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Abstract: In the present paper, reaction–diffusion systems (RD-systems) with rapidly oscillating
coefficients and righthand sides in equations and in boundary conditions were considered in domains
with locally periodic oscillating (wavering) boundary. We proved a weak convergence of the trajectory
attractors of the given systems to the trajectory attractors of the limit (homogenized) RD-systems in
domain independent of the small parameter, characterizing the oscillation rate. We consider the critical
case in which the type of boundary condition was preserved. For this aim, we used the approach of
Chepyzhov and Vishik concerning trajectory attractors of evolutionary equations. Also, we applied the
homogenization (averaging) method and asymptotic analysis to derive the limit (averaged) system and
to prove the convergence. Defining the appropriate axillary functional spaces with weak topology, we
proved the existence of trajectory attractors for these systems. Then, we formulated the main theorem
and proved it with the help of auxiliary lemmata.
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1. Introduction

In the paper, one can find the homogenization problem for reaction–diffusion (RD) equations in
domains with very rapidly wavering boundary (for detailed geometric settings [1]). We prove the
existence of trajectory attractors and also obtain the convergence of the attractors as the small parameter,
characterizing the oscillations, goes to zero, i.e., we prove the Hausdorff convergence of attractors as the
small parameter goes to zero. Thus, we construct the limit attractor and prove the convergence of the
attractors of the given problem to the attractor of the limit problem. In many pure mathematical papers,
one can find the asymptotic methods applying to problems in domains with wavering (rough) boundaries
(see, for example, rapidly oscillating boundaries in [1–5], fractal boundaries in [6], diffusivity through
rough boundaries in [7], rapidly oscillating type of boundary conditions on oscillating (wavering)
boundaries in [8, 9], boundaries with many thin rods in [10–13]). We want to mention here the basic
frameworks [14–18] where one can find the detailed bibliography.

Concerning attractors, see, for instance, [19–21] and the references in these monographs.
Homogenization of attractors were studied in [21–24] and applications of this theory were investigated
in [25–28].

In this paper, we proved the weak convergence of the trajectory attractor Aϵ to the RD-systems in
domains with wavering boundary, as ϵ → 0, to the trajectory attractors A of homogenized systems in
some natural functional space. Here, the small parameter ϵ characterizes the period and the amplitude
of the oscillations. The parameter ϵ is included also in a Fourier condition on a part of the boundary,
and we consider the case when the type of this condition is preserved (critical case).

Note that the subcritical case (the case of the Neumann homogenized condition) and supercritical
(the case of the Dirichlet homogenized condition) are also interesting, but we suppose to study them in
independent papers.

Section 2 is devoted to basic settings. In Section 3, one can find the framework of the theory of
attractors. In Section 4, we describe the limiting (homogenized) RD-system and its trajectory attractor.
Section 5 contains auxiliary results, and Section 6 is connected with the proof of the main result.

2. Settings of the problem

Suppose that D is a bounded domain in Rd, d ≥ 2, with smooth boundary ∂D = Γ1 ∪Γ2, where D lies
in a semi-space {xd > 0} and Γ1 ⊂ {x : xd = 0}. Given a smooth nonpositive 1-periodic in the ỹ function
F(x̃, ỹ), x̃ = (x1, ..., xd−1), ỹ = (y1, ..., yd−1), we define the domain Dϵ as follows: ∂Dϵ = Γ

ϵ
1 ∪ Γ2, where

we set Γϵ1 = {x = (x̃, xd) : (x̃, 0) ∈ Γ1, xd = ϵ
αF(x̃, x̃/ϵ)}, 0 < α < 1, i.e., we add the thin oscillating

layer Πϵ = {x = (x̃, xd) : (x̃, 0) ∈ Γ1, xd ∈ [0, ϵαF(x̃, x̃/ϵ))} to the domain D. Usually, we assume that
F(x̃, ỹ) is compactly supported on Γ1 uniformly in ỹ. Consider the problem

∂uϵ
∂t = A∆uϵ − a

(
x, x

ϵ

)
f (uϵ) + h

(
x, x

ϵ

)
, x ∈ Dϵ , t > 0,

∂uϵ
∂ν
+ ϵβp(x̃, x̃

ϵ
)uϵ = ϵ1−αg(x̃, x̃

ϵ
), x = (x̃, xd) ∈ Γϵ1, t > 0,

uϵ = 0, x ∈ Γ2, t > 0,
uϵ = U(x), x ∈ Dϵ , t = 0,

(2.1)

where uϵ = uϵ(x, t) = (u1, . . . , un)⊤ is an unknown vector function, the nonlinear function
f = ( f 1, . . . , f n)⊤ is given, h = (h1, . . . , hn)⊤ is the known righthand side function, and A is an
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n × d-matrix with constant coefficients having a positive symmetrical part: 1
2(A +A⊤) ≥ ϖI, ϖ > 0

(where I is the unit matrix with dimension n). We assume that p (x̃, ỹ) = diag {p1, . . . , pn},
g (x̃, ỹ) = (g1, . . . , gn)⊤ are continuous, 1-periodic in ỹ, and pi (x̃, ỹ), i = 1, . . . n, are positive. Here, ∂

∂ν
is

the co-normal derivative of the function, i.e., ∂
∂ν

:=
d∑

k, j=1
Ak j

∂
∂xk

N j and N = (N1, . . . ,Nd) is the outward

normal vector to the boundary of the domain with unit length. We denote the maximum of p on Γ1

by pmax.
The function a(x, y) ∈ C(Dϵ ×R

d) is such that 0 < a1 ≤ a(x, y) ≤ a2 with some coefficient a1, a2. We
assume that function aϵ(x) = a

(
x, x

ϵ

)
has an average a(x) when ϵ → 0+ in space L∞,∗w(D), that is,∫

D

a
(
x,

x
ϵ

)
φ(x)dx→

∫
D

a(x)φ(x)dx (ϵ → 0+), (2.2)

for each φ ∈ L1(D).
Denote by V (respectively, Vϵ) the Sobolev space H1(D, Γ2) (respectively, H1(Dϵ , Γ2)), i.e., the space

of functions from the Sobolev space H1(D) (respectively, H1(Dϵ)) with zero trace on Γ2. We also
denote by V ′ (respectively, V ′ϵ) the dual space for V (respectively, Vϵ), i.e., the space of linear bounded
functionals on V (respectively Vϵ). For vector function h (x, y), assume that for any ϵ > 0, function
hi
ϵ(x) = hi

(
x, x

ϵ

)
∈ L2(Dϵ) and it has an average hi(x) in space L2(Dϵ) for ϵ → 0+, that is,

hi
(
x,

x
ϵ

)
⇀ hi(x) (ϵ → 0+) weakly in L2(Dϵ),

or ∫
D

hi
(
x,

x
ϵ

)
φ(x)dx→

∫
D

hi(x)φ(x)dx (ϵ → 0+), (2.3)

for each function φ ∈ L2(D) and i = 1, . . . , n.
From the condition (2.3), it follows that the norms of functions hi

ϵ(x) are bounded uniformly in ϵ, in
the space L2(Dϵ), i.e.,

∥hi
ϵ(x)∥L2(Dϵ ) ≤ M0, ∀ϵ ∈ (0, 1]. (2.4)

We suppose that the nonlinearity f (w) is continuous, i.e., f (w) ∈ C(Rn;Rn), and this function satisfies

n∑
k=1

| f k(w)|
pk

(pk−1) ≤ M0

 n∑
k=1

|wk|pk + 1

 , 2 ≤ p1 ≤ . . . ≤ pn−1 ≤ pn, (2.5)

n∑
k=1

γk|wk|pk − M1 ≤

n∑
k=1

f k(w)wk, ∀w ∈ Rn, (2.6)

for γk > 0 for any k = 1, . . . , n. The inequality (2.5) is due to the fact that in real RD-systems, the
functions f k(w) are polynomials with possibly different degrees. The inequality (2.6) is called the
dissipativity condition for the RD-system (2.1). In a simple model case pk ≡ p for each k = 1, . . . , n,
bounds (2.5) and (2.6) are reduced to the following:

| f (w)| ≤ M0

(
|w|p−1 + 1

)
, γ|w|p − M1 ≤ f (w)w, ∀w ∈ Rn. (2.7)

Note that the fulfillment of the Lipschitz condition for the function f (w) in the variable w is not supposed.
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Remark 2.1. Using the presented methods, it is also possible to study systems in which nonlinear terms

look as follows:
m∑

k=1
ak

(
x, x

ϵ

)
fk(w), where ak are matrices of the elements of which admit averaging and

fk(w) are polynomial vectors of w, which satisfy conditions of the form (2.5) and (2.6). For brevity, we
study the case m = 1 and a1

(
x, x

ϵ

)
= a

(
x, x

ϵ

)
I, where I is the identity matrix.

Denote

G(x̃) =
∫

[0,1)d−1

√
|∇ỹF(x̃, ỹ)|2 g(x̃, ỹ) dỹ, (2.8)

P(x̃) =
∫

[0,1)d−1

√
|∇ỹF(x̃, ỹ)|2 p(x̃, ỹ) dỹ. (2.9)

Note that P(x̃) is positive due to the positiveness of p. We have the convergences (see [1] and
Section 5 of this paper)

ϵ1−α
∫
Γϵ1

gi
(
x̃,

x̃
ϵ

)
· υ

(
x̃, ϵαF

(
x̃,

x̃
ϵ

))
ds→

∫
Γ1

Gi (x̃) · υ (x) ds, (2.10)

and

ϵ1−α
∫
Γϵ1

pi
(
x̃,

x̃
ϵ

)
υ
(
x̃, ϵαF

(
x̃,

x̃
ϵ

))
ds→

∫
Γ1

Pi (x̃) υ (x) ds, (2.11)

for each υ ∈ H1(Dϵ) by ϵ → 0. Here, ds is the element of (d−1)-dimensional measure on the hypersurface.
In the further analysis we use the following notation for the spaces U := [L2(D)]n, Uϵ := [L2(Dϵ)]n,

W := [H1(D,Γ2)]n, Wϵ := [H1(Dϵ;Γ2)]n. The norms in our spaces are defined in the following way:

∥v∥2 :=
∫
D

n∑
i=1

|vi(x)|2dx, ∥v∥2ϵ :=
∫
Dϵ

n∑
i=1

|vi(x)|2dx,

∥v∥21 :=
∫
D

n∑
i=1

|∇vi(x)|2dx, ∥v∥21,ϵ :=
∫
Dϵ

n∑
i=1

|∇vi(x)|2dx.

Denote by W′ the dual space to the space W, and by W′
ϵ the dual space to the space Wϵ .

Let qk =
pk

(pk−1) for any k = 1, . . . , n. We use the notation p = (p1, . . . , pn) and q = (q1, . . . , qn), and
define spaces

Vp := Lp1(D) × . . . × Lpn(D), Vp,ϵ := Lp1(Dϵ) × . . . × Lpn(Dϵ),

Vp(R+; Vp) := Lp1(R+; Lp1(D)) × . . . × Lpn(R+; Lpn(D)),

Vp(R+; Vp,ϵ) := Lp1(R+; Lp1(Dϵ)) × . . . × Lpn(R+; Lpn(Dϵ)).

As in [21, 29], we investigate weak (generalized) solutions of the problem (2.1), that is, functions

uϵ(x, t) ∈ Vloc
∞ (R+; Uϵ) ∩ Vloc

2 (R+; Wϵ) ∩ Vloc
p

(
R+; Vp,ϵ

)
,
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which satisfy the Eq (2.1) in the distributional sense (the sense of generalized functions), that is, the
integral identity

−

∫
Dϵ×R+

uϵ ·
∂ψ

∂t
dxdt +

∫
Dϵ×R+

A∇uϵ · ∇ψ dxdt +
∫

Dϵ×R+

aϵ(x) f (uϵ) · ψ dxdt +

ϵβ
∫
Γϵ1×R+

p
(
x̃,

x̃
ϵ

)
uϵ · ψ dsdt =

∫
Dϵ×R+

hϵ(x) · ψ dxdt + ϵ1−α
∫
Γϵ1×R+

g
(
x̃,

x̃
ϵ

)
· ψ dsdt,

(2.12)

for each function ψ ∈ C∞0 (R+; Wϵ ∩ Vp,ϵ). Here, z1 · z2 denotes the scalar product of vectors z1, z2 ∈ R
n.

If uϵ(x, t) ∈ Vp(0,M; Vp,ϵ), then from the condition (2.5) it follows that f (u(x, t)) ∈ Vq(0,M; Vq,ϵ).
At the same time, if uϵ(x, t) ∈ V2(0,M; Wϵ), thenA∆uϵ(x, t) + hϵ (x) ∈ V2(0,M; W′

ϵ). Therefore, for an
arbitrary generalized solution uϵ(x, s) to problem (2.1), it satisfies

∂uϵ(x, t)
∂t

∈ Vq(0,M; Vq,ϵ) + V2(0,M; W′
ϵ).

Now, applying the Sobolev theorems, we get the following:

Vq(0,M; Vq,ϵ) + V2(0,M; W′
ϵ) ⊂ Vq

(
0,M; U−r

ϵ

)
.

Here U−r
ϵ := H−r1(Dϵ)×. . .×H−rn(Dϵ), r = (r1, . . . , rn) and ri = max {1, d(1/qi − 1/2)} for i = 1, . . . , n,

where H−r(Dϵ) denotes the space dual to the Sobolev space Hr(Dϵ) with superscript r > 0 in the
domain Dϵ .

Therefore, for all generalized (weak) solution uϵ(x, t) to problem (2.1), time derivative ∂uϵ (x,t)
∂t belongs

to Vq
(
0,M; U−r

ϵ

)
.

Remark 2.2. Existence of a generalized solution u(x, t) to problem (2.1) for any initial data U ∈ Uϵ

and fixed ϵ, can be proved in the standard way (see, for instance, [20], [29]). This solution may not be
unique, since the function f (v) satisfies only the conditions (2.5) and (2.6) and it is not assumed that the
Lipschitz condition is satisfied with respect to v.

The next lemma is proved in a similar way to the proposition XV.3.1 from [21].

Lemma 2.1. Let uϵ(x, t) ∈ Vloc
2 (R+; Wϵ) ∩ Vloc

p (R+; Vp,ϵ) be the generalized solution of problem (2.1).
Then,

(i) uϵ ∈ C(R+; Uϵ);

(ii) function ∥uϵ(·, t)∥2 is absolutely continuous on R+, and moreover

1
2

d
dt
∥uϵ(·, t)∥2 +

∫
Dϵ

A∇uϵ(x, t) · ∇uϵ(x, t)dx+

∫
Dϵ

aϵ(x) f (uϵ(x, t)) · uϵ(x, t)dx + ϵβ
∫
Γϵ1

p
(
x̃,

x̃
ϵ

)
uϵ(x, t) · uϵ(x, t) ds = (2.13)

∫
Dϵ

hϵ(x) · uϵ(x, t)dx + ϵ1−α
∫
Γϵ1

g
(
x̃,

x̃
ϵ

)
· uϵ(x, t) ds,

for a. a. t ∈ R+.
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To define the trajectory space T +ϵ for Eq (2.1), we use the general approaches of Section 3, and for
every [t0, t1] ∈ R, we have the Banach spaces

Gt0,t1 := V2(t0, t1; W) ∩ V∞(t0, t1; U) ∩ Vp(t0, t1; Vp) ∩
{

v
∣∣∣∣ ∂v
∂t
∈ Vq

(
t0, t1; U−r)} ,

(sometimes we omit the parameter ϵ for brevity) with the following norm:

∥w∥Gt0 ,t1
:= ∥w∥V2(t0,t1;W) + ∥w∥Vp(t0,t1;Vp) + ∥w∥V∞(0,M;U) +

∥∥∥∥∥∂w
∂t

∥∥∥∥∥
Vq(t0,t1;U−r)

.

LettingDt0,t1 = Vq (t0, t1; U−r), we obtainGt0,t1 ⊆ Dt0,t1 , and for u(t) ∈ Gt0,t1 , we haveL(u(t)) ∈ Dt0,t1 .

One considers now the generalized solutions to Eq (2.1) as solutions of the equation in the general
scheme of Section 3.

Consider the following spaces:

G
loc
+ = Vloc

2 (R+; W) ∩ Vloc
p (R+; Vp) ∩ Vloc

∞ (R+; U) ∩
{

w
∣∣∣∣ ∂w
∂t
∈ Vloc

q (R+; U−r)
}
,

G
loc
ϵ,+ = Vloc

2 (R+; Wϵ) ∩ Vloc
p (R+; Vp,ϵ) ∩ Vloc

∞ (R+; Uϵ) ∩
{

w
∣∣∣∣ ∂w
∂t
∈ Vloc

q (R+; U−r
ϵ )

}
.

We introduce the following notation. Let K+ϵ be the set of all generalized solutions to Eq (2.1). For
any U ∈ U, there exists at least one trajectory u(·) ∈ T +ϵ such that u(0) = U(x). Hence, the space T +ϵ to
Eq (2.1) is not empty.

It is easy to see that T +ϵ ⊂ G
loc
ϵ,+ and the space T +ϵ is translation invariant, i.e., if u(t) ∈ T +ϵ , then

u(τ + t) ∈ T +ϵ for all τ ≥ 0. Hence, S (τ)T +ϵ ⊆ T
+
ϵ for all τ ≥ 0.

In the set Gt0,t1 we can introduce metrics ρt0,t1(·, ·) in Gt0,t1 by means of V2(t0, t1; U)–norms. Hence,
we obtain the following definition of this metric:

ρt0,t1(v,w) =


t1∫

t0

∥v(t) − w(t)∥2Udt


1/2

∀v(·),w(·) ∈ Ft0,t1 .

The topology Θloc
+ in Gloc

+ is generated by these metrics. Let us recall that {vk} ⊂ G
loc
+ converges to

v ∈ Gloc
+ as k → ∞ in Θloc

+ if ∥vk(·) − v(·)∥V2(t0,t1;U) → 0 (k → ∞) for all [t0, t1] ⊂ R+. Bearing in mind
Eq (3.2), we conclude that the topology Θloc

+ is metrizable. We consider this topology in T +ϵ of Eq (2.1).
Similarly, we define the topology Θloc

ϵ,+ in Gloc
ϵ,+.

Consider the semigroup of translation {S (τ)} on T +ϵ , S (τ) : T +ϵ → T
+
ϵ , τ ≥ 0. This semigroup {S (τ)}

acting on T +ϵ , is continuous in the topology Θloc
ϵ,+.

Using the scheme from Section 3, one can define bounded sets in T +ϵ by means of the Banach space
Gb
ϵ,+. We naturally get

G
b
ϵ,+ = Vb

2(R+; Wϵ) ∩ Vb
p(R+; Vp,ϵ) ∩ V∞(R+; Uϵ) ∩

{
w

∣∣∣∣ ∂w
∂t
∈ Vb

q(R+; U−r
ϵ )

}
,

and the space Gb
ϵ,+ is a subspace of Gloc

ϵ,+.
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Suppose that Tϵ is the kernel to Eq (2.1), i.e., we have the set of all generalized complete bounded
solutions u(t), t ∈ R, to our RD-system. We consider solutions bounded in

G
b
ϵ = Vb

2(R; Wϵ) ∩ Vb
p(R; Vp,ϵ) ∩ V∞(R; Uϵ) ∩

{
w

∣∣∣∣ ∂w
∂t
∈ Vb

q(R; U−r
ϵ )

}
.

Proposition 2.1. Problem (2.1) has the trajectory attractors Aϵ in the topological space Θloc
ϵ,+. The set

Aϵ is bounded in Gb
ϵ,+ and compact in Θloc

ϵ,+. In addition, Aϵ = Π+Kϵ , and the kernel Kϵ is nonempty and
bounded in Gb

ϵ . Recall that the spaces Gb
ϵ,+ and Θloc

ϵ,+ depend on ϵ.

To prove this proposition, we use the approach of the proof from [21]. To prove the existence of an
absorbing set (bounded in F b

ϵ,+ and compact in Θloc
ϵ,+), one can use Lemma 2.1 similar to [21].

It is easy to verify that Aϵ ⊂ B0(R) for all ϵ ∈ (0, 1). Here, B0(R) is a ball in Gb
ϵ,+ with a sufficiently

large radius R. Due to Lemma 3.1, we have

B0(R) ⋐ Vloc
2 (R+; U1−η

ϵ ), (2.14)
B0(R) ⋐ Cloc(R+; U−ηϵ ), 0 < η ≤ 1. (2.15)

Bearing in mind Eqs (2.14) and (2.15), the attraction to the constructed trajectory attractor can
be strengthened.

Corollary 2.1. For any bounded in Gb
ϵ,+ set B ⊂ T +ϵ we get

distV2(0,M;U1−η
ϵ )

(
Π0,MS (τ)B,Π0,MTϵ

)
→ 0,

distC([0,M];U−ηϵ )
(
Π0,MS (τ)B,Π0,MTϵ

)
→ 0 (τ→ ∞),

where M is a positive constant.

Recall that D ⊂ Dϵ and D lies in the positive half-space {xd > 0}. Therefore, for each function u(x, t)
of the variable x ∈ Dϵ that belongs to the space F b

ϵ,+, its restriction to the domain D belongs to the space
F b
+ and, moreover,

∥u∥Gb
+
≤ ∥u∥Gb

ϵ,+
.

Using this observation, we have:

Corollary 2.2. The trajectory attractors Aϵ are uniformly (with respect to ϵ ∈ (0, 1)) bounded in F b
+ .

It should be noted that the kernels Kϵ are uniformly bounded in the space Gb. We mean that they are
uniformly bounded with respect to ϵ ∈ (0, 1).

3. Attractors to evolutionary equations: General approach

The section is devoted to the trajectory attractors to autonomous evolutionary equations (see details
in [21]).

Consider an autonomous equation of the form

∂u
∂t
= L(u), t ≥ 0. (3.1)
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Here, L(·) : Υ1 → Υ0 is a nonlinear mapping, Υ1,Υ0 are Banach spaces, and Υ1 ⊆ Υ0. As an
example, one can consider L(u) = A∆u − a(·) f (u) + h(·).

We study generalized solutions u(t) to Eq (3.1) as functions of t ∈ R+ as an object. The set of
solutions of Eq (3.1) is said to be a trajectory space T + of Eq (3.1). Now, we give a detailed description
of T +.

Consider solutions u(t) of Eq (3.1) on [t0, t1] ⊂ R. We consider solutions to problem (3.1) in a Banach
space Gt0,t1 . The space Gt0,t1 is a set f (s), s ∈ [t0, t1] satisfying f (t) ∈ Υ for a.a. t ∈ [t0, t1], where Υ is a
Banach space, satisfying Υ1 ⊆ Υ ⊆ Υ0.

We consider Gt0,t1 as the intersection of spaces C([t0, t1]; E), or Lp(t0, t1; E), for p ∈ [1,∞]. Suppose
that Rt0,t1Gτ0,τ1 ⊆ Gt0,t1 and

∥Rt0,t1 f ∥Gt0 ,t1
≤ C(t0, t1, τ0, τ1)∥ f ∥Gτ0 ,τ1

∀ f ∈ Gτ1,τ2 .

Here, [t0, t1] ⊆ [τ0, τ1] and we denote by Rt0,t1 the restriction operator onto [t0, t1], where
C(t0, t1, τ0, τ1) is independent of f .

Denote by S (τ) for τ ∈ R the translation S (τ) f (t) = f (τ + t). If the variable t of f (·) belongs to the
segment [t0, t1], then the variable t of S (τ) f (·) belongs to [t0 − τ, t1 − τ] for τ ∈ R. Suppose that S (τ) is
an isomorphism from Ft0,t1 to Ft0−τ,t1−τ and ∥S (τ) f ∥Gt0−τ,t1−τ

= ∥ f ∥Gt0,t1 ∀ f ∈ Gt0,t1 .

Suppose that if f (t) ∈ Gt0,t1 , then L( f (t)) ∈ Dt0,t1 , where Dt0,t1 is a Banach space, which is larger,
Gt0,t1 ⊆ Dt0,t1 . The derivative ∂ f (t)

∂t is a distribution with values in Υ0,
∂ f
∂t ∈ D′((t0, t1);Υ0), and we

suppose thatDt0,t1 ⊆ D′((t0, t1);Υ0) for all (t0, t1) ⊂ R. A function u(t) ∈ Gt0,t1 is a solution of Eq (3.1) if
∂u
∂t (t) = L(u(t)) in the sense of D′((t0, t1);Υ0).

Consider the space

G
loc
+ = { f (t), t ∈ R+ | Rt0,t1 f (t) ∈ Gt0,t1 , ∀ [t0, t1] ⊂ R+}.

For instance, if Gt0,t1 = C([t0, t1]; E), then Gloc
+ = C(R+; E), and if Gt0,t1 = Lp(t0, t1; E), then Gloc

+ =

Lloc
p (R+; E).

A function u(t) ∈ Gloc
+ is a solution of Eq (3.1) if Rt0,t1u(t) ∈ Gt0,t1 , and u(t) is a solution to Eq (3.1)

for any [t0, t1] ⊂ R+.
Let T + be a set of solutions to Eq (3.1) from Gloc

+ . Note that T + in general is not the set of all
solutions from Gloc

+ . The set T + consists on elements, which are trajectories, and the set T + is the
trajectory space of the Eq (3.1).

Suppose that the trajectory space T + is translation invariant, i.e., if u(t) ∈ T +, then u(τ + t) ∈ T +

for every τ ≥ 0.
Consider the translations S (τ) in Gloc

+ : S (τ) f (t) = f (τ + t), τ ≥ 0. It is easy to see that the map
{S (τ), τ ≥ 0} forms a semigroup in Gloc

+ : S (τ1)S (τ2) = S (τ1 + τ2) for τ1, τ2 ≥ 0, and, in addition,
S (0) is the identity operator. The semigroup {S (τ), τ ≥ 0} maps the trajectory space T + to itself:
S (τ)T + ⊆ T + for all τ ≥ 0.

We investigate attracting properties of the translation semigroup {S (τ)} acting on the trajectory space
T + ⊂ Gloc

+ . Next step is to get a topology in Gloc
+ .

Assume that some metrics ρt0,t1(·, ·) are defined on Gt0,t1 for any [t0, t1] ⊂ R. Suppose that

ρt0,t1
(
Rt0,t1 f ,Rt0,t1g

)
≤ D(t0, t1, τ0, τ1)ρτ0,τ1 ( f , g) for all f , g ∈ Gτ0,τ1 , [t0, t1] ⊆ [τ0, τ1],
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ρt0−τ,t1−τ(S (τ) f , S (τ)g) = ρt0,t1( f , g) ∀ f , g ∈ Gt0,t1 , [t0, t1] ⊂ R, τ ∈ R.

Now, we denote by Θt0,t1 the metric spaces on Gt0,t1 . For instance, ρt0,t1 is the metric defined by the
norm ∥ · ∥Gt0 ,t1

of Gt0,t1 .

The projective limit of the spaces Θt0,t1 defines the topology Θloc
+ in Gloc

+ , that is, by definition, a
sequence { fk(t)} ⊂ Gloc

+ goes to f (t) ∈ Gloc
+ as k → ∞ in Θloc

+ if ρt0,t1(Rt0,t1 fk,Rt0,t1 f )→ 0 as k → ∞ for
all [t0, t1] ⊂ R+. It is possible to show that the topology Θloc

+ is metrizable. For this aim we use, for
instance, the Fréchet metric

ρ+( f1, f2) :=
∑
k∈N

2−k ρ0,k( f1, f2)
1 + ρ0,k( f1, f2)

. (3.2)

We define the Banach space

G
b
+ := { f (t) ∈ Gloc

+ | ∥ f ∥F b
+
< +∞},

with
∥ f ∥Gb

+
:= sup

τ≥0
∥R0,1 f (τ + t)∥G0,1 .

We recall that Gb
+ ⊆ Θ

loc
+ . For our Banach space Gb

+, we need only the fact that it should define
bounded subsets in the trajectory space T +.

Assume that T + ⊆ Gb
+.

Definition 3.1. A set Ξ ⊆ Θloc
+ is said to be the attracting set of {S (τ)} acting on T + in the topology Θloc

+

if for any bounded in F b
+ set B ⊆ T +, the set Ξ attracts S (τ)B as τ→ +∞ in the topology Θloc

+ , i.e., for
any ϵ-neighbourhood Oϵ(Ξ) in Θloc

+ there is τ1 ≥ 0 such that S (τ)B ⊆ Oϵ(Ξ) for all τ ≥ τ1.

It is easy to see that the attracting property of Ξ can be reformulated equivalently: we have

distΘ0,M (R0,MS (τ)B,R0,MΞ) −→ 0 (τ→ +∞).

Here,
distM(X,Y) := sup

x∈X
distM(x,Y) = sup

x∈X
inf
y∈Y

ρM(x, y),

is the Hausdorff semi-distance from a set X to a set Y in a metric spaceM. We recall that the Hausdorff
semi-distance is not symmetric, for any B ⊆ T + bounded in Gb

+ and for all M > 0.

Definition 3.2. ( [21]). A set A ⊆ T + is said to be the trajectory attractor of the semigroup {S (τ)} on T +

in the topology Θloc
+ if

(i) A is compact in Θloc
+ and bounded in F b

+ ,
(ii) the set A is invariant: S (τ)A = A for all τ ≥ 0,
(iii) the set A is an attracting for {S (τ)} on T + in the topology Θloc

+ , i.e., for every M > 0, we have

distΘ0,M (R0,MS (τ)B,R0,MA)→ 0 (τ→ +∞).

Let us give the main assertion on the trajectory attractor for Eq (3.1).

Theorem 3.1. ( [20, 21]). Let the trajectory space T + corresponding to Eq (3.1) be contained in Gb
+.

We also assume that our semigroup {S (t)} has an attracting set Ξ ⊆T + which is bounded in Gb
+ and

compact in Θloc
+ . Then, the semigroup {S (τ), τ ≥ 0} acting on T + has the trajectory attractor A ⊆ Ξ.

The set A is compact in Θloc
+ and bounded in Gb

+.
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Let us describe in detail, i.e., in terms of complete trajectories of the equation, the structure of the
trajectory attractor A to Eq (3.1). We study Eq (3.1) on the time axis

∂u
∂t
= L(u), t ∈ R. (3.3)

Note that the trajectory space T + of Eq (3.3) on R+ has been defined. We need this notion on the
entire R. If a function f (t), t ∈ R, is defined on the entire axis, then S (τ) f (t) = f (τ + t) are also defined
for τ < 0. A function u(t), t ∈ R, is a complete trajectory of Eq (3.3) if R+u(τ + t) ∈ T + for all τ ∈ R.
Here, R+ = R0,∞ denotes the restriction operator to R+.

We have Gloc
+ ,G

b
+, and Θloc

+ . Let us define spaces Gloc,Gb, and Θloc in the same way

G
loc := { f (t), t ∈ R | Rt0,t1 f (s) ∈ Gt0,t1 ∀ [t0, t1] ⊆ R},

G
b := { f (t) ∈ Gloc | ∥ f ∥Gb < +∞},

where
∥ f ∥Gb := sup

h∈R
∥R0,1 f (τ + t)∥G0,1 . (3.4)

Note that our topological space Θloc coincides (the coincidence as a set) with Gloc and, by definition,
fk(t)→ f (t) (k → ∞) in Θloc if Rt0,t1 fk(t)→ Rt0,t1 f (t) (k → ∞) in Θt0,t1 for each [t0, t1] ⊆ R.

Definition 3.3. The kernel T in Gb of Eq (3.3) is the collection of all complete trajectories u(t), t ∈ R,
of Eq (3.3), bounded in Gb w.r.t. the norm Eq (3.4), i.e.,

∥R0,1u(τ + t)∥G0,1 ≤ Cu ∀τ ∈ R.

Theorem 3.2. Suppose the assumptions of the previous theorem hold. Then, A = R+T and the set T is
bounded in Gb and compact in Θloc.

To prove this assertion, one can use the approach from [21].
Now we are going to prove that a ball in the space Gb

+ is compact in our topological space Θloc
+ . For

this aim we use the next lemma. Assume that Υ0 and Υ1 are Banach spaces and Υ1 ⊂ Υ0. We consider
the spaces

Wp1,p0(0,M;Υ1,Υ0) =
{
ξ(t), t ∈ 0,M | ξ(·) ∈ Lp1(0,M;Υ1), ξ′(·) ∈ Lp0(0,M;Υ0)

}
,

W∞,p0(0,M;Υ1,Υ0) =
{
ξ(t), t ∈ 0,M | ξ(·) ∈ L∞(0,M;Υ1), ξ′(·) ∈ Lp0(0,M;Υ0)

}
,

(p1 ≥ 1, p0 > 1) with the norms

∥ξ∥Wp1 ,p0
:=


M∫

0

∥ξ(t)∥p1
Υ1

dt


1/p1

+


M∫

0

∥ξ′(t)∥p0
Υ0

dt


1/p0

,

∥ξ∥W∞,p0
:= ess sup

{
∥ξ(t)∥Υ1 | t ∈ [0,M]

}
+


M∫

0

∥ξ′(t)∥p0
Υ0

dt


1/p0

.
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Lemma 3.1. ( [30]). Suppose that Υ1 ⋐ Υ ⊂ Υ0. Then, we have compact embeddings

Wp1,p0(0,T ;Υ1,Υ0) ⋐ Lp1(0,T ;Υ), W∞,p0(0,T ;Υ1,Υ0) ⋐ C([0,T ];Υ).

In this paper we investigate evolutionary equations and their attractors that depend on a small
parameter ϵ > 0.

Definition 3.4. The trajectory attractors Aϵ tend to the trajectory attractor A as ϵ → 0 in the topology
Θloc
+ if for every vicinity O(A) in Θloc

+ there exists an ϵ1 ≥ 0 such that Aϵ ⊆ O(A) for all ϵ < ϵ1, i.e., for
every M > 0, we have

distΘ0,M (R0,MAϵ ,R0,MA)→ 0 (ϵ → 0).

4. Homogenized RD-system and its trajectory attractor (the case β = 1 − α)

In the next sections, we study the behaviour of the problem (2.1) as ϵ → 0 in the critical case β = 1−α.
We have the following “formal” limit problem with an inhomogeneous Fourier boundary condition

∂u0
∂t = A∆u0 − a (x) f (u0) + h (x) , x ∈ D, t > 0,
∂u0
∂ν
+ P(x̃)u0 = G(x̃), x = (x̃, 0) ∈ Γ1, t > 0,

u0 = 0, x ∈ Γ2, t > 0,
u0 = U(x), x ∈ D, t = 0.

(4.1)

Here, a(x) and h(x) are defined in Eqs (2.2) and (2.3), respectively, and G(x̃) and P(x̃) were defined
in Eqs (2.8) and (2.9).

As before, we consider generalized solutions of the problem (4.1), that is, functions

u0(x, t) ∈ Vloc
∞ (R+; U) ∩ Vloc

2 (R+; W) ∩ Vloc
p

(
R+; Vp

)
,

which obey the integral identity

−

∫
D×R+

u0 ·
∂ξ

∂t
dxdt +

∫
D×R+

A∇u0 · ∇ξ dxdt +
∫

D×R+

ā(x) f (u0) · ξ dxdt+

∫
Γ1×R+

P (x̃) u0 · ξ dsdt =
∫

D×R+

h̄(x) · ξ dxdt +
∫
Γ1×R+

G (x̃) · ξ dsdt,
(4.2)

for each function ξ ∈ C∞0 (R+; W∩Vp). For each u(x, t) to Eq (4.1), we have that ∂u0(x,t)
∂t ∈ Vq (0,M; U−r)

(see Section 2). Recall that the “limit” domain D in Eqs (4.1) and (4.2) is independent of ϵ and its
boundary contains the plain part Γ1.

Similar to Eq (2.1), for any initial data U ∈ U, the problem (4.1) has at least one generalized solution
(see Remark 2.2). Lemma 2.1 also holds true for the problem (4.1) with replacing the ϵ-depending
coefficients a, h, p, and g by the corresponding averaged coefficients a(x), h(x), P(x̃), and G(x̃).

As usual, let T
+

be the the trajectory space for Eq (4.1) (the set of all generalized solutions) that
belongs to the corresponding spaces Gloc

+ and Gb
+ (see Section 3). Recall that T

+
⊂ Gloc

+ and the space
T
+

is translation invariant with respect to translation semigroup {S (τ)}, that is, S (τ)T
+
⊆ T

+
for all

τ ≥ 0. We now construct the trajectory attractor in the topology Θloc
+ for the problem (4.1) (see Sections 2

and 3).
Similar to Proposition 2.1, we have:
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Proposition 4.1. Problem (4.1) has the trajectory attractor A in the topological space Θloc
+ . The set A is

bounded in Gb
+ and compact in Θloc

+ . Moreover,

A = R+K ,

and the kernel K of the problem (4.1) is nonempty and bounded in Gb.

We also have A ⊂ B0(R), where B0(R) is a ball in F b
+ with a sufficiently large radius R. Finally, the

analog of Corollary 2.1 holds for the trajectory attractor A.

Corollary 4.1. For any bounded in Gb
+ set B ⊂ T

+
, we have

distV2(0,M;U1−η)

(
R0,MS (τ)B,R0,MT

)
→ 0,

distC([0,M];U−ηϵ )

(
R0,MS (τ)B,R0,MT

)
→ 0 (τ→ ∞), ∀M > 0.

5. Preliminary Lemmata (the case β = 1 − α)

Next lemmata are proved in [1].

Lemma 5.1. The convergence

v
(
x̃, ϵαF

(
x̃,

x̃
ϵ

))
→ v (x̃, 0) as ϵ → 0, (5.1)

is strongly in [L2(Γ1)]n and the inequality

∥v∥[L2(Rϵ )]n ≤ C1
√
ϵα∥v∥Wϵ

, (5.2)

is true for any v ∈Wϵ .

Let us consider auxiliary elliptic problems
A∆vϵ + h

(
x, x

ϵ

)
= 0, x ∈ Dϵ ,

∂vϵ
∂ν
+ ϵβp(x̃, x̃

ϵ
)vϵ = ϵ1−αg(x̃, x̃

ϵ
), x = (x̃, xd) ∈ Γϵ1,

vϵ = 0, x ∈ Γ2,

(5.3)

and 
A∆v0 + h(x) = 0, x ∈ D,
∂v0
∂ν
+ P(x̃)v0 = G(x̃), x = (x̃, 0) ∈ Γ1,

v0 = 0, x ∈ Γ2,

(5.4)

where h(x) is defined in Eq (2.3), and G(x̃) and P(x̃) are defined in Eqs (2.8) and (2.9).

Lemma 5.2. For all v ∈Wϵ , the convergence∣∣∣∣∣∣∣∣∣ϵ1−α
∫
Γϵ1

g
(
x̃,

x̃
ϵ

)
· v

(
x̃, ϵαF

(
x̃,

x̃
ϵ

))
ds −

∫
Γ1

G(x̃) · v(x) ds

∣∣∣∣∣∣∣∣∣→ 0, (5.5)

is valid as ϵ → 0.
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Lemma 5.3. The convergence∣∣∣∣∣ ϵ1−α
∫
Γϵ1

p
(
x̃,

x̃
ϵ

)
v0

(
x̃, ϵαF

(
x̃,

x̃
ϵ

))
· v

(
x̃, ϵαF

(
x̃,

x̃
ϵ

))
ds −

∫
Γ1

P(x̃)v0(x) · v(x) ds
∣∣∣∣∣→ 0, (5.6)

takes place as ϵ → 0. Here, v0 is a solution to Eq (5.4) and v ∈Wϵ .

Remark 5.1. Due to the smoothness of the boundary ∂D, the solution v0 belongs to H2(D) [31], and,
hence, can be continued on Rϵ to belong to H2(Dϵ) [32].

Lemma 5.4. Let β = 1 − α and F(x̃, ỹ), g(x̃, ỹ), p(x̃, ỹ) be periodic in y smooth functions,A be a given
matrix, and h(x, x

ϵ
) be a righthand function which satisfies the conditions (2.3) and (2.4). Suppose

that F(x̃, ỹ) is compactly supported in x ∈ Γ1 uniformly in y. Then, for all ϵ > 0, the existence and
uniqueness of the solution to problem (5.3) follows, and the strong convergence

vϵ → v0, (5.7)

in W as ϵ → 0 is valid.

Proof. The existence and uniqueness of vϵ (v0) are due to the positiveness of p(x̃, x̃
ϵ
) (P(x̃) ) and the

Lax-Milgram lemma (see [33]). Then, according to Eqs (2.1) and (4.1),∫
Dϵ

A∇(v0 − vϵ) · ∇wdx + ϵ1−α
∫
Γϵ1

p(v0 − vϵ) · wds =
∫
D

A∇v0 · ∇wdx−

∫
Dϵ

h · wdx − ϵ1−α
∫
Γϵ1

g · wds + ϵ1−α
∫
Γϵ1

pv0 · wds =
∫
D

A∇v0 · ∇wdx−

∫
Dϵ

h · wdx − ϵ1−α
∫
Γϵ1

g · wds +
∫
Rϵ

A∇v0 · ∇wdx + ϵ1−α
∫
Γϵ1

pv0 · wds =

∫
Rϵ

A∇v0 · ∇wdx − ϵ1−α
∫
Γϵ1

g · wds +
∫
Γ1

G(x̃) · wds−

∫
Rϵ

h · wdx + ϵ1−α
∫
Γϵ1

pv0 · wds −
∫
Γ1

P(x̃)v0 · wds.

Let us estimate all the terms in the righthand side of the last relation. By Eq (5.2), considering the
smoothness of v0, we have∣∣∣∣∣∣∣∣∣

∫
Rϵ

A∇v0 · ∇wdx

∣∣∣∣∣∣∣∣∣ ≤ ∥A∥∥∇v0∥[L2(Rϵ )]n∥w∥Wϵ
≤ C2

√
ϵα∥v0∥Wϵ

∥w∥Wϵ
,

and ∣∣∣∣∣∣∣∣∣
∫
Rϵ

h · wdx

∣∣∣∣∣∣∣∣∣ ≤ ∥h∥[L2(Rϵ )]n∥w∥[L2(Rϵ )]n ≤ C3
√
ϵα∥h∥Uϵ

∥w∥Wϵ
.

Networks and Heterogeneous Media Volume 19, Issue 3, 1381–1401.



1394

Then, according to Lemmas 5.2 and 5.3, the inequalities∣∣∣∣∣∣∣∣∣ ϵ1−α
∫
Γϵ1

g · wds −
∫
Γ1

G · wds

∣∣∣∣∣∣∣∣∣ ≤ C4(ϵ1−α +
√
ϵα)∥w∥Wϵ

,

and ∣∣∣∣∣∣∣∣∣ϵ1−α
∫
Γϵ1

pv0 · wds −
∫
Γ1

Pv0 · w ds

∣∣∣∣∣∣∣∣∣ ≤ C5

(
ϵ1−α +

√
ϵα

)
∥v0∥Wϵ

∥w∥Wϵ
,

hold. With the help of these inequalities, we obtain∣∣∣∣∣∣∣∣∣
∫
Dϵ

A∇(v0 − vϵ) · ∇wdx +
∫
Γϵ1

p(v0 − vϵ) · wds

∣∣∣∣∣∣∣∣∣ ≤ C6

(
ϵ1−α +

√
ϵα

)
∥w∥Wϵ

.

Substituting w = v0 − vϵ and using Lemma 5.3 and the Friedrichs type inequality (see [34–36]), we
obtain Eq (5.7). The lemma is proved.

Lemma 5.5. 1) All solutions uϵ(t) to Eq (2.1) satisfy

∥uϵ(t)∥2ϵ ≤ ∥uϵ(0)∥2ϵe
−κ1t + R2

1, (5.8)

ϖ

∫ t+1

t
∥uϵ(s)∥2ϵ,1ds + 2a0

N∑
i=1

γi

t+1∫
t

∥ui
ϵ(s)∥pi

Lpi (Dϵ )
ds+

+ 2pmaxϵ
1−α

t+1∫
t

∥uϵ(s)∥2V2(Γϵ1)ds ≤ ∥uϵ(t)∥2ϵ + R2
2, (5.9)

where κ1 > 0 is a constant independent of ϵ. Positive values R1 and R2 depend on M0 (see Eq (2.4)) and
are independent of uϵ(0) and ϵ.

2) All solutions u(t) to Eq (4.1) satisfy the same inequalities (5.8) and (5.9) with the norms in the
function spaces over the domain D instead Dϵ .

Proof. We give a brief outline of the proof (see the details in [21]).
In the righthand side of Eq (2.13), the integral over the part of the boundary Γϵ1 is nonnegative because

of the positiveness of the matrix p. We integrate Eq (2.13) with respect to t. Then, to estimate the terms

ϵ1−α
∫
Γϵ1

g · wds and ϵ1−α
∫
Γϵ1

puϵ · wds,

we use the Cauchy inequality and the compactness of embedding V2(Γϵ1) ⋐Wϵ . For other terms, we use
a standard procedure (see [21]). The lemma is proved.
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6. Main assertion

Here, we formulate the main result concerning the limiting behavior of the trajectory attractors Aϵ of
the systems (2.1) as ϵ → 0 in the critical case β = 1 − α.

Theorem 6.1. The following limit holds in the topological space Θloc
+

Aϵ → A as ϵ → 0 + . (6.1)

Moreover,
Kϵ → K as ϵ → 0 + in Θloc. (6.2)

Proof. It is easy to see that Eq (6.2) implies Eq (6.1). Hence, it is sufficient to prove Eq (6.2), i.e., for
every neighborhood O(K) in Θloc, there exists ϵ1 = ϵ1(O) > 0 such that

Kϵ ⊂ O(K) for ϵ < ϵ1. (6.3)

Assume that Eq (6.3) is not true. Then, there exists a neighborhood O′(K) in Θloc, a sequence
ϵk → 0 + (k → ∞), and a sequence uϵk(·) = uϵk(t) ∈ Kϵk , such that

uϵk < O
′(K) for all k ∈ N.

The function uϵk(x, t), t ∈ R is a solution to
∂uϵk
∂t = A∆uϵk − a

(
x, x

ϵk

)
f (uϵk) + h

(
x, x

ϵk

)
, x ∈ Dϵk ,

∂uϵk
∂ν
+ ϵ

β
k p(x̃, x̃

ϵk
)uϵk = ϵ

1−α
k g(x̃, x̃

ϵk
), x ∈ Γϵk

1 ,

uϵk = 0, x ∈ Γ2,

(6.4)

where β = 1 − α. To get the uniform in ϵ estimate of the solution, we use Lemma 5.5 (see also
Corollary 4.1). By means of Eqs (5.8) and (5.9), we obtain that the sequence {uϵk(x, t)} is bounded in
Gb, i.e.,

∥uϵk∥Gb = sup
t∈R
∥uϵk(t)∥ + sup

t∈R


t+1∫
t

∥uϵk(ϑ)∥21 dϑ


1/2

+ sup
t∈R


t+1∫
t

∥uϵk(ϑ)∥pVp
dϑ


1/p

+

ϵβ sup
t∈R

t+1∫
t

∫
Γϵ1

p
(
x̃,

x̃
ϵ

)
uϵ(x, ϑ) · uϵ(x, ϑ) ds dϑ + sup

t∈R


t+1∫
t

∥∥∥∥∥∂uϵk

∂t
(ϑ)

∥∥∥∥∥q

U−r
dϑ


1/q

≤ C ∀ k ∈ N. (6.5)

Note that here, β = 1 − α. The constant C is independent of ϵ. Consequently, there exists a
subsequence {uϵ′k(x, t)} ⊂ {uϵk(x, t)}, such that

uϵ′k(x, t)→ u(x, t) as k → ∞ in Θloc.

Here, u(x, t) ∈ Gb and u(t) satisfies Eq (6.5) with the same constant C. Because of Eq (6.5), we get

uϵ′k(x, t) ⇀ u(x, t) (k → ∞),
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weakly in Vloc
2 (R; W), weakly in Vloc

p

(
R; Vp

)
, star-weakly in Vloc

∞ (R+; U) and

∂uϵ′k(x, t)

∂t
⇀

∂u(x, t)
∂t

(k → ∞),

weakly in Vloc
q,w (R; U−r). We claim that u(x, t) ∈ K . We have ∥u∥Gb ≤ C. Hence, we have to verify that

u(x, t) = u0(x, t), i.e. it is a generalized solution to Eq (4.1).
Using Eqs (6.5) and (2.3), we find that

∂uϵk

∂t
−A∆uϵk − hϵk (x) −→

∂ū
∂t
−A∆ū − h (x) as k → ∞, (6.6)

in the space D′ (R; U−r), since the derivative operators are continuous in the space of distributions.
Let us prove that

a
(
x,

x
ϵk

)
f (uϵk) ⇀ ā (x) f (ū) as k → ∞, (6.7)

weakly in Vloc
q,w

(
R; Vq

)
. We fix any number M > 0. The sequence {uϵk(x, t)} is bounded in

Vp
(
−M,M; Vp

)
(see Eq (6.5)). Then, due to Eq (2.5), the sequence { f (uϵk(t))} is bounded in

Vq
(
−M,M; Vq

)
. Because {uϵk(x, t)} is bounded in V2 (−M,M; W) and

{∂uϵk
∂t (t)

}
is bounded in

Vq (−M,M; U−r), we may assume that

uϵk(x, t)→ ū(x, t) as k → ∞ in V2 (−M,M; V2) = V2 (D×] − M,M[) ,

hence,
uϵk(x, t)→ ū(x, t) as k → ∞ for almost all (x, t) ∈ D×] − M,M[.

Because the function f (w) is continuous in w ∈ R, we conclude that

f (uϵk(x, t))→ f (ū(x, t)) as k → ∞ for almost all (x, t) ∈ D×] − M,M[. (6.8)

We have

a
(
x,

x
ϵk

)
f (uϵk) − ā (x) f (ū) =

a
(
x,

x
ϵk

) (
f (uϵk) − f (ū)

)
+

(
a
(
x,

x
ϵk

)
− ā (x)

)
f (ū). (6.9)

Let us show that both terms in the righthand side of Eq (6.9) tend to zero as k → ∞ weakly in
Vq

(
−M,M; Vq

)
= Vq (D × ]−M,M[). First, the sequence a

(
x, x

ϵk

) (
f (uϵk) − f (ū)

)
goes to zero as k → ∞

for almost all (x, t) ∈ D × ]−M,M[ (see Eq (6.8)). Applying Lemma 1.3 from [37], we conclude that

a
(
x,

x
ϵk

) (
f (uϵk) − f (ū)

)
⇀ 0 as k → ∞,

weakly in Vq (D × ]−M,M[). Second, the sequence
(
a
(
x, x

ϵk

)
− ā (x)

)
f (ū) also goes to zero a k → ∞

weakly in Vq (D × ]−M,M[), since a
(
x, x

ϵk

)
⇀ ā (x) as k → ∞ star-weakly in V∞,∗w (−M,M; V2) and

f (ū) ∈ Vq (D × ]−M,M[). Thus, Eq (6.7) is proved.
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Now, let us show that

ϵ1−α
k p

(
x̃,

x̃
ϵk

)
uϵk ⇀ P(x̃)ū as k → +∞, (6.10)

weakly in V2(Γ1×] − M,M[). Indeed, we have

ϵ1−α
k p

(
x̃,

x̃
ϵk

)
uϵk

(
x̃, ϵαk F

(
x̃,

x̃
ϵk

))
− P(x̃)ū(x) =

ϵ1−α
k p

(
x̃,

x̃
ϵk

) (
uϵk

(
x̃, ϵαk F

(
x̃,

x̃
ϵk

))
− ū

(
x̃, ϵαk F

(
x̃,

x̃
ϵk

)))
+

ϵ1−α
k p

(
x̃,

x̃
ϵk

)
ū
(
x̃, ϵαk F

(
x̃,

x̃
ϵk

))
− P(x̃)ū(x̃, 0).

We have

ϵ1−α
k p

(
x̃,

x̃
ϵk

) (
uϵk

(
x̃, ϵαk F

(
x̃,

x̃
ϵk

)
, t
)
− ū

(
x̃, ϵαk F

(
x̃,

x̃
ϵk

)
, t
))
⇀ 0 as k → +∞,

weakly in V2(Γ1×] − M,M[) due to Lemma 5.1. We state that

ϵ1−α
k p

(
x̃,

x̃
ϵk

)
ū
(
x̃, ϵαk F

(
x̃,

x̃
ϵk

)
, t
)
− P(x̃)ū(x̃, 0, t) ⇀ 0 as k → +∞, (6.11)

weakly in V2(Γ1×] − M,M[). Indeed, due to Lemma 5.5, both terms are bounded V2(Γ1×] − M,M[).
Also, one can see that this convergence due to Eq (2.11) is almost everywhere in ] − M,M[. Using
Lemma 1.3 from [37], we get the weak convergence Eq (6.11) and, hence, we obtain Eq (6.10).

In an analogous way, we act with the terms with g
(
x̃, x̃

ϵk

)
and G(x̃), using Lemma 5.2.

Hence, for u(x, t) = u0(x, t), we have

−

M∫
−M

∫
Dϵk

uϵk ·
∂ξ

∂t
dxdt +

M∫
−M

∫
Dϵk

A∇uϵk · ∇ξ dxdt +

M∫
−M

∫
Dϵk

aϵk(x) f (uϵk) · ξ dxdt+

ϵk
β

M∫
−M

∫
Γ
ϵk
1

p
(
x̃,

x̃
ϵk

)
uϵk · ξ dsdt −→ −

M∫
−M

∫
D

u0 ·
∂ξ

∂t
dxdt+

M∫
−M

∫
D

A∇u0 · ∇ξ dxdt +
∫
D

a(x) f (u0) · ξ dxdt +

M∫
−M

∫
Γ1

P (x̃) u0 · ξ dsdt,

as k → ∞.
Using Eq (6.8), we pass to the limit in the Eq (6.4) as k → ∞ in the space D′(R; U−r) and obtain that

the function u0(x, t) satisfies the integral identity Eq (4.2) and, hence, it is a complete trajectory of the
Eq (4.1).

Consequently, u0 ∈ K . We have proved above that uϵk → u0 as k → ∞ in Θloc. Assumption
uϵk < O

′(K) (see [38]) implies u0 < O
′(K), and, hence, u0 < K . We arrive to the contradiction that

completes the proof of the theorem.
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Using the compact imbedding Eqs (2.14) and (2.15), we improve the convergence Eq (6.1).

Corollary 6.1. For any 0 < η ≤ 1 and for all M > 0,

distV2([0,M];U1−η)

(
R0,MAϵ ,R0,MA

)
→ 0, (6.12)

distC([0,M];U−η)

(
R0,MAϵ ,R0,MA

)
→ 0 (ϵ → 0+). (6.13)

To prove Eqs (6.12) and (6.13), we use the reasoning in proof Theorem 6.1, changing the topological
space Θloc by Vloc

2 (R+; U1−η) or Cloc(R+; U−η).
In conclusion, we consider the case of uniqueness of the Cauchy problem for RD-systems. It is

sufficient to suppose that the nonlinear function f (u) in Eq (2.1) satisfies the inequality

−C|w1 − w2|
2 ≤ ( f (w1) − f (w2),w1 − w2) for any w1,w2 ∈ R

n, (6.14)

(see [21,29]). In [29], it was proved that if Eq (6.14) is true, then Eqs (2.1) and (4.1) generate dynamical
semigroups in U, possessing that global attractors Aϵ and A are bounded in W (see [19, 20]). Moreover,

Aϵ = {u(0) | u ∈ Aϵ}, A = {u(0) | u ∈ A}.

The convergence Eq (6.13) gives:

Corollary 6.2. Under the assumption of Theorem 6.1, the limit formula takes place

distU−η
(
Aϵ , A

)
→ 0 (ϵ → 0+).

7. Conclusions

In the paper, we consider RD-systems with rapidly oscillating terms in equations and in boundary
conditions in domains with locally periodic wavering boundary (rough surface) depending on a small
parameter. We define the trajectory attractors of these systems and prove that they weakly converge to the
trajectory attractors of the limit (averaged) RD-systems in domain independent of the small parameter.

In this paper we consider the critical case in which the type of boundary condition is preserved under
the limit passage.

Defining the appropriate axillary functional spaces with weak topology, we prove the existence of
trajectory attractors for these systems. Then, we formulate the main theorem and prove it with the help
of auxiliary lemmata.
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