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Abstract: This paper contributes to the field by developing a fractional-order vegetation-sand model
that incorporates memory effects into the traditional integer-order framework. By studying the spa-
tiotemporal dynamics of a time-order fractional vegetation-sand model, the research aimed to deepen
our understanding of the complex interactions between vegetation and sand environments, providing
insights for effective management and conservation strategies in arid and semi-arid regions. First,
using the linear stability theory of fractional differential equations, we conducted a stability analysis
of the spatially homogeneous fractional-order vegetation-sand model and provided the parametric
conditions for stability and instability. Next, we performed a stability analysis of the spatiotemporal
model, utilizing Turing instability to reveal the effects of diffusion and fractional order on vegetation
distribution. Through numerical simulations, we demonstrated the spatiotemporal evolution patterns of
the model under different environmental conditions and discussed the implications of these dynamic
changes for ecological restoration and land management.
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1. Introduction

The vegetation-sand model is an essential theoretical framework that serves to elucidate the complex
and often counterintuitive interactions between vegetation and sandy environments, particularly in the
context of desertification and ecosystem degradation. As desertification continues to emerge as one of
the most pressing environmental challenges of the 21st century, this model offers a critical lens through
which scientists and policymakers can understand, predict, and mitigate the adverse effects of this
global phenomenon [1–3]. To understand the dynamics of desertification and conditions under which it
occurs, sophisticated models must be developed to simulate the interactions between vegetation, soil,
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and climatic factors [4–7]. Previously, mathematical models have been developed as tools to explore
how vegetation growth, distribution, and decline are influenced by environmental variables such as
soil moisture, water, wind, and precipitation [6–11]. These models also emphasize the critical role of
vegetation in stabilizing sandy soils and mitigating desertification.

In arid and semi-arid regions, vegetation patterns are primarily influenced by water redistribution,
which results from the varying infiltration rates of different vegetation types [6–9]. Studying the water
plant model allows us to understand the mechanisms behind vegetation pattern formation and the
impacts of various factors—including the vegetation growth rate, natural mortality rate, grazing, and
precipitation—on vegetation distribution [11–15]. In sandy and windy areas, plant growth is significantly
affected by the movement of sand particles, whereas seed dispersal is influenced by wind. Therefore,
the effects of sand and wind in these environments must be considered [5]. The emergence of vegetation
patterns in desert ecosystems has attracted significant interest from ecologists and researchers, as these
patterns provide important insights into the dynamics of desert environments, plant adaptation, and
ecological processes. Prior studies have focused on how wind influences the spatial distribution of
vegetation, resulting in patterns such as stripes, spots, or gaps in ecosystems [1–5]. However, theoretical
studies using partial differential equations had not been conducted until Zhang et al. [10] incorporated
two variables—vegetation coverage rate and wind—into a model to explore the formation mechanisms
of sand-vegetation patterns. Using this model, Zhang et al. identified several key processes on the
interaction between vegetation and sand particles, including vegetation growth, sand particle deposition,
vegetation diffusion, and horizontal sand transport. In addition, they presented vegetation-sand models
for two specific species. The introduction of reaction-diffusion equations to study vegetation patterns
in ecosystems, especially in desert environments, has led to significant advancements in theoretical
ecology [16–18]. The research conducted by Zhang et al. has likely improved our understanding of how
mathematical models characterize the dynamics of plant populations and their spatial distribution. In this
model, the influence of the prevailing wind on the growth rates of the two variables was represented as an
advection term, whereas the impacts of other winds were represented as diffusion terms. It is important
to note that many regions lack significant dominant winds [18]. Unlike Zhang et al. [10, 16, 17],
Li et al. [18] investigated the aggregation mechanism of linear action terms, which facilitated the
reformulation of the vegetation-sand model as follows:

∂S
∂T
= K0 + MV − NS + D1(

∂2S
∂X2 +

∂2S
∂Y2 ),

∂V
∂T
= HV(1 −

V
Vm

) −
PS V

C + V
+ D2(

∂2V
∂X2 +

∂2V
∂Y2 ),

(1.1)

where ∂S
∂T and ∂V

∂T are the accumulation rate of sand and growth rate of vegetation, respectively,
K0 + MV − NS represents deposition by vegetation, HV(1 − V

Vm
) is vegetation growth, PS V

C + V

represents vegetation destroyed by sand, and D1( ∂
2S
∂X2 +

∂2S
∂Y2 ) and D2(∂

2V
∂X2 +

∂2V
∂Y2 ) represent sand diffusion in

all directions and vegetation dispersal in all directions, respectively. Following dimensionless treatment,
the resulting model is expressed as
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∂s
∂t
= 1 + v − s +

∂2s
∂x2 +

∂2s
∂y2 ,

∂v
∂t
= hv(1 −

v
vm

) − ps
v

1 + cv
+ d(

∂2v
∂x2 +

∂2v
∂y2 ),

(1.2)

where
s =

N
K0

S , v =
M
K0

V, t = NT, h =
H
N
, vm =

MVm

K0
, p =

PK0

CN2 ,

c =
K0

CM
, x =

√
N
D1

X, y =

√
N
D1

Y, d =
D2

D1
.

Research has also been conducted on the reaction-diffusion model of vegetation in sandy envi-
ronments (1.2). Li et al. [18] investigated the occurrence of diffusion instability and its impact on
vegetation patterns due to Turing instability. Subsequently, the bifurcation theory was employed to
extend the local partial bifurcation to the global bifurcation, deriving the conditions for determining
the direction of bifurcation. A study of double eigenvalues was conducted using spatial decomposition
techniques and the implicit function theorem. Zhang et al. [17] proposed a vegetation-sand model that
incorporates non-local interactions characterized by integral terms involving kernel functions. The
instability of the Turing diagram was analyzed, leading to the derivation of its stability conditions. In
addition, the amplitude equation at the critical value of the Turing bifurcation was derived using a
multiscale method. In summary, although most prior studies on vegetation-sand models have focused
on integer derivatives [10, 16–18], there is growing interest in exploring more advanced mathematical
frameworks, such as fractional derivatives, to better capture the complexities of ecological dynamics.
The succession of arid ecosystems can span long periods, sometimes on the scale of hundreds of years,
and succession processes in each region may vary with respect to climate, soil, and other regional
factors. Owing to the locality of integer-order derivatives, there are some limitations in describing
the succession. Fractional derivatives are more suitable for description than integer derivatives owing
to their memorability and nonlocality [19–21]. Significant progress has been made in research on
time-fractional reaction-diffusion models, particularly in the fields of ecology, biology, and applied
mathematics [22–25], as these models provide a more nuanced understanding of complex systems in
which memory effects and nonlocal interactions play crucial roles. Similar to other ecological models,
we aim to replace the integer-order derivative vegetation-sand model with a fractional-order derivative
model to more accurately and comprehensively represent ecological dynamics. The fractional-order
derivative model captures memory effects, simulates nonlocal interactions, and enhances predictive
capabilities, thereby providing valuable insights into the complex relationship between vegetation
and sand dynamics. This transformation is essential for advancing ecological research and enhancing
management practices in response to environmental challenges. The pattern behavior of the fractional
model is significantly more complex than that of the integer order [26–28]. There are several types of
fractional time derivatives, including the Caputo, Riemann-Liouville, and Marchaud derivatives [20, 29].
Among these, the Caputo derivative is widely used in fractional calculi. It is particularly useful in
modeling processes that exhibit memory effects and nonlocal behavior, making it applicable in various
scientific and engineering disciplines. In this paper, we briefly discuss the definition and basic properties
of Caputo derivatives that were subsequently used in this study.

Networks and Heterogeneous Media Volume 19, Issue 3, 1286–1308.



1289

The remainder of this paper is organized as follows. Section 2 presents a fractional vegetation-
sand model, along with the definitions and tools applicable to fractional derivatives. In Section 3, we
perform a comprehensive analysis of the temporal behavior of the solution in a diffusion-free scenario.
This analysis identified a Hopf bifurcation, which signifies a substantial alteration in the system’s
dynamic behavior. Section 4 discusses the effects of spatial diffusion and fractional derivatives, as
well as analyzing the existence of a Turing bifurcation. In Section 5, several numerical simulations
are presented to validate the mathematical results. The significant outcomes are summarized in the
concluding section.

2. Fractional model and preliminaries

Fractional derivatives can account for the history of a system state, as the current state of a system
depends on present as well as past variables [20, 28]. Fractional derivatives offer advantages over
traditional integer-order derivatives in certain contexts owing to the ability to capture memory effects
and nonlocal behaviors in systems [30, 31]. We briefly discuss the definition and basic properties of
the Caputo derivatives [29] that were used throughout this study. First, we define the Caputo derivative
as follows.

Definition 2.1. [20, 29, 32] The Caputo derivative of order δ ∈ (0, 1) for functional g : [0,∞)→ R can
be written in the following form:

Dδg(t) =
1

Γ(n − δ)

∫ t

0

g(n)(s)
(t − s)δ+s−n ds, n − 1 < δ < n, n ∈ N, (2.1)

where Γ is Euler’s gamma function. Let us now define the following nonlinear fractional-order system:

dδΦ
dt
= JΦ(t) + g(Φ), Φ(0) = Φ0 ∈ R

n, (2.2)

where δ ∈ (0, 1); J ∈ Rn×n; g ∈ C1(Rn,Rn); and Dg(0) = 0.

The Caputo fractional-order derivative is a generalization of traditional derivatives that allows for
non-integer order differentiation, making it particularly useful for modeling complex systems that
exhibit memory and hereditary properties [32–35]. Many biological processes exhibit memory effects,
where the current state depends not only on the present conditions but also on past states. The Caputo
fractional-order derivative captures these memory effects, allowing for more accurate modeling of
phenomena such as population dynamics, drug absorption, and ecological interactions. The Caputo
fractional-order derivative can be applied to models of population growth and decline, where the rate of
change may depend on the history of population sizes or environmental factors. This can lead to more
nuanced predictions about species interactions and ecosystem stability.

The stability analysis of fractional-order differential equations requires an examination of the roots of
characteristic equations derived from the system. The complexity of fractional derivatives necessitates
careful consideration of stability criteria specific to fractional systems. Recognizing these differences
is crucial for the effective modeling and control of systems characterized by fractional dynamics. In
fractional-order derivative systems, the concept of stability differs from that in differential systems, as
outlined by the following theorem.
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Theorem 2.1. [20, 28] Assuming that E∗ is the equilibrium point of a fractional differential system, the
linear system (2.2) is derived by linearizing the system around this equilibrium point. The system (2.2)
is locally stable if all eigenvalues λ of M satisfy |arg(λ)| > δπ

2 (0 < δ < 1); conversely, the system (2.2) is
unstable if |arg(λ)| < δπ

2 for some values of the eigenvalues λ.

Let us now define the Hopf bifurcation of fractional-order systems using the parameter δ. Hopf
bifurcation is an important dynamic behavior that typically occurs in nonlinear systems when the stability
of the equilibrium points changes along with system parameters, leading to the emergence of periodic
solutions. The study of Hopf bifurcations in fractional-order systems is particularly significant because
the dynamic characteristics of these systems differ from those in traditional integer-order systems. We
explore how to analyze this phenomenon using appropriate mathematical tools and methods, and clarify
the conditions and features of Hopf bifurcation in fractional-order systems.

Notation 2.1. [20,30,31] Assuming that E∗ is an equilibrium point of system (2.2), when the parameter
δ takes the value δ = δh, system (2.2) undergoes Hopf bifurcation around E∗, provided that the following
conditions hold:

(i) The Jacobian matrix of system (2.2) associated with the point E, has a pair of complex conjugate
eigenvalues λ1,2 = a ± ib; these become purely imaginary at δ = δh.

(ii) 𭟋1,2(δh) = 0, where 𭟋i(δ) = δπ
2 −min

i=1,2
|arg(λi)|.

(iii) ∂𭟋1,2(δ)
∂δ
|δ=δh , 0.

Notation 2.2. [24] Let 0 = µ1 < µ2 < · · · < µk <→ ∞ be the eigenvalues of the Laplacian operator −∆
on Ω under no-flux boundary conditions, and E(µi) be the space of the eigenfunctions corresponding to
µi in C1(Ω). We define the following space decomposition:

(i) Xi j =
{
c × ϕi j : c ∈ R2

}
, where

{
ϕi j

}
is an orthonormal basis of E (µi) for j = 1, . . . , dimE(µi).

(ii) X =
{
w ∈

[
C1(Ω̄)

]2
: ∂u
∂η
= ∂v

∂η
= 0 on ∂Ω}, hence X =

⊕∞

i=1

⊕dim E(µi)
j=1 Xi j, where w = (u, v)T and η

is the outward unit normal vector along the boundary of the domain.

The use of fractional-order time models in vegetation-sand systems enhances traditional ecological
models by incorporating fractional derivatives related to time. These models are particularly effective
at capturing memory effects and nonlocal interactions that can occur in ecological dynamics. The
following sections outline the key components, formulas, and examples of the fractional-order time
model specifically developed for vegetation-sand systems. In these models, time derivatives are
substituted with fractional derivatives, typically expressed in Caputo form. The order of derivatives,
commonly represented as δ under the condition 0 < δ < 1, indicates the level of memory within the
system. To elucidate the relationship between vegetation and sand in arid ecosystems, the following
fractional-order models were used:
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∂δs
∂tδ
= 1 + v − s + ∆s, (x, y) ∈ Ω, t > 0,

∂δv
∂tδ
= hv(1 −

v
vm

) − ps
v

1 + cv
+ d∆v, (x, y) ∈ Ω, t > 0,

∂s
∂η
=
∂v
∂η
= 0, (x, y) ∈ ∂Ω, t > 0,

s(x, y, 0) = s∗, v(x, y, 0) = v∗, (x, y) ∈ Ω,

(2.3)

where ∆ denotes the Laplacian operator, Ω is a bounded domain in R2 with a smooth boundary ∂Ω,
and η is the outward unit normal vector along ∂Ω. The homogeneous Neumann boundary conditions
indicate that there is no flux across the boundary.

System (2.3) always has one bare sand state equilibrium point E0 = (1, 0). When ν , 0, we have

−
ch
νm
ν2 + (ch − p −

h
νm

)ν + h − p = 0. (2.4)

A = −
ch
νm

< 0, B = ch − p −
h
νm
, C = h − p.

The number of equilibrium points in the system (2.4) depends on the relationship between the above
parameters [18].

(i) When the parameters satisfy the conditions B2 − 4AC > 0 and B −
√

B2 − 4AC > 0, Eq (2.4) has
two positive roots

v1 =
−B +

√
B2 − 4AC

2A
, v2 =

−B −
√

B2 − 4AC
2A

.

Therefore, we have s1 = 1 + v1 and s2 = 1 + v2. It can be observed that the system (2.3) has two
uniformly vegetated equilibrium points E1 = (s1, v1) and E2 = (s2, v2).

(ii) When the parameters satisfy the condition B2 − 4AC = 0, B > 0, Eq (2.4) has a unique positive
root, v3 = −

B
2A and s3 = 1 + v3. Therefore, the system (2.3) has the equilibrium point E3 = (s3, v3).

(iii) When the parameters satisfy the condition B2 − 4AC < 0, Eq (2.4) does not have any real roots,
indicating that system (2.3) has no equilibrium.

3. Effect of time-fractional derivative

Before discussing the time-fractional spatiotemporal sand-vegetation model, it is essential to un-
derstand the corresponding time-fractional ordinary differential equation (FODE) model. The FODE
serves as a foundational building block for the extension to more complex spatial models, such as
reaction-diffusion equations. In this section, we investigate the behavior of the following temporal
model using the time-fractional derivative

∂δs
∂tδ
= 1 + v − s, t > 0,

∂δv
∂tδ
= hv(1 −

v
vm

) − ps
v

1 + cv
, t > 0,

s(0) = s∗, v(0) = v∗.

(3.1)
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3.1. Local stability analysis

We sequentially present the dynamic behavior of the model system around each steady state using
the following theorems:

Theorem 3.1. The bare ground equilibrium (1, 0) is locally asymptotically stable when p > h but
becomes unstable when p ≤ h.

Proof. To analyze the stability of the equilibrium point (1, 0), system (3.1) is linearized in its vicinity to
derive the Jacobian matrix

J(0, 1) =


−1 1

0 h − p

 .
The eigenvalues of the corresponding coefficient matrix are the roots of the characteristic equation

expressed as
λ2 − (h − p − 1)λ + p − h = 0,

where the roots of this characteristic equation are

λ1,2 =
h − p − 1 ±

√
(h − p − 1)2 − 4(p − h)

2
=

h − p − 1 ±
√

(h − p + 1)2

2
.

Two eigenvalues are λ1 = 2(h − p) and λ2 = −2. If p > h then argλ1 = argλ2 = π which implies
argλ > δπ

2 . Hence the equilibrium point (1, 0) is locally asymptotically stable when p > h. For p ≤ h,
we find argλ1 = 0, argλ2 = π, and consequently argλ2 <

δπ
2 which implies (1, 0) is unstable.

In order to discuss the stability of the internal equilibrium point, system (3.1) is linearized near the
equilibrium point E∗ := (s∗, v∗) = (s j, v j)( j = 1, 2, 3) to obtain the Jacobin matrix

J =
(
−1 1
−

pv∗

1+cv∗ h − 2hv∗
vm
−

ps∗

(1+cv∗)2

)
=

(
−1 1
−N H

)
, (3.2)

where H := h − 2hv∗
vm
−

ps∗

(1+cv∗)2 , and N = pv∗

1+cv∗ .
Its corresponding characteristic equation is

µ2 − TrJµ + DetJ = 0, (3.3)

where
TrJ = H − 1, DetJ = N − H. (3.4)

If H < 1 and H < N, the equilibrium point E∗ = (s∗, v∗) is locally asymptotically stable for
system (3.1) when δ = 1. We will now analyze the local stability of the equilibrium point (s∗, v∗) for the
case when 0 < δ < 1.

Theorem 3.2. The system (3.1) shows stable behavior around the interior equilibrium point E∗ if any
one of the following conditions hold:
(i) H ≤ 1 and H < N (see the cyan region in Fig.1 and the second quadrant of the H − N coordinates),

(ii) H > 1, N > 1
4 (H − 1)2 + H, and δ < 2

π
arctan(

√
4(N−H)−(H−1)2

H−1 )(see the magenta region in Figure 1).
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(a) (b)
Figure 1. Stability and instability regions of system (3.1) characterized by time-fractional
derivatives. (a) The position of eigenvalue λ corresponding to the marginal value of δ in the
coordinate system (Reλ, Imλ). (b) Expansion of the stable and unstable region of a fractional
ordinary differential system (3.1) in H – N coordinates. When H < 0, the system (3.1)
stabilizes and does not exhibit instability; therefore, it is not shown in Figure 1b.

Proof. The characteristic equation of the Jacobian matrix at the interior equilibrium E∗ is expressed as

λ1 =
H − 1 −

√
(H − 1)2 − 4(N − H)

2
, λ2 =

H − 1 +
√

(H − 1)2 − 4(N − H)
2

. (3.5)

To check the local stability of the model system (3.1) around this interior steady state E∗, let us
consider the following cases:

Case (I): H ≤ 1 and N > H.
For this case, we have three sub-case scenarios as follows:
Sub-Case (Ia): H = 1 and N > 1.
In this case, we can obtain both eigenvalues as complex conjugates (as λ1,2 = ±

√
N − 1i). Therefore,

| arg(λ1,2)| =
π

2
>
δπ

2
,

which satisfies the properties of Theorem 2.1. Consequently, the model system demonstrates stable
behavior around the interior steady state E∗.

Sub-Case (Ib): H < 1 and H + (H−1)2

4 ≥ N > H. After performing algebraic manipulation, it is
observed that both eigenvalues λ1 and λ2 are negative real numbers

| arg(λ1.2)| = π >
δπ

2
.

From Theorem 2.1, we know that the model system (3.1) exhibits stable behavior around this internal
steady state E∗.

Sub-Case (Ic): H < 1 and H + (H−1)2

4 < N. For this case, the Jacobian matrix J will have a pair of
conjugate complex eigenvalues with negative real parts. Therefore

| arg(λ1,2)| >
δπ

2
.
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So, by Theorem 2.1, we can tell that the model system (3.1) exhibits stable behavior around this
interior steady state E∗.

Considering all the aforementioned sub-cases, we conclude that the model system (3.1) demonstrates
stable behavior near the interior steady state E∗ when H ≤ 1 and H < N.

Now, let us consider the second case.

Case II: H > 1, N > (H−1)2

4 + H, and δ < 2
π

arctan(
√

4(N−H)−(H−1)2

H−1 ).
For this case, we obtain a pair of complex conjugate eigenvalues satisfying

Im(λ1) = − Im(λ2) =
1
2

√
4(N − H) − (H − 1)2 > 0,

and
Re(λ1) = Re(λ2) =

H − 1
2

> 0.

Therefore,

Im (λ1) > Re (λ1) tan
(
δπ

2

)
and − Im (λ2) > Re (λ2) tan

(
δπ

2

)
,

which satisfy the following restrictions (see the magenta region in Figure 1):

δπ

2
< arg (λ1) <

π

2
and −

π

2
< arg (λ2) < −

δπ

2
.

Therefore,

| arg(λ1,2)| >
δπ

2
,

| arg (λ1)| = | arg (λ2)| =

√
4(N − H) − (H − 1)2

H − 1
> tan(

δπ

2
).

According to Theorem 2.1, the model system (3.1) demonstrates stable behavior in the vicinity of

the interior steady state E∗ when H > 1, N > 1
4 (H − 1)2 + H, and δ < 2

π
arctan(

√
4(N−H)−(H−1)2

H−1 ).

Remark 3.1. If H < 1 and H < N, the equilibrium point E∗ = (s∗, v∗) is locally asymptotically stable for
both integer-order ordinary differential models (i.e., δ = 1) and fractional ordinary differential models

(i.e., 0 < δ < 1). However, if H = 1 or H > 1, N > 1
4(H − 1)2 + H, and δ < 2

π
arctan(

√
4(N−H)−(H−1)2

H−1 ),
fractional differential models exhibit stability, while integer differential models show instability. This
suggests that fractional derivatives with respect to time improve the model’s stability. In summary,
the incorporation of fractional derivatives with respect to time significantly enhances the stability of
ecological models like the vegetation-sand model.

Theorem 3.3. The system (3.1) exhibits unstable behavior around the interior equilibrium point E∗ if
any one of the following conditions hold:
(i) N < H ≤ 1 (see the white region U1 in Figure 1),
(ii) H > 1 and N ≤ 1

4 (H − 1)2 + H (see the white region U2 in Figure 1),

(ii) H > 1, N > 1
4 (H − 1)2 + H, and δ > 2

π
arctan(

√
4(N−H)−(H−1)2

H−1 )(see the white region U3 in Figure 1).
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Proof. We will examine each case individually.
Case (I): H = 1 and N ≤ 1: For this case, we have three sub-case scenarios as follows:
Sub-Case (Ia): When H = 1 and N < 1, the eigenvalues λ2 become positive real numbers and hence

| arg (λ2)| = 0 <
απ

2
.

Sub-Case (Ib): When H = 1 and N = 1, both eigenvalues become zero and hence

| arg (λ1,2)| = 0 <
απ

2
.

Based on Theorems 2.1 and 3.2, we can determine that the model system (3.1) exhibits unstable
behavior near this internal steady state E∗.

Case (II): H > 1 and N ≤ 1
4 (H − 1)2 +H: Both eigenvalues become positive real numbers and hence

| arg (λ1,2)| = 0 <
απ

2
.

For this situation, according to Theorem 2.1, we can determine that the model system (3.1) exhibits
unstable behavior near this internal steady state E∗.

Case (III): H > 1, N > 1
4 (H − 1)2 + H, and δ > 2

π
arctan(

√
4(N−H)−(H−1)2

H−1 ).
In this particular scenario, we derive a set of eigenvalues that are complex conjugates of each other,

indicating that

Im(λ1) = − Im(λ2) =
1
2

√
4(N − H) − (H − 1)2 > 0,

and
Re(λ1) = Re(λ2) =

H − 1
2

.

Therefore,

| arg (λ1,2)| =

√
4(N − H) − (H − 1)2

H − 1
< tan(

δπ

2
).

Based on Theorem 2.1, it can be inferred that the model system described by Eq (3.1) demonstrates
unstable dynamics in the vicinity of the internal steady state E∗.

3.2. Hopf-bifurcation analysis

In this section, we investigate the Hopf-bifurcation conditions analytically in a fractional-order
system. Hopf bifurcation is a critical phenomenon in dynamical systems that occurs when a system’s
stability changes, leading to the emergence of periodic solutions (oscillations) as parameters vary. The
coexistence equilibrium point for ordinary differential equations, that is the model (3.1) with δ = 1,
loses its stability through Hopf bifurcation when H = 1 and N > H. Considering δ as the bifurcation
parameter and δh as the Hopf bifurcation threshold, the Hopf bifurcation condition δ = δh applies to the
coexistence equilibrium point E∗ of Eq (3.1), where 0 < δ < 1. Now we can state the Hopf-bifurcation
condition for the coexistence equilibrium point E∗ for the model (3.1) following the approach reported
in [26, 28].
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Let us assume E∗ is an unstable equilibrium point of the fractional-order system (3.1) such that the
characteristic equation has two complex conjugate eigenvalues with positive real parts and hence the
arguments of the eigenvalues are lying within (0, δπ2 ). Mathematically we can say that E∗ is unstable as

𭟋(δ) = tan(
δπ

2
) −

√
4(N − H) − (H − 1)2

H − 1
> 0 with H > 1 and N >

1
4

(H − 1)2 + H.

We can identify a threshold δ, denoted as δh, such that 𭟋(δ) = 0. We demonstrate that E∗ exhibits a
Hopf bifurcation as δ crosses the threshold δh.

Theorem 3.4. The system (3.1) undergoes Hopf bifurcation around the interior steady state E∗ at

δh =
2
π

arctan(

√
4(N − H) − (H − 1)2

H − 1
),

where H > 1 and N > 1
4 (H − 1)2 + H.

Proof. For H > 1 and N > 1
4(H − 1)2 + H, the two roots of the characteristic equation (3.5) are

complex conjugates with positive real parts. Hence

0 < |arg(λ1,2)| =
2
π

arctan(

√
4(N − H) − (H − 1)2

H − 1
) <

π

2
,

for some δ. Now we can choose δ such that 𭟋(δ) = 0 and the root of this equation is denoted by δh where

δh =
2
π

arctan(

√
4(N − H) − (H − 1)2

H − 1
),

and
∂(𭟋(δ))
∂δ

=
π

2
, 0.

Therefore, all the conditions for the occurrence of Hopf bifurcation are satisfied.

4. Spatiotemporal behavior of the reaction-diffusion system

The spatiotemporal behavior of a time-fractional sand-vegetation system is an intriguing area of
study that combines concepts from fractional calculus, reaction-diffusion dynamics, and ecological
modeling. This system typically describes how vegetation interacts with the sand substrate over time
and space, considering memory effects inherent in the dynamics. Depending on the parameters, this can
result in various spatial patterns, including uniform distributions, clumping, or even oscillatory patterns
as a result of feedback mechanisms between vegetation and sand. Analyzing the stability of equilibrium
points and identifying bifurcations (such as Turing bifurcations and Hopf bifurcations) can reveal
conditions under which periodic or spatially structured solutions emerge. For instance, as parameters
change, the system may transition from stable equilibrium to oscillatory behavior or pattern formation.

We start with the spatiotemporal dynamics model in one-dimensional space Ω = (0, lπ):

∂δs
∂tδ
= 1 + v − s +

∂2s
∂x2 , x ∈ (0, lπ), t > 0,

∂δv
∂tδ
= hv(1 −

v
vm

) − ps
v

1 + cv
+ d

∂2v
∂x2 , x ∈ (0, lπ), t > 0,

sx(x, t) = vx(x, t) = 0, x = 0, lπ, t > 0,
s(x, 0) = s0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ (0, lπ).

(4.1)
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The linearization operator for system (4.1) at (s∗, v∗) is

L =
 −1 + ∂2

∂x2 1
−N H + d ∂2

∂x2

 .
According to Notation 2.1, the eigenvalue of operator − ∂2

∂x2 is µk =
k2

l2 (k = 0, 1, 2, · · · ), which satisfies

0 = µ0 < µ1 ≤ µ2 ≤ µ3 ≤ · · · ,

and cos( kx
l ) (k ∈ N) corresponds to the characteristic function of µk.

Let (
ϕ

φ

)
=

∞∑
k=0


ak

bk

 cos(
kx
l

),

be the eigenfunction of L corresponding to eigenvalue ψ, where L(ϕ, φ)T = ψ(ϕ, φ)T . By direct calcula-
tion, we have

Lk

(
ak

bk

)
= ψ

(
ak

bk

)
, k = 0, 1, 2, · · ·

and

Lk =


−1 − k2

l2 1

−N H − d k2

l2

 .
Let the characteristic equation of Lk be

λ2 − Trkλ + Detk = 0, (4.2)

where

Trk = H − 1 − (1 + d)
k2

l2 , Detk = d
k4

l4 + (d − H)
k2

l2 + N − H.

The roots of this characteristic equations are

λ1,2 =
Trk ±

√
Tr2

k − 4Detk

2
.

It is well known that the positive homogeneous steady state E∗ is locally stable if the roots of the
characteristic Eq (4.2) verify |arg(λ1,2)| > δπ

2 .

Theorem 4.1. Assume that H ≤ 1 and H < N hold. If H ≤ 0, then the equilibrium point E∗ is locally
stable for system (4.1). When H > 0, the equilibrium point E∗ is locally stable for system (4.1) if d > d∗,
where

d∗ = 2N − H − 2
√

N(N − H) > 0. (4.3)

Proof. Clearly, if H ≤ 0, then we have Detk ≥ 0 and Trk < 0 for all non-negative positive integers.
Therefore, both eigenvalues are negative real numbers, indicating that |arg(λ1,2)| > δπ

2 .
Assume that 0 < H < 1 and H < N. If d ≥ H, then for any k ≥ 0, we obviously have Detk > 0 and

Trk < 0, which implies that E∗ is locally asymptotically stable.
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If d < H, then let

min Detk = N − H −
(d − H)2

4d
> 0,

for all positive integers k. From the above inequality, we get d2 + (2H − 4N)d + H2 < 0.
Note that the discriminant of the quadratic function

θ(d) = d2 + (2H − 4N)d + H2.

Thus, θ(d) = 0 and there exists two positive real roots

d∗ = 2N − H − 2
√

N(N − H), d∗ = 2N − H + 2
√

N(N − H).

If d∗ < d < d∗, then min Detk > 0 for any k > 0. Let d∗ − H = 2N − 2H − 2
√

N(N − H). Since
H < N,N − H <

√
N
√

N − H. We can get d∗ < H. Obviously, d∗ > H. Note that d∗ < H < d∗ and E∗

is locally asymptotically stable when d ≥ H. Hence, E∗ is locally asymptotically stable when d > d∗.

Theorem 4.2. Assume that 0 < H ≤ 1 and H < N hold. Then, there exists sufficiently small d̃ such
that for

0 < d ≤ d̃ :=
2(N − H) + H( 1

l2 + 1) − 2
√

(N − H)2 + H(N − H)( 1
l2 + 1)

( 1
l2 + 1)2

, (4.4)

the positive equilibrium E∗ is Turing unstable for system (4.1).

Proof. Suppose that 0 < H ≤ 1 and H < N hold. Then

Trk = H − 1 − (1 + d)
k2

l2 < 0. (4.5)

If system (4.1) produces Turing instability, then we must have

Detk = d
k4

l4 + (d − H)
k2

l2 + N − H < 0, (4.6)

for some positive integer k. If Detk < 0, then the characteristic equation (4.2) has two real eigenvalues
and one of them is greater than zero. So, then |arg(λ1,2)| < δπ

2 . At this point, the positive equilibrium
point E∗ of system (4.1) is unstable.

The following derivation applies to the interval of d for which Detk < 0. If Detk < 0, then we have

min Detk = N − H −
(d − H)2

4d
< 0 and d < H,

which are equivalent to
d − H > 2

√
N − H

√
d and d < H. (4.7)

By using the above inequalities (4.7) and Theorem 4.1, a necessary condition for the instability of
E∗ is

0 < d < d∗. (4.8)
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It can be easily seen that when 0 < d < d∗, the equation

d
k4

l4 + (d − H)
k2

l2 + N − H = 0,

has two roots

(k±)2 =
(H − d ±

√
(H − d)2 − 4d(N − H))l2

2d
. (4.9)

Thus, in order to get the instability of E∗, we must have (k−)2 < k2 < (k+)2 for some positive integer
k. If there exists some k between k− and k+, then it must satisfy k+ − k− ≥ 1, which results in

l2

d
(H − d − 2

√
N − H

√
d) ≥ 1. (4.10)

According to the inequality above, we obtain ( 1
l2 + 1)d + 2

√
N − H

√
d − H ≤ 0. Here, we define

a function

Υ(
√

d) = (
1
l2 + 1)d + 2

√
N − H

√
d − H. (4.11)

It is easy to check that Υ(
√

d) = 0 has a unique positive root

d̃ =
2(N − H) + H( 1

L2 + 1) − 2
√

(N − H)2 + H(N − H)( 1
l2 + 1)

( 1
l2 + 1)2

,

and Υ(
√

d) ≤ 0 when 0 < d ≤ d̃.

Remark 4.1. In Theorems 4.1 and 4.2, we examined the influence of the diffusion coefficients d(:= D2
D1

),
and identified the region of diffusion-induced instability. Specifically, for pattern formation to occur, the
sand must diffuse significantly faster than the vegetation, i.e., D2 << D1.

Theorem 4.3. Assume that H > 1, N > 1
4 (H − 1)2 +H, and δ < 2

π
arctan(

√
4(N−H)−(H−1)2

H−1 ) hold. Then, the
system (4.1) shows stable behaviour around the interior equilibrium point E∗ if any one of the following
conditions hold:
(i) d > max{d∗, d̂}, where d̂ := l2(H − 1) − 1,

(ii) d∗ < d < d̂ and δ < 2
π

arctan(
√

4Detk−Tr2
k

Trk
) for all positive integer k.

Proof. Assume that H > 1 holds. The following derivation applies to the interval of d for which Trk < 0

for all k. If Trk < 0, then Trk = 0 has two opposable roots k1 = −

√
l2(H−1)

1+d and k2 =

√
l2(H−1)

1+d . Because
k is a positive integer, there is no k that satisfies Trk > 0 when k2 < 1, whereas some k satisfies Trk > 0
when k2 ≥ 1. According to the above analysis, we can get

Trk

 > 0 f or some k, when d ≤ d̂ := l2(H − 1) − 1,

< 0 f or all k, when d > d̂ := l2(H − 1) − 1.
(4.12)
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Assume that H > 1, N > 1
4(H − 1)2 + H, and δ < 2

π
arctan(

√
4(N−H)−(H−1)2

H−1 ) hold. The following
derivation applies to the interval of d for which Detk < 0 for all k. According to Theorems 4.1 and 4.2,
we get

Detk

 > 0 f or all k, when d > d∗,

< 0 f or some k, when d ≤ d̃.
(4.13)

According to Eqs (4.12) and (4.13), it is easy to get that the equilibrium point E∗ is stable when
d > max{d∗, d̂}.

If H > 1, N > 1
4(H − 1)2 + H, δ < 2

π
arctan(

√
4(N−H)−(H−1)2

H−1 ), and d∗ < d < d̂ hold, then we obtain a
pair of complex conjugate eigenvalues satisfying

Im(λ1) = − Im(λ2) =
1
2

√
Detk − Tr2

k > 0,

and Re(λ1) = Re(λ2) = Trk > 0, which satisfy the following restrictions (see Figure 1a):

δπ

2
< arg (λ1) <

π

2
and −

π

2
< arg (λ2) < −

δπ

2
.

Therefore,

|arg (λ1)| = | arg (λ2)| =

√
4Detk − Tr2

k

Trk
> tan(

δπ

2
).

Based on the above discussion and Theorem 3.1(ii), the following theorem provides the obtained results.

Theorem 4.4. Assume that H > 1, N > 1
4 (H − 1)2 +H, and δ < 2

π
arctan(

√
4(N−H)−(H−1)2

H−1 ) hold. Then, the
system (4.1) shows the following types of instability behavior around the interior equilibrium point E∗:
(i) If d̃ > d > d̂, then the system (4.1) shows Turing instability.
(ii) If d < min{d̂, d̃}, then the system (4.1) shows Turing-Hopf instability.

(iii) If d∗ < d ≤ d̂ and δ > 2
π

arctan(
√

4Detk−Tr2
k

Trk
) for some positive integer k, then the system (4.1) shows

Hopf instability.

Theorem 4.5. Assume that H > 1, N > 1
4(H − 1)2 + H, and d∗ < d ≤ d̂ hold. Then the system (4.1)

undergoes Hopf bifurcation at δh =
2
π

arctan(
√

4Detk−Tr2
k

Trk
) for some positive integer k ≥ 0.

5. Numerical simulation

In this section, we will conduct a numerical investigation into the impact of time-fractional derivatives
on both the temporal and spatiotemporal behavior of the solution.
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5.1. Numerical simulation of a time-fractional ordinary differential model

Selecting the values of different parameters h, p, vm, and c, we can calculate the values of H, N, v∗,
and s∗ according to the expression of the equilibrium solution in Section 2.

(a) (b)

Figure 2. The equilibrium (s∗, v∗) of system (3.1) is locally asymptotically stable for different
parameters. (a): h = 2.6, p = 1.2, vm = 26, c = 0.2, and δ = 0.8; (b): h = 2.6, p = 1.2,
vm = 30, c = 0.45, and δ = 0.8.

(i) The parameters are set at h = 2.6, p = 1.2, vm = 26, c = 0.2, and δ = 0.8. By substituting the pa-
rameter values, we can easily obtain v∗ = 1.7191, s∗ = 2.7191, H = 0.4493, and N = 1.5351. According
to the first case of Theorem 2.2, if H ≤ 1 and H < N, then the equilibrium (s∗, v∗) = (2.7191, 1.7191) of
system (3.1) is locally asymptotically stable (see Figure 2a). The observation that the numerical solution
converges to the equilibrium point over time, despite a small perturbation in the initial conditions, aligns
with the conclusion of Theorem 2.2.

(ii) The parameters are set at h = 2.6, p = 1.2, vm = 30, and c = 0.45. By substituting the parameter
values, we can easily obtain v∗ = 4.6796, s∗ = 5.6796, H = 1.0823, and N = 1.8081. When δ = 1,
system (3.1) transforms into an integer-order model, and the equilibrium point is stable. However,
when δ = 1, based on the second case of Theorem 2.2, if H > 1 and N > 1.0840, then the equilibrium
(s∗, v∗) = (5.6796, 4.6796) of system (3.1) is locally asymptotically stable (see Figure 2b). Similar to
the previous analysis, the observation that the numerical solution converges to the equilibrium point
over time aligns with the conclusion of Theorem 2.2.

(iii) In Figure 3a, the values h = 26, p = 17, vm = 10, c = 0.55, δ = 0.8, and the initial
conditions v1 = 0.6115 and s1 = 1.6115 have been considered. In this case, the conditions H > 1, and
N ≤ 1

4 (H − 1)2 + H are satisfied, thus the interior equilibrium is unstable. The observation that a minor
disturbance in the initial conditions leads to a shift in the equilibrium point of the numerical solution,
as time progresses, is an important aspect of dynamic systems and aligns with the conclusions drawn
from Theorem 2.2. In Figure 3b, the values h = 26, p = 17, vm = 10, c = 0.22, δ = 0.75215, and
the initial conditions v1 = 0.6320 and s1 = 1.6320 have been considered. In this case, the conditions
H > 1, and N < 1

4 (H − 1)2 + H are satisfied, thus the interior equilibrium is unstable, i.e., system (3.1)
can induce Hopf bifuracation. Figure 3b illustrates the bifurcation branch of Hopf at the equilibrium
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point, demonstrating the emergence of periodic solutions in the model through numerical simulations,
consistent with the theoretical results of Theorem 3.4.

(a) (b)

Figure 3. The equilibrium (s∗, v∗) of system (3.1) is unstable for different parameters. (a):
h = 26, p = 17, vm = 10, c = 0.55, and δ = 0.8; (b): h = 26, p = 17, vm = 10, c = 0.22, and
δ = 0.55215.

5.2. Numerical simulation of a time-fractional reaction-diffusion model

We begin by delineating the regions of stability and instability that align with Theorems 4.1 and 4.2.
We present the stable critical diffusion coefficient as a function of the N − d axis (see Figure 4) when
H = 0.4493 and N > 0.4493. To be more precise, pattern formation occurs in region A3 (below the red
curve d = d̃(N)) and the system is stable in region A1 (above the black curve d = d∗(N)). In the region
A2 = {(N, d) : d∗(N) > d > d̃(N)}, it is unable to determine the stability of E∗.

Figure 4. Bifurcation diagram in N - d axis parameter space. A Turing bifurcation curve
(black) and the threshold of Turing’s instability curve (red) divide the parameter space into
three regions.

To illustrate the results given by Theorems 4.1 and 4.2, we choose parameters h = 2.6, p = 1.2,
vm = 26, c = 0.2, L = 10, and δ = 0.8. By incorporating the parameter values, we can easily obtain
v∗ = 1.7191, s∗ = 2.7191, H = 0.4493, and N = 1.5351. By Theorems 4.1 and 4.2, we have d̃ = 0.0388
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and d∗ = 0.0905. In fact, to obtain pattern occurrence, the sand must diffuse much faster than the
vegetation (i.e., D2 ≪ D1 in system (1.2)). According to Theorem 4.2(i), we can obtain bounded
region (0, 0.0388](∋ d) (see Figure 4) and Turing instability occurs in this region (see Figure 6a,b). By
Theorem 4.2, there also exists an unbounded region (0.0905,∞)(∋ d) in which the equilibrium (s∗, b∗) is
stable (see Figure 5a,b).

(a) (b)

Figure 5. The equilibrium (s∗, v∗) of system (3.1) is locally asymptotically stable for d = 0.1.

(a) (b)

Figure 6. The equilibrium (s∗, v∗) of system (4.1) is unstable for d = 0.02.

To illustrate the results given by Theorems 4.3–4.5, we choose parameters H = 2 and N > 9
4 :

(i) We present the stable critical diffusion coefficient as a function of the N − d axis when L = 1.03
(see Figure 7a). To be more precise, Turing instability occurs in region D3 (d̃ < d < d̃(N)), stability
occurs in region D1 (above the black curve d = d∗(N)), and Turing-Hopf instability occurs in region D4

(below the magenta curve d = d̂(N)). In the region D2 = {(N, d) : d∗(N) > d > d̃(N)}, it is unable to
determine the stability of E∗.

(ii) We present the stable critical diffusion coefficient as a function of the N − d axis when L = 1.2
(see Figure 7b). Turing instability occurs in region U3 (d̂(N) < d < d̃(N)), Turing-Hopf instability
occurs in region U6(d < min{d̂(N), d̃(N)}), the stable regions are U1 (d > max{d∗(N), d̂(N)}) and U5

(d∗(N) < d < d̂(N)) when δ < 2
π

arctan(
√

4Detk−Tr2
k

Trk
), Turing-Hopf instability occurs in region U6, Hopf

instability occurs in region U5 (d < min{d̂(N), d̃(N)}) when δ > 2
π

arctan(
√

4Detk−Tr2
k

Trk
), and in the regions

U2 and U4, it is unable to determine the stability of E∗.
(iii) We present the stable critical diffusion coefficient as a function of the N − d axis when L = 1.5
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(see Figure 7c). In this case, because d̂(N) > d̃(N), there is no Turing instability. The stable regions are

S 1 and S 2 when δ < 2
π

arctan(
√

4Detk−Tr2
k

Trk
), Turing-Hopf instability occurs in region S 4, Hopf instability

occurs in region S 2 when δ > 2
π

arctan(
√

4Detk−Tr2
k

Trk
), and in the region S 3, it is unable to determine the

stability of E∗.

(a) (b) (c)

Figure 7. Bifurcation diagram in N - d axis parameter space. A Turing bifurcation curve
(black), the threshold of Turing’s instability curve (red), and a Hopf bifurcation curve (ma-
genta) divide the parameter space into several regions. (a): L = 1.03; (b): L = 1.2; (c):
L = 1.5.

6. Conclusions

In this paper, we introduce a fractional derivative to vegetation desert modeling with the objective of
comprehensively describing and understanding the complex interactions between vegetation and sand,
as well as their dynamic characteristics. Our study shows that the fractional characteristics of time series
significantly affect the stability and evolution processes of the system. First, the analysis results indicate
a nonlinear relationship between vegetation coverage and sand morphology. This relationship is not only
influenced by environmental factors, but is also closely related to historical states. The incorporation of
fractional derivatives with respect to time enhances the stability of vegetation-sand models by accounting
for memory effects, and improving resilience to disturbances. These characteristics make fractional
derivative models powerful tools for understanding complex ecological dynamics and for developing
effective management strategies in the face of environmental challenges. Through numerical simulations,
we observed differences in system behavior under different initial conditions, further validating the
effectiveness of the fractional-order model in capturing complex dynamics. Furthermore, the research
findings demonstrate that the fractional-order model can predict the feedback mechanisms between
vegetation and sand more accurately. The figure illustrating the convergence of the numerical solution
to the equilibrium point, even with small perturbations in initial conditions, underscores the stability of
the model. This behavior aligns well with theoretical research, validating the underlying mathematical
framework and enhancing the model’s applicability in ecological management and conservation efforts.
Such findings contribute to a deeper understanding of ecosystem dynamics and inform strategies for
maintaining ecological balance in the face of change. This study enriches the theoretical foundation
of spatiotemporal dynamic analyses and offers new ideas for future ecological models. The Turing
instability analysis revealing that the diffusion rate of sand must be significantly faster than that of
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vegetation for vegetation patterns to emerge is a crucial insight. It underscores the importance of spatial
dynamics in ecological interactions and provides valuable information for managing and restoring
ecosystems in arid and semi-arid regions. By understanding these relationships, we can better address
challenges related to desertification and promote sustainable land management practices. We hope
that study will inspire scholars in related fields and promote the further exploration of ecosystem
complexity. In summary, the fractional-order vegetation-sand model exhibits significant theoretical
value and application potential in describing the spatiotemporal dynamics of ecosystems.

Future research should explore the impact of additional environmental factors on system dynamics to
improve the model’s applicability and predictive capabilities. In conclusion, further investigation of the
vegetation-desert model incorporating fractional diffusion offers a valuable opportunity to deepen our
understanding of vegetation dynamics and desertification processes. By incorporating memory effects
and superdiffusion, along with conducting comprehensive stability analyses, researchers can obtain
valuable insights to guide ecosystem management and conservation efforts. This research direction
has substantial potential to address urgent environmental challenges associated with desertification and
land degradation.
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