+1∥ ≤ ϵ (ϵ < 1), then

∥resAT ∥ ≤ (1 + ϵ)
(

2ϵ
1 − ϵ

∥H(e)
m ∥ + ∥res(e)

AT ∥

)
. (3.14)

Proof. Using the relations AVm = Vm+1Hm and Vm+1 = V (e)
m+1Tm+1, we find

∥resAT ∥ = ∥(A − λI)Vmsm∥

= ∥Vm+1(Hm − [λIm; O])sm∥

= ∥Tm+1(Hm − [λIm; O])sm∥

≤ (∥Tm+1 − Im+1∥ + 1) ∥(Hm − [λIm; O])sm∥

= (∥Tm+1 − Im+1∥ + 1)σm.

(3.15)

By Lemma 2 and Proposition 3.1, we infer

|σm − σ
(e)
m | ≤ ∥(Hm − [λIm; O]) − (H(e)

m − [λIm; O])∥ = ∥Hm − H(e)
m ∥ ≤

2ϵ
1 − ϵ

∥H(e)
m ∥, (3.16)

and as a consequence the following inequality holds

σm ≤ σ
(e)
m +

2ϵ
1 − ϵ

∥H(e)
m ∥. (3.17)

Substituting Eq (3.17) into Eq (3.15), the proof of the relation in Eq (3.14) is complete.
From the right-hand term of the inequality (3.14), it is easy to see that if ϵ is close to zero, then the

quantity ∥resAT ∥ is sufficiently close to ∥res(e)
AT ∥.
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4. Numerical experiments

In this section, we illustrate our theoretical results with a few numerical examples. All the numerical
experiments are run in MATLAB R2018b on a 64-bit Windows 10 computer equipped with a core
i7-8550u processor and with 16GB of RAM memory.

To compare the Arnoldi process-based Krylov subspace methods with their inexact inner products
counterparts, we introduce Algorithm 4, Arnoldi process with inexact inner products. This algorithm
replaces the inner products operation in Algorithm 1 with Eq (2.2). The standard Arnoldi process as
given in Algorithm 1 and the Arnoldi process with inexact inner products as shown in Algorithm 4 is
applied to GMRES, FOM, and Arnoldi-type methods, respectively.

Algorithm 4 Arnoldi process with inexact inner products
Require: A ∈ Rn×n, v = b ∈ Rn,m ∈ N

1: β(e) = ∥v∥
2: v(e)

1 = v/β(e)

3: for j = 1 to m do
4: w = Av(e)

j
5: for i = 1 to j do
6: h(e)

i j = v(e)T
i w + ηi j

7: w = w − h(e)
i j v(e)

i
8: end for
9: h(e)

j+1, j =
√

wT w + η j+1, j

10: if h(e)
j+1, j = 0 then

11: break
12: end if
13: v(e)

j+1 = w/h(e)
j+1, j

14: end for

4.1. How inexact inner products influence the upper-Hessenberg matrix

Our first numerical example aims at illustrating Proposition 3.1, which provides bounds for the
perturbation of the upper-Hessenberg matrix H(e)

m . Here, we consider the Grcar matrix of parameter 5
and size 100, i.e., the Toeplitz matrix A ∈ R100×100 reported below

A =



1 1 1 1 1 1 0 · · · 0

−1 1 1 1 1 1 1 . . . 0

0 −1 1 1 1 1 1 . . .
...

...
. . .

. . .
. . .

. . .
. . .

. . .
. . .

...

0 0 · · · · · · · · · · · · · · · −1 1


100×100

. (4.1)

More precisely, A = Tn( f5), n = 100, f5 =
∑5

j=0exp(i jθ)−exp(−iθ), i2 = −1, θ ∈ [−π, π], and
according to the theory, the matrix-sequence {Tn( f5)}n is canonically distributed as | f5| in the singular
value sense, while the eigenvalue canonical distribution does not hold (see [30, 31] and references
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therein): hence the singular values of Tn( f5) behave as a uniform sampling of | f5(θ)| of cardinality 100,
while the moduli of the eigenvalues are much smaller than the singular values and the latter discrepancy
represents a measure of its high nonnormality [32].

The right-hand side is set as b = A[sin(1), · · · , sin(100)]T . Let ϵ = ∥Im+1 − Tm+1∥ represent a measure
of inexactness of the inexact inner products. Assume errors ηi j and η j+1, j in Algorithm 4 are uniformly
distributed between −η and η. The value of η that changes with k is set as 10−6 × 21−k, k = 1, · · · , 30.
Taking the η as X-axis, we conduct numerical experiments with Krylov subspace dimension m taking
values of 10, 40, and 70, and the numerical results are plotted in Figure 1.

10-1610-1410-1210-1010-810-6
10-16

10-14

10-12

10-10

10-8

10-6

10-4

(a) m = 10

10-1610-1410-1210-1010-810-6
10-16

10-14

10-12

10-10

10-8

10-6

10-4

(b) m = 40

10-1610-1410-1210-1010-810-6
10-10

10-8

10-6

10-4

10-2

100

102

(c) m = 70

perturbation bound 2ϵ
1−ϵ ∥H

(e)
m ∥ of

upper-Hessenberg matrix H(e)
m

perturbation of upper-Hessenberg
matrix H(e)

m

orthogonal loss ∥VT
m+1Vm+1 − Im+1∥

inexactness of the inexact inner
products ϵ

Figure 1. Numerical behaviors for the Grcar matrix by the Arnoldi process with inexact
inner products.

Numerical results are shown in Figure 1. From Figure 1, we can see that 2ϵ
1−ϵ ∥H

(e)
m ∥ is a good upper

bound for the perturbation of the upper-Hessenberg matrix H(e)
m caused by the inexact inner products. In

addition, we find that the curve of orthogonal loss described by ∥VT
m+1Vm+1 − Im+1∥ almost coincides with

the curve of inexactness of the inexact inner products given by ϵ = ∥Im+1−Tm+1∥ to a certain degree extent,
which testifies the sharpness of our analysis as shown in Eq (2.12). Particularly, the curve of inexactness
of the inexact inner products is lower than the curve of orthogonal loss slightly. This numerical behaviour
indicates that inexactness of the inexact inner products described by ϵ = ∥Im+1 − Tm+1∥ may be a better
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measure to quantify the orthogonal loss.

4.2. How inexact inner products influence GMRES and FOM

Here we illustrate the theoretical analysis about GMRES and FOM with inexact inner products.
For the numerical examples, we not only continue to use the matrix given in the Section 4.1, but also
we introduce two new examples to further illustrate our theoretical results. The first example is the
following tridiagonal matrix:

A =



2 −1
−1 2 −1
−1 2 −1

. . .
. . .
. . .

. . .
. . . −1
−1 2


1000×1000

. (4.2)

10-1610-1410-1210-1010-810-6

GMRES

10-15

10-10

10-5

100

(a) Grcar matrix

10-1610-1410-1210-1010-810-6

GMRES

10-15

10-10

10-5

100

(b) Tridiagonal matrix

10-1610-1410-1210-1010-810-6

2

10-12

10-10

10-8

10-6

10-4

10-2

100
GMRES

(c) 494 bus

residual for exact GMRES

residual for GRMES with inexact
inner products

inexactness of the inexact inner
products ϵ

residual gaps ∥res(e) − res∥

Figure 2. GMRES with inexact inner products for the Grcar matrix, the tridiagonal matrix
and the 494 bus matrix.
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The second example is the 494 bus matrix, A ∈ R494×494, which can be available from the
SuiteSparse matrix collection [33]. The condition number of the 494 bus matrix is κ2(A) ≈ 106. For the
tridiagonal matrix, we set b = A[sin(1), · · · , sin(1000)]T , and for 494 bus matrix, we set
b = A[sin(1), · · · , sin(494)]T . As shown in the Section 4.1, no matter what value Krylov subspace
dimension m is, the decreasing trend of the perturbation norm ∥H(e)

m − Hm∥ as η decreases does not
change. Hence, we can set the value of Krylov subspace dimesion m according to the specific problem,
although other values are also possible. For the Grcar matrix, we set m = 80, for the tridiagonal matrix,
m = 400, and for the 494 bus matrix, m = 200. The setting of η is the same as it is in Section 4.1.

10-1610-1410-1210-1010-810-6

FOM

10-15

10-10

10-5

100

(a) Grcar matrix

10-1610-1410-1210-1010-810-6

FOM

10-15

10-10

10-5

100

(b) Tridiagonal matrix

10-1610-1410-1210-1010-810-6

2

10-12

10-10

10-8

10-6

10-4

10-2

100
FOM

(c) 494 bus

residual for exact FOM

residual for FOM with inexact
inner products

inexactness of the inexact inner
products ϵ

residual gaps ∥res(e) − res∥

Figure 3. FOM with inexact inner products for for the Grcar matrix, the tridiagonal matrix
and the 494 bus matrix.

From Figures 2 and 3, as η decreases, we observe a concurrent decrease in the residual gap. This
trend implies that we can manage errors in inner products computations within a specific range without
substantially affecting the convergence in GRMES and FOM. Then, during solving the tridiagonal
matrix problem by GMRES and FOM, we note that the change of residual gaps are almost stagnant
when η ≤ 10−14. For the considered problems, this observation suggests that enhancing the precision of
inner products computations largely may not lead to significant improvements in the convergence rate.

Networks and Heterogeneous Media Volume 20, Issue 1, 15–34.



30

4.3. How inexact inner products influence Arnoldi-type method

In this section, we continue to use the Grcar matrix and the tridiagonal matrix as given previously to
illustrate our theoretical analysis for the Arnoldi-type method. Regarding parameters, the same setting of
η is used as previously; in this part, we set m = 75 for the Grcar matrix and m = 400 for the tridiagonal
matrix, respectively. In addition, because the classical PageRank problem [34] can be regarded as a
typical problem for computing the principal eigenvector with its principal eigenvalue is 1, we consider
using the exact and inexact inner products versions of the Arnoldi-type method to calculate the PageRank
vector. Taking the Web-stanford matrix as an example, which contains 281,903 pages and 2,312,497
links and can be available from http://www.ciseuf.edu/research/sparse/matrices/groups.html. For the
Web-stanford matrix, we assume the damping factor α = 0.99, the Krylov subspace dimension m = 100,
and other settings are the same as the Grcar matrix and the tridiagonal matrix. Numerical results are
shown in Figures 4 and 5. Regarding large damping factors as α = 0.99, the standard power method
becomes too slow and acceleration techniques are necessary, such as either (preconditioned) Krylov
methods [35] or extrapolation techniques [36]. For a general structural and spectral analysis of Web
matrices as a function of the damping factor α (see [37]).

10-1610-1410-1210-1010-810-6

Arnoldi-type

10-15

10-10

10-5
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(a) Grcar matrix

10-1610-1410-1210-1010-810-6

Arnoldi-type

10-15

10-10

10-5

100

105

(b) Tridiagonal matrix

residual for exact Arnoldi-type

residual for Arnoldi-type with inexact inner products

inexactness of the inexact inner products ϵ

residual gaps ∥res(e)
AT − resAT ∥

upper bound of ∥res(e)
AT ∥

Figure 4. Arnoldi-type method with inexact inner products for the Grcar matrix and the
tridiagonal matrix.

From Figures 4 and 5, we still can see that the residual gaps ∥res(e)
AT − resAT ∥ decrease with decline

of inexactness of inexact inner products ϵ, which illustrates that the influence on Arnoldi-type method is
similar with GMRES and FOM in Figures 2 and 3. In addition, when inexactness of inner products ϵ
declines to some degree, the upper bound of ∥res(e)

AT ∥ is very close to ∥res(e)
AT ∥. More importantly, residual

for exact Arnodli-type almost coincides with residual for Arnoldi-type with inexact inner products,
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which means that we may be able to lower the precision of inner products computations appropriately
to improve computational efficiency of the Arnoldi-type method for solving large scale problems.

10-1610-1410-1210-1010-810-6

Arnoldi-type

10-20

10-15

10-10

10-5

100 residual for exact Arnoldi-type

residual for Arnoldi-type with
inexact inner products

inexactness of the inexact inner
products ϵ

residual gaps ∥res(e)
AT − resAT ∥

upper bound of ∥res(e)
AT ∥

Figure 5. Arnoldi-type method with inexact inner products for the Web-stanford matrix.

5. Conclusions

In the present paper, we have explored a new analysis framework to discuss how inexact inner
products influence the convergence and final accuracy of several Arnoldi-based Krylov subspace
methods. By introducing a transition matrix and investigating its properties, we have defined a quantity
in order to measure the inexactness of inexact inner products. Then, we analyzed the perturbation
of the upper-Hessenberg matrix H(e)

m as shown in Proposition 3.1. Based on this analysis, we have
developed the theoretical results for the GMRES, FOM, and Arnoldi-type methods as discussed in
Propositions 3.3–3.5. Numerical results in Section 4 illustrate the reliability and sharpness of our
theoretical results. In particular, we deduced that the residual gaps are small especially for the Arnoldi
process based Krylov subspace methods with inexact inner products. A consequence stemming from
this fact is that we could consider diminishing the precision of inner products arithmetic to some extent
to improve the computational efficiency for Arnoldi process based Krylov subspace methods. This will
be considered in a future research.
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