
https://www.aimspress.com/journal/nhm

NHM, 20(1): 1–14.
DOI: 10.3934/nhm.2025001
Received: 22 July 2024
Revised: 26 November 2024
Accepted: 04 December 2024
Published: 02 January 2025

Research article

Reaction–diffusion transport into core-shell geometry: Well-posedness and
stability of stationary solutions

Thomas Geert de Jong1,*, Georg Prokert2 and Alef Edou Sterk3

1 Faculty of Mathematics and Physics, Institute of Science and Engineering, Kanazawa University,
Kanazawa, Japan

2 Faculty of Mathematics and Computer Science, Center for Analysis, Scientific Computing and
Applications, Eindhoven University of Technology, Eindhoven, The Netherlands

3 Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of
Groningen, Groningen, The Netherlands

* Correspondence: Email: t.g.de.jong.math@gmail.com.

Abstract: We formulate and investigate a nonlinear parabolic reaction–diffusion equation describing
the oxygen concentration in encapsulated pancreatic cells with a general core-shell geometry. This
geometry introduces a discontinuous diffusion coefficient as the material properties of the core and
shell differ. We apply monotone operator theory to show the well-posedness of the problem in the
strong form. Furthermore, the stationary solutions are unique and asymptotically stable. These results
rely on the gradient structure of the underlying PDE. Our results provide necessary theoretical steps
for validation of the model.
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1. Introduction

Type 1 diabetes is a chronic condition that is caused by the immune system mistakenly
destroying insulin-producing pancreatic Langerhans islets. Treatment requires continuous monitoring
and maintenance of insulin levels via external means such as injections or insulin pumps. Islet
transplantation from deceased donors provides a new treatment to recover natural insulin
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production [1]. This is not a permanent solution, as a significant percentage of patients do not achieve
insulin independence at 5 years [1]. Furthermore, such a treatment requires immunosuppressants. As
there are only a few suitable donors, it is desirable to increase the durability of the transplanted cells.
This could be achieved by protecting the transplanted cells with a physical barrier. Alginate is a
promising candidate as it can selectively diffuse or block certain molecules [2]. In addition, alginates
are relatively inert [3–5]. This novel treatment shows promising results in mammalian trials [6–9].
Human trials are still in the preliminary phase [10–12].

King et al. [13, 14] proposed a model that describes the reaction–diffusion of oxygen through
a protective shell encapsulating a core so that hypoxia can be avoided within the donor cells. The
encapsulation and core of donor cells are approximately spherical [15]. Hence, in [13, 14], a spherical
core and shell with a common center are considered. In that paper the authors derived the governing
ODE for stationary solutions and numerically computed these solutions with oxygen concentration
above the hypoxia threshold. The existence of these stationary solutions is made rigorous in [16]
using topological shooting [17–19]. The latter result considers parameters used in cell encapsulation
experiments [15, 20, 21]. Stationary solutions of oxygen concentration in a core without a shell have
been extensively studied [22–25].

The oxygen concentration in the core and shell will initially be away from the stationary state.
Furthermore, the geometry of the cell is only approximately spherical. Hence, it is important for
the validation of the model to determine the stability of stationary solutions for general core-shell
geometry, which is the goal of this work. This first requires formulating the corresponding PDE and
showing its well-posedness, which was not considered in [13, 14]. The resulting PDE is of parabolic
type. On the boundary of the outside shell, we assume the oxygen concentration to be constant. As the
shell and the core have different diffusion coefficients, there is a discontinuity of this coefficient at the
interface separating them. This discontinuity makes the corresponding stationary problem a diffraction
problem [26]. We make the natural assumption that the concentration and the flux of oxygen are
continuous at the interface. Oxygen is consumed only by the donor cells in the core but not by the
protective shell. This leads to a nonlinear reaction–diffusion PDE in the core, where the non-linearity
corresponds to Michaelis–Menten consumption and consequently is bounded and monotone. In the
shell, however, the problem reduces to linear diffusion.

Our main results for our newly formulated PDE model are

- Well-posedness of the strong form,

- Uniqueness and asymptotic stability of stationary solutions.

The results are necessary theoretical steps in the validation of the biological model. Furthermore,
we will see that all the results hold for more general kinetics described by Hill’s equation. We note
that similar results have been obtained in the one-dimensional setting for the internal transition layer,
which arises by scaling the discontinuous diffusion coefficient by a small parameter [27].

The sum of the reaction term and the spatial differential term is a nonlinear monotone operator.
Hence, for the well-posedness result we can apply classical monotone operator theory. We apply the
well-known theorems of Komura and Browder–Minty [28]. We emphasize that the monotonicity of the
nonlinear operator defining our evolution problem results from the underlying structure of the problem
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as a gradient flow with respect to a convex functional. This structure also enables us to show the
uniqueness and asymptotic stability of the stationary solution.

In Section 2, we present the governing equations. The well-posedness result is proved in Section 3.
The stability results are presented in Section 4. In Section 5, we formulate the PDE donor cell model,
transform it to the setting considered in Section 2, and apply the theorems from Sections 3 and 4.
Finally, in Section 6, we conclude with remarks and an outlook on further questions.

2. Core-shell parabolic PDE

We start with a description of the geometry of the core and its protective shell. The domain is
denoted by Ω ⊂ RN with Ω compact and N ≥ 2. For the application N = 3, but the results hold for
N ≥ 2. Let Γ be an (N−1)-dim surface that divides Ω into two open domains Ω1,Ω2 such that ∂Ω1 = Γ

is a closed connected hypersurface and Ω2 has 2 boundary components, S := ∂Ω and Γ, see Figure 1.
We take S ,Γ of class C2. We refer to Ω1 as the core, Ω2 as the shell, and Ω as the core-shell.

Figure 1. Core-shell geometry: Ω1 (white) corresponds to the core andΩ2 (grey) corresponds
to the shell.

We consider the following PDE:
du
dt
− b∆u = f (u) in (Ω\Γ) × (0,T ), (2.1)

u|S = 0, (2.2)
[u]Γ = 0, (2.3)

[b∇u · ν]Γ = 0, (2.4)
u(·, 0) = u0 in Ω. (2.5)

In Eq (2.1), b : Ω→ R is given by

b(x) =

b1 if x ∈ Ω1,

b2 if x ∈ Ω2,

with b1, b2 > 0, the map f : L2(Ω)→ L2(Ω) given by

[ f (u)](x) =

φ1(u(x)) if x ∈ Ω1,

φ2(u(x)) if x ∈ Ω2,
(2.6)
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with φi : R→ R, i = 1, 2.

The following assumptions are the requirements for well-posedness of the strong form as well as
uniqueness and asymptotic stability of stationary solutions:

Assumption 2.1. Let φi satisfy

- 0 ≤ φi ≤ 1;

- φi is decreasing;

- φi(z)z ≤ c for all z ∈ R with c > 0;

- φi is Lipschitz with constant L > 0.

In Eqs (2.3) and (2.4), the square brackets [·]Γ are denoting the jump of the quantity in the brackets
across Γ, i.e., the trace from Ω2 minus the trace of Ω1. In Eq (2.4), ν is the normal directed towards Ω2.

3. Well-posedness results

Define V := H1
0(Ω),H := L2(Ω). The inner product on V is defined by (u, v)V = (u, v)H+(∇u,∇v)H.

Denote by ⟨·, ·⟩ the pairing between V∗ and V . So we have the evolution triplet

V ⊂⊂ H = H∗ ⊂ V∗,

where H∗ and V∗ denote the dual space of H and V , respectively. Moreover, we write V ⊂⊂ H to
emphasize the compactness of the embedding of V in H.

Define the nonlinear operator A : D(A)→ H given by

A(u) = −b∆u − f (u), (3.1)

with
D(A) := {u ∈ V : u|Ωi ∈ H2(Ωi), u satisfies (2.4)}.

We consider the equation

du
dt
+ A(u) = 0, (3.2)

as an equality in L2(0,T ; H). We denote by Cw(0,T ; H) the space of weakly continuous functions from
[0,T ] to H.

Theorem 3.1. For u(0) = u0 ∈ D(A), Eq (3.2) has a unique solution u ∈ C0(0,T ; H) for any T > 0 with

u ∈ Lip(0,T ; D(A)),
du
dt
∈ Cw(0,T ; H).

Furthermore, u0 7→ u(t) ∈ C0(D(A),D(A)).
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Proof. We will apply Theorem 31.A from [28]. Recall that A is called monotone if (A(u) − A(v), u −
v)H ≥ 0 for all u, v ∈ D(A). Let R denote the range of an operator and let I denote the identity operator.
The assumptions to check are:

(H1): A is monotone,

(H2): R(I + A) = H.

Proof (H1): Since φ is decreasing - we obtain

(A(u) − A(v), u − v)H =

∫
Ω

b∇(u − v) · ∇(u − v)dx −
∑

i

∫
Ωi

(φi(u) − φi(v))(u − v)︸                    ︷︷                    ︸
≤0

dx ≥ 0, (3.3)

for u, v ∈ D(A).

Proof (H2). We consider Ã : V → V∗ given by

⟨Ã(u),w⟩ :=
∫
Ω

(uw + b∇u∇w) dx −
∑

i

∫
Ωi

φi(u)wdx u,w ∈ V.

Recall that Ã is called hemicontinuous if the real function t 7→ ⟨Ã(u+tv),w⟩ is continuous on [0, 1]
for all u, v,w ∈ V and that Ã is called coercive if

⟨Ã(u), u⟩
∥u∥V

→ +∞ as ∥u∥V → ∞. (3.4)

We apply Theorem 26.A [28] to Ã, which gives that for fixed g ∈ H, there exists a u ∈ V such that
Ãu = g. The assumptions to check are:

- Ã monotone: Take u, v ∈ V , then similarly to Eq (3.3), we have that

⟨Ã(u) − Ã(v), u − v⟩ ≥
∫
Ω

b∇(u − v) · ∇(u − v)dx −
∑

i

∫
Ωi

(φi(u) − φi(v))(u − v)dx ≥ 0.

- Ã coercive: Recall from Assumptions 2.1 that φ(z)z ≤ c0 for all z ∈ R. Hence, we have that

⟨Ã(u), u⟩ =
∫
Ω

(u2 + b|∇u|2)dx −
∑

i

∫
Ωi

φi(u)udx ≥ c∥u∥2V − c0|Ω|

and therefore, we have Eq (3.4).

- Ã hemicontinuous: for t, s ∈ [0, 1] u, v,w ∈ V , the Lipschitz continuity of φi by Assumption 2.1,
we have

|⟨Ã(u + tv),w⟩ − ⟨Ã(u + sv),w⟩| ≤ C∥v∥V∥w∥V |t − s|

+
∑

i

∣∣∣∣∣∣
∫
Ωi

(φi(u + tv) − φi(u + sv)) wdx

∣∣∣∣∣∣
≤ C∥v∥V∥w∥V |t − s| + L∥v∥H∥w∥H |t − s|.

This implies the continuity of t 7→ ⟨Ã(u + tv),w⟩.
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Hence, for fixed g ∈ H, there exists a u ∈ V such that Ãu = g, i.e.,∫
Ω

b∇u∇wdx =
∫
Ω

(−u + f (u) + g)wdx ∀w ∈ V. (3.5)

It remains to show that u ∈ D(A), which can be done by adapting standard arguments on the
regularity of weak solutions to elliptic boundary value problems to our two-phase setting [29]. More
precisely, since −u + f (u) + a ∈ H and b is constant in Ωi, we can show, as in [30] Theorem 6.3.1, that
Eq (3.5) implies u|Ωi ∈ H2

loc(Ωi) and

−b∆u = −u + f (u) + g a.e. in Ωi, i = 1, 2.

To obtain H2-regularity up to the boundary, we modify the proof of [30] Theorem 6.3.4. (with
partly changed notation) in the following way: We fix x0 ∈ Γ and “flatten” Γ locally in a neighborhood
Ux0 of x0 by an appropriate C2-diffeomorphism Φ : Ux0 −→ B(0, 1) so that we have

Φ(Ux0 ∩Ω1) = B(0, 1) ∩ {y ∈ RN | yN > 0},
Φ(Ux0 ∩Ω2) = B(0, 1) ∩ {y ∈ RN | yN < 0}.

For the transformed problem, the jump of b occurs along the plane yN = 0. Therefore, the
estimates for the difference quotients of the transformed solution in the first N − 1 coordinate
directions can be carried out in both half balls as in the proof of the cited theorem. Thus, we
analogousy obtain u|Ωi ∈ H2(Ωi). Hence, applying integration by parts in the subdomains,∫

Ω

b∇u∇w dx =
∫
Ω1

b∇u∇w dx +
∫
Ω2

b∇u∇w dx

= −

∫
Ω1

b∆uw dx −
∫
Ω2

b∆uw dx −
∫
Γ

[b∇u · ν]Γw ds

=

∫
Ω

(−u + f (u) + g)w dx −
∫
Γ

[b∇u · ν]Γw ds ∀w ∈ V,

so by Eq (3.5), the boundary integral vanishes for all w ∈ V , which implies Eq (2.4), and u ∈ D(A)
is proved.

Finally, applying Corollary 31.1 from [28] gives that u0 7→ u(t) ∈ C0(D(A),D(A)).

4. Stability results

We define the functional E : V → R given by

E(u) =
∫
Ω

1
2

b|∇u|2dx −
∑

i

∫
Ωi

Fi(u)dx, (4.1)

where

Fi(s) =
∫ s

0
φi(σ)dσ. (4.2)
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Lemma 4.1. E is Fréchet differentiable with derivative at u given by

E′(u)[h] =
∫
Ω

b∇u∇hdx −
∫
Ω

f (u)hdx.

Proof. The first term in Eq (4.1) is a quadratic term in V . Fi has a bounded, integrable weak second
derivative. Hence, for z, ζ ∈ R we have

∣∣∣Fi(z + ζ) − Fi(z) − F′i (z)ζ
∣∣∣ = ∣∣∣∣∣∣ζ2

∫ 1

0
(1 − s)F′′i (z + sζ)ds

∣∣∣∣∣∣ ≤ 1
2
∥F′′i ∥∞ζ

2.

Thus, for u, h ∈ V ∣∣∣∣∣∣
∫
Ωi

Fi(u + h) − Fi(u) − F′i (u)h

∣∣∣∣∣∣ ≤ 1
2
∥F′′i ∥∞∥h∥

2
V ,

and ui 7→
∫
Ωi

Fi(u)dx is Fréchet differentiable with derivative given by

h 7→
∫
Ωi

F′i (u)hdx =
∫
Ωi

φi(u)hdx.

Lemma 4.2. E′ is strongly monotone, i.e., for all u, v ∈ V, there exists γ > 0 such that

(E′(u) − E′(v))[u − v] ≥ γ∥u − v∥2V .

Proof. Take u, v ∈ V , then using φi decreasing and Poincaré’s inequality we obtain

(E′(u) − E′(v))[u − v] =
∫
Ω

b(∇u − ∇v) · (∇u − ∇v)dx −
∑

i

∫
Ωi

(φi(u) − φi(v))(u − v)︸                    ︷︷                    ︸
≤0

dx

≥ γ∥u − v∥2V .

From Lemma 4.1, it follows that we can write Eq (3.2) as a gradient flow:

ut = −∇E(u),

in the sense that

(ut,w)H = −E′(u)[w].

Recall that u∗ ∈ V is called a critical point if E′(u∗)v = 0. Hence, stationary solutions are critical
points of E.

Theorem 4.3. There is precisely one stationary solution to Eq (3.2).
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Proof. If E is a continuous, strictly convex, coercive functional then E has a unique critical point which
is also a global minimum by Theorems 1.5.6 and 1.5.7 in [31]. E is continuous. Strict convexity of E
follows from Lemma 4.2. So we only need to show coercivity. Observe that if s > 0, then Fi(s) ≤ s,
and if s ≤ 0, then Fi(s) ≤ 0. Hence, Fi(s) ≤ |s| for all s ∈ R. Therefore, using Poincaré’s inequality,
we have that

E(u) ≥ C∥u∥2V −C∥u∥V .

Hence, E is coercive. The result follows from Lemma 4.1.

Denote the unique stationary solution by u∗ ∈ V .

Theorem 4.4 (Global asymptotic stability in H). Let u be a solution of Eq (3.2), then t 7→ eγt∥u(t)−u∗∥H
is bounded for t ≥ 0.

Proof. Observe that E′(u∗) = 0. From u ∈ L2(0,T ; V), du
dt ∈ L2(0,T ; V∗) we have that

d∥u∥2H
dt
= 2

(
du
dt
, u

)
H
, (4.3)

by Theorem 7.2 in [32]. Now let u be the solution of Eq (3.2). Then by Eq (4.3) and Lemma 4.2 we
have that

1
2

d
dt

(
∥u − u∗∥2H

)
=

(
du
dt
, u − u∗

)
H
= −E′(u)[u − u∗],

≤ (E′(u∗) − E′(u))[u − u∗] ≤ −γ∥u − u∗∥2V ≤ −γ∥u − u∗∥2H.

Hence, we obtain that ∥u(t) − u∗∥2H ≤ e2γt∥u(0) − u∗∥2H.

Asymptotic stability in the V-norm does not follow from Theorem 4.4, but we can obtain a weak
V-stability result:

Corollary 4.5. u(t)⇀ u∗ in V as t → ∞.

Proof. We first show that

t 7→ u(t) is bounded in V. (4.4)

We can bound ∥u∥V in terms of E(u) and ∥u∥H:

∥u∥2V ≤ C
∫
Ω

b|∇u|2dx = 2C

E(u) +
∑

i

∫
Ωi

Fi(u)dx

 ≤ C′(E(u) + ∥u∥H).

Now Eq (4.4) follows because E(u) is decreasing and ∥u∥H is bounded by Theorem 4.4.
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Now suppose the opposite of Corollary 4.5. Then, there exists ε > 0 and ϕ ∈ V∗ and a sequence
(tn), tn → ∞ such that

|⟨ϕ, u(tn) − u∗⟩| ≥ ε, (4.5)

for all n. Write un := u(tn). Since V is reflexive and (un) is bounded according to Eq (4.4), we obtain
from Alaoglu’s compactness theorem that there is a subsequence again denoted by (un) that converges
weakly in V . As V ⊂⊂ H, the subsequence (un) converges strongly in H; therefore, the limit is u∗

which is in contradiction with Eq (4.5).

5. Application to diabetes donor model

We will formulate a PDE for the model considered in [13]. We assume that the transplanted
cells are injected in an oxygen-stable environment [1]. Hence, we consider on S a Dirichlet boundary
condition. At Γ we require the concentration and flux to be continuous. Finally, on Ω1 there is a non-
linear term corresponding to Michaelis–Menten consumption [13]. It is assumed that on Ω2 there is no
oxygen consumption. We also assume that Michaelis–Menten consumption is zero when the oxygen
concentration is zero. This condition ensures that the non-linear term is bounded and monotone. The
equations for the non-dimensional oxygen concentration, v = v(x, t), are then given by

dv
dt
− b∆v = −g(v) in (Ω\Γ) × (0,T ),

v|S = c0,

[v]|Γ = 0,[
b
∂v
∂n

] ∣∣∣∣
Γ
= 0,

v(x, 0) = v0(x) in Ω,

where g : L2(Ω)→ L2(Ω) is defined by

[g(v)](x) =

ϕ(v(x)) if x ∈ Ω1,

0 if x ∈ Ω2,

with ϕ : R→ R given by

ϕ(z) =

 z
z+ĉ if z ≥ 0,
0 else,

with ĉ > 0. Let u = −v + c0 and we obtain Eqs (2.1)–(2.5). Setting c1 := c0 + ĉ we have that

φ1(z) =
{ c0−z

c1−z if z ≤ c0,

0 if z > c0,
(5.1)

where 0 < c0 < c1, see Figure 2.
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Figure 2. The function φ1 is decreasing. This function models the oxygen consumption of
the core cells. The value φ1 = 0 for z > c0 corresponds to zero oxygen consumption for zero
oxygen concentration. In the application, this means that the cells are dying from hypoxia.

It is straightforward to see that φ1 satisfies the properties in Assumptions 2.1. More specifically,
the Lipschitz constant is 1/(c1 − c0), and zφ1(z) ≤ c0 for all z ∈ R. Consequently, we can apply
Theorems 3.1, 4.3, and 4.4 to obtain well-posedness and global asymptotic stability of the unique
stationary solution.

For the most general form of kinetics, Hill’s equation, the theorems can also be applied. In the
transformed variables we then obtain that

φi(z) =

 (c0−z)n

(c0−z)n+ĉ if z ≤ c0,

0 if z > c0,
(5.2)

with n, ĉ > 0 which satisfies Assumption 2.1. Note that for n = 1, Eq (5.2) becomes Michaelis–Menten
Eq (5.1).

6. Conclusions

In this work, we have shown the well-posedness of a nonlinear reaction–diffusion equation for
general core-shell geometry. Furthermore, the corresponding stationary solutions are unique and
asymptotically stable in a suitable topology. These results extend the model by [13], which only
considers stationary solutions for spherical core-shell geometry.

The well-posedness theorem, Theorem 3.1, allows us to define a semi-dynamical system:
(D(A), {S (t)}t≥0). This can be used to prove the existence of a global attractor following techniques
in [32]. We expect that Theorem 10.13 from [32] can be applied and consequently that the global
attractor is equal to the unique stationary solution. We note that the techniques from [32, 33] can be
used to prove well-posedness by only relying on an L2 bound on f and not on the monotonicity
of f [34].

In view of general results on parabolic PDE systems, we expect our evolution problem to be well-
posed in Hölder spaces as well, if Γ is smooth enough. However, the proof would be rather technical,
and the improvement might not be essential from the point of view of the application. Consequently, it
was not considered in this work.

In an experimental set-up, f might be unknown. Suppose that the following are known: b,
Ω1,Ω2, and spatially dependent data for u when u has become stationary. The nonlinear f can be
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approximated using the Sparse Identification of Nonlinear Dynamics (SINDy) framework, which in
short, is a regression-type fitting process, typically LASSO, over a set of library functions [35]. There
are specialized SINDy frameworks for PDEs [36]. Observe that the data concerns stationary u in time
so we can ignore the time derivative, which reduces the complexity of the fitting process. We note that
the problem can be further reduced if we can control Ω1 and Ω2 in the experimental set-up. We would
then select a spherical geometry such that Ω1 and Ω2 have a common center. Assuming that the
obtained data for u also has spherical geometry, the problem reduces to applying the
SINDy-framework to a first-order ODE, which is a vanilla-type SINDy.

It is tempting to make the connection between this work and bulk-surface PDEs [37–40]. In
our setting bulk-surface geometry means that the outer shell is a surface. If we would consider our
governing equations and then take the limit to zero for the thickness of the shell it appears to be
necessary to assume that Neumann boundary conditions are imposed on the shell, to arrive at the
Bulk-Surface PDE [41].

Besides oxygen transport, glucose transport is also needed to sustain encapsulated donor cells.
In [42], a coupled glucose–oxygen transport model is proposed based on biological assumptions
from [21, 43]. As in [13], stationary solutions are considered, and a numerical study is performed to
find solutions that have concentrations which are above the donor cell survival threshold. The
well-posedness and stability of the corresponding PDE is a topic we would like to explore in
future work.
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