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Abstract: Dynamic coloring has recently emerged as a valuable tool to optimize cryptographic
protocols based on secret sharing, which enforce data security in communication networks and have
significant importance in both online storage and cloud computing. This type of graph labeling enables
the dealer to distribute secret shares among the nodes of a communication network so that everybody
can recover the secret after a minimum number of rounds of communication. This paper delves into
this topic by dealing with the dynamic coloring problem for degree splitting graphs. The topological
structure of the latter enables the dealer to avoid dishonesty by adding control nodes that supervise all
those participants with a similar influence in the network. More precisely, we solve the dynamic
coloring problem for degree splitting graphs of any regular graph. The irregular case is partially
solved by establishing a lower bound for the corresponding dynamic chromatic number. As illustrative
examples, we solve the dynamic coloring problem for the degree splitting graphs of cycles, cocktail,
book, comb, fan, jellyfish, windmill and barbell graphs.

Keywords: Degree splitting networks; secret sharing; dynamic coloring problem

1. Introduction

A (k,t)-threshold secret sharing scheme [1,2], with k > t, is a cryptographic protocol in which a
dealer splits a secret into k pieces of information or secret shares. Copies of these pieces are
distributed among a group of n participants, with n > ¢, so that only a subgroup sharing at least ¢
distinct secret shares can reconstruct the secret. The parameter ¢ is called the threshold of the scheme.
These schemes are relevant in online storage and cloud computing because they enforce data security
in communication networks [3], in which each node represents a participant of the scheme. Two
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nodes are adjacent if and only if there exists a proximity relationship between both participants so that
they can cooperate to recover the original secret. This cooperation occurs simultaneously via discrete
time-steps or rounds of communication that allow the spread of secret shares among all the nodes of
the network. First, the dealer distributes the secret shares among the nodes of the network. In each
subsequent round, each participant gathers all the pieces of information of the adjacent nodes and
fuses them with its own information. Moreover, we suppose in this paper the following assumptions.

e Exactly one secret share is assigned by the dealer to each participant, so that no two adjacent
nodes receive the same piece of information. To this end, the dealer has secure communication
links to every participant. We also assume that the secret cannot be recovered from this initial
distribution. That is, # > 1 in our (k, f)-threshold secret sharing scheme.

e The communication network is static. That is, its topology does not change during the rounds of
communication.

Figure 1 illustrates these rounds of communications for a static network of 12 nodes, among which the
dealer has distributed four distinct pieces of information.
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Figure 1. Successive rounds of communications in a network.

A main question to answer here is the following.
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Problem 1. What is the minimum number of rounds that are necessary so that the original secret can
be reconstructed by each one of the participants?

Of course, this number is less than or equal to the diameter of the graph under consideration. The
exact solution of Problem 1 requires the design of an efficient and optimal distribution of secret shares
among all the participants of the communication network. It requires a comprehensive analysis of
the network topology and metrics [4], which would be even more relevant when the communication
network under consideration is large enough to be considered for big data storage. Even if different
analytic tools based on graph algorithms are usually used to this end [5-7], the most relevant tool for
dealing with our problem is graph coloring.

A proper n-coloring of a graph G, with a set of vertices V(G), is any map ¢ : V(G) — {0,...,n —
1} such that c¢(v) # c(w), for every pair of adjacent vertices v,w € V(G). The minimum positive
integer n for which this map exists is the chromatic number y(G). If G is the underlying graph of a
communication network, then each color can be interpreted as the secret share assigned to the node
under consideration. Hence, Problem 1 requires the design of an appropriate coloring for the graph G.

Depending on different local constraints, one may find in the literature a wide amount of distinct
types of graph colorings [8, 9], with different applications in real-world problems [10]. Thus, for
instance, the b-coloring is useful to deal with clustering in data mining [11]; the equitable coloring
ensures load balancing in scheduling [12]; the frugal coloring avoid collisions in networks based on a
time-division multiple access [13]; the rainbow k-connected edge-coloring enables the strengthening
of the conventional connectivity to get a much more secure network communication [14]; and the star
coloring is useful in tracebacking IP addresses in communication networks [15].

Dynamic coloring has recently emerged [16] as a valuable type of proper-coloring that allows for
the description of optimal distributions of pieces of information in a secret sharing scheme defined on
a communication network. In 2001, Montgomery [17] introduced the r-dynamic proper k-coloring of
a graph G as a proper k-coloring ¢ : V(G) — {0, ...,k — 1} such that

lc(Ng(v))| > min{r, deg;(v)}, (1.1)

for every vertex v € V(G). Here, Ng(v) and deg;(v) denote, respectively, the neighborhood and the
degree of the vertex v. The problem of deciding whether a given graph has an r-dynamic proper k-
coloring is NP-complete [18], whenever 2 < r < k. It is indeed harder than the classical coloring
problem, which results for » = 1, and is a well known NP-complete problem, for k > 2. In this
regard, even the classical 3-colorability is polynomially solvable for graphs with maximum degree at
most three, and the 2-dynamic 3-colorability remains NP-complete for planar bipartite graphs with
maximum degree at most three and arbitrarily high girth [18].

Every r-dynamic k-proper coloring of a graph G describes a distribution of pieces of information
in any given (k, r + 1)-threshold secret sharing scheme defined on the communication network having
G as its underlying graph, whenever k > r + 1 [16]. This distribution makes possible that all the
participants receive the maximum possible information about the original secret from the closest nodes
after each round of communication. More precisely, condition (1.1) implies that, after the first round,
each participant can either reconstruct the original secret or obtain a different secret share from each
one of his/her neighbors. A second main question to answer here is the following.

Problem 2. What is the minimum number of pieces of information in which the secret has to split to
ensure condition (1.1)?

Networks and Heterogeneous Media Volume 18, Issue 4, 1713-1746.
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This number coincides with the r-dynamic chromatic number y,(G), which is the minimum positive
integer k for which an r-dynamic proper k-coloring of the graph G exists. (The case r = 1 refers to
the classical chromatic number y(G).) Determining this number constitutes the dynamic chromatic
problem. (The case r = 1 refers to the classical chromatic problem.) The case r > 2 has already
been solved for distinct families of graphs [19-27]. One may also find some papers studying how
the dynamic chromatic number changes by including new vertices in the graph under consideration
[28-33]. (For a recent survey on the topic, we refer to [34].)

All the mentioned papers can, therefore, be reinterpreted as dealing with Problem 2. However, in
spite of the wide amount of papers on Montgomery’s dynamic coloring, its interpretation as an
optimal allocation of pieces of information has only been explicitly considered in [16], for extended
neighborhood coronas, and, too superficially, in [35], for triangle-free graphs and sparse random
graphs. Even more, Problem 1 has been solved only for extended neighborhood coronas [16]. More
specifically, two rounds of communication have been proved to be enough so that all the participants
in any extended neighborhood corona can reconstruct the secret under consideration in the
corresponding communication network.

Similarly to Problem 2, it is interesting to study the behaviour of Problem 1 when new vertices are
included in the graph under consideration. This paper delves into this aspect for both Problems 1 and
2, in case of dealing with degree splitting graphs. Recall here that, if G is a graph of set of vertices
V(G) = {v1,...,v,}, and Vi (G) € V(G) denotes its subset of vertices of degree k for all k > 1, then the
degree splitting graph [36] (from here on, DSG) of G is the graph DS (G) that results after connecting
a new vertex to all those vertices in V;(G), whenever |V, (G)| > 1. From here on, we denote this new
vertex by wy, and we say that it constitutes a control node of the initial network. Figure 2 illustrates this
construction for the communication graph appearing in Figure 1. (The control nodes are highlighted
in black color.)

Figure 2. Construction of a DSG.

Networks and Heterogeneous Media Volume 18, Issue 4, 1713-1746.
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No previous study exists in the literature concerning the dynamic chromatic problem for DSGs.
The main reason for having chosen this type of graphs in our study is that DSGs maintain or improve
the fairness of any given secret sharing scheme based on a communication network, by avoiding
dishonesty. Recall here that a secret sharing scheme is fair if all the participants recover the original
secret at the same time. Of course, the more regular the communication network is, the fairer the
secret sharing scheme can be. But, even in the regular case, this fairness cannot be ensured in case
there are dishonest participants who receive secret shares from the honest ones, but either do not share
their own pieces of information, or share fake ones. To avoid this dishonesty, one can add control
nodes connecting and supervising all those participants with a similar influence in the network. DSGs
constitute a valuable alternative to this end, where control nodes are the new added vertices. Note that
the DSG of any regular graph has diameter at most two. Hence, at most two rounds of communication
are required so that all the participants can reconstruct the secret in the DSG of any regular
communication network.

From here on, we assume that control nodes also receive secret shares so that condition (1.1) holds.
So, we are interested in solving Problem 2 for DSGs. Even more, we assume that control nodes act
in all the rounds of communication of the scheme, in exactly the same way as the rest of participants.
We can distinguish whether control nodes are also participants of the scheme, or not. (This distinction
is further clarified in Section 2.) In the affirmative case, we are interested in answering Problem 1
for any (y, (DS(G)), r + 1)-threshold secret sharing scheme based on the DSG of a graph G, whenever
X (DS(G)) > r+1. In the negative case, we are interested in solving the following alternative question,
whose solution is less than or equal to that of Problem 1 for both graphs G and DS(G).

Problem 3. What is the minimum number of rounds of communication that is necessary so that all
the participants, except for the control nodes, can recover the secret in a (x, (DS(G)), r + 1)-threshold
secret sharing scheme based on the DSG of a communication network G?

1.1. Our contributions

In this paper, we solve Problem 2, and hence, the dynamic chromatic problem, for DSGs of regular
graphs (Proposition 7) by determining the relationship among the dynamic chromatic number of a
regular graph and that of its DSG. We illustrate this by solving the dynamic chromatic problem for
DSGs of two families of regular graphs: cycles (Theorem 8) and cocktail party graphs (Theorem
10). With respect to the latter, we also correct (Lemma 9) a previous result on the classical dynamic
chromatic problem. All our constructive solutions describe explicitly dynamic colorings on the graphs
under consideration, and hence, optimal secret share distributions. It allows the establishment of the
minimum number of rounds of communications that are necessary so that all the participants of a
communication network defined on such graphs can reconstruct the secret. To this end, we distinguish
whether the control nodes described by any DSG are also participants of the scheme (Problem 1), or
not (Problem 3). In Section 3, we solve both problems for DSGs of cycles and cocktail party graphs.

Concerning DSGs of non-regular graphs, we solve Problems 1-3 for the DSGs of book graphs
(Proposition 11), comb graphs (Proposition 12), fan graphs (Theorems 14 and 15) and jellyfish graphs
(Propositions 16 and 17). In addition, we establish a new lower bound for the dynamic chromatic
number of the DSGs of any non-regular graph (Lemma 18). We use this bound to solve Problems
1-3 for the DSGs of windmill graphs (Proposition 19) and barbell graphs (Proposition 20). Table 2
summarizes all our results concerning Problems 1 and 3.
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2. Preliminaries

This section deals with some preliminary concepts and results on graph theory that are used
throughout the paper. We refer the reader to the manuscript [37] for more details about this topic.

All the communication networks throughout the paper are assumed to be finite and simple graphs.
A graph G = (V(G), E(G)) is formed by a set of vertices V(G) and a set of edges E(G) so that each
edge joins two vertices, which are then said to be adjacent. The graph G is complete if all their
vertices are pairwise adjacent. The complete graph with n vertices is denoted K,. Further, a graph
H = (V(H),E(H)) is a subgraph of G if V(H) C V(G) and E(H) C E(G). It is induced if E(H) is
formed by all those edges in E(G) connecting vertices of V(H). It is an n-clique if it coincides with K.

The cardinalities of the sets V(G) and E(G) constitute, respectively, the order and the size of the
graph G. The latter is finite if both its order and its size are finite. From now on, let vw denote the edge
formed by two adjacent vertices v,w € V(G). Itis a loop if v = w. A graph is simple if it does not
contain loops. All the graphs in this paper are finite and simple.

The neighborhood of a vertex v € V(G) is the subset Ng(v) C V(G) of vertices that are adjacent to
v. The cardinality of this set is the degree deg(v) of such vertex. If deg,(v) = 1, then the vertex v is
said to be pendant. The maximum degree in G is denoted A(G). A graph is said to be k-regular (or
simply, regular), if all its vertices have degree k.

A path between two vertices v,w € V(G) is any ordered sequence of n > 2 adjacent and pairwise
distinct vertices {(vo = v, Vi, ..., Vu—2, V,—1 = w) in V(G). The minimum possible size of this path is the
distance dg(u,v). The diameter diam(G) is the maximum distance between any two vertices in V(G).

A path is a cycle if its initial and final vertices coincide. If all the vertices of a cycle are joined to a
new vertex, then we get a wheel. If we remove all the edges of the wheel that do not contain this new
vertex, then we obtain a star. (Note that it is sometimes called a wheel network [38].) From here on,
we denote, respectively, the cycle and the wheel of order n by C,, and W,,. Note here that DS(C,) = W,,.

Paths, cycles, wheels (stars) and complete graphs are four commonly used graphs in small
communication networks and constitute fundamental subgraphs for more complex networks [38]. In
this regard, we study in the subsequent sections the DSGs of the following families of graphs, which
are based on the mentioned four graphs, and are usually considered in the literature as a first attempt
to study more complex communication networks: cocktail party graphs [39], book graphs [40], comb
graphs [41], fan graphs [39], jellyfish graphs [42], windmill graphs [43] and barbell graphs [44]. Let
us recall here how all of them are defined. To this end, let m and n be two positive integers.

e The cocktail party graph Cp,, with n > 1, is described so that V(Cp,) = {vo,...,v2,-1} and
E(Cp,) ={vv;: 0<1i,j<2n,i# j(modn)}.

e The book graph B, is formed by n copies of the cycle C4, sharing between all of them a unique,
common edge.

e The comb graph Cb,,, with n > 2, is the graph arising from connecting n new vertices v, ...,V
to the path P, = (v, ..., v,-1 ) by means of the edges vy}, with 0 < i < n.

e The fan graph F, , is the graph arising from connecting m new vertices to all the vertices of the
path P,,.

e The jellyfish graph J,,, arises from the cycle C4 = (v, vy, V2, v3 ) after joining the vertices vy and
v, with an edge, connecting m new pendant vertices to vy, and n new pendant vertices to vs.

Networks and Heterogeneous Media Volume 18, Issue 4, 1713-1746.
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e The windmill graph Wd,, ,, with m,n > 2, 1s the graph formed by m copies of the complete graph
K., sharing between all of them a unique, common vertex.

e The barbell graph Ba,, with n > 2, is the graph formed by two copies of the complete graph K,
so that they are linked by an edge connecting one vertex of each copy. This edge is called the
bridge of the graph Ba,.

Figures 3 and 4 illustrate, respectively, all of these graphs and their respective DSGs. (In Figure 4,
control nodes are highlighted in black color.)

B4 Cb4
F2,4 J274 Wd274 Ba4

Figure 3. Examples of graphs.

DS(F4) DS(J2,4) DS(Wdz.4) DS(Bay)

Figure 4. DSGs of the graphs in Figure 3.
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The diameters of these graphs are indicated in Table 1. Note herein that, except for fan graphs, the
diameter of each DSG under consideration is smaller than the diameter of the corresponding graph.
This exception is due to the fact that the distance between any two distinct control nodes in a DSG
is at least three. It increases the diameter of some non-regular graphs having diameter two, as in fan
graphs. In practice, this increment is a disadvantage only if control nodes are also participants of the
secret sharing scheme under consideration, instead of being only added for supervising participants
with a similar influence in the communication network. This is the main reason of distinguishing both
Problems 1 and 3 in the introductory section. Based on this fact, the last column in Table 1 refers to the
maximum distance between any two vertices in the DSG under consideration, whenever at least one of
these two vertices is not a control node. We have denoted this maximum distance by diam*(DS(G)),
where G is the graph under study.

Table 1. Diameters of graphs and their corresponding DSGs.

G diam(G) diam(DS(G)) diam"(DS(G))

C, Ln/2] 2 2

Cp, 2 2 2

B, 3 3 2

b, - {4, ifne (3,4}, {4, ifne (3,4},

5, otherwise. 5, otherwise.

Fon 2 3 2

Ton 4 4 4

wd,, 2 2 2

Ba, 3 3 2

The values appearing in the third and fourth columns in Table 1 constitute respective upper bounds
for the solutions of Problem 1 and 3. The exact solutions are established throughout the paper, and
collected in the conclusion section (see Table 2). Concerning Problem 2, the following known results
are useful for our study.

Lemma 1. [25] Let G be a finite simple graph and let r be a positive integer. Then,
x-(G) = min {r, A(G)} + 1.

Moreover, x.(G) < xa)(G).

Lemma 2. [26] Let n > 2 and r be two positive integers. Then, x,(K,) = n and

2, ifr=1andnis even,
_|r=1andnis odd,

: {r>landn50(m0d3),
4, ifr>1and5 # n % 0(mod3),

5, otherwise.

XA(Cp) =

Networks and Heterogeneous Media Volume 18, Issue 4, 1713-1746.



1721

Lemma 3. [2]] Let r and m,n > 2 be three positive integers. Then:
n, ifl<r<n,
a) Xr(de,n) ={ r+1, l:fl’l <r<mm-1),

mn—1)+1, otherwise.

n, ifl1 <r<n,

b) If n > 2, then y,(Ba,) =
n+1, otherwise.

Proposition 4. [31] Let m, n and r be three positive integers such that n > 2. Then,

3, ifre{l,2},

2r—1, if3<r<min{m+ 1,n},
Xr(Fun) =3 n+r—1, ifn<r<m+]1,

m+r, if max{3,m+ 1} <r<n,

m+n, if r > max{m + 1, n}.

The following lemma solves the dynamic chromatic problem for a comb graph.
Lemma 5. Ifn > 2, then y,(Cb,) = min{4, r + 1}.

Proof. Let @ = min {4, r + 1}. Since A(Cb,)) = 3, Lemma 1 implies that y,(Cb,) > a. In order to prove
that this lower bound is tight, let Cb, be the comb graph that results after connecting n new vertices
Vg ...,V tothe path P, = (vy,...,v,_1 ) by means of the edges v;v; for all i < n. Then, it is enough
to consider the r-dynamic proper a-coloring ¢ such that c(v;) = i mod «, and
, i+ 1)modea, ifr=1,
c(v)) = .
(i+2)moda, otherwise.

for every positive integer i < n. (Figure 5 illustrates the case n = 4.) O

A

Figure 5. r-dynamic colorings of Cby, for r = 1 (left), » = 2 (right) and r > 3 (down).

Concerning the theory of DSGs, the following result establishes the relationship between the
chromatic numbers of a finite simple graph and its DSG.

Lemma 6. [45] Let G be a finite simple graph. If G is regular, then y(DS(G)) = x(G) + 1. Otherwise,
x(DS(G)) € {x(G), x(G) + 1}.

Networks and Heterogeneous Media Volume 18, Issue 4, 1713-1746.
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3. The regular case

In the introductory section, we have already remarked that the DSG of a regular graph requires at
most two rounds of communication so that every participant of a secret share scheme defined on this
type of graph can recover the secret under consideration. In this section, we prove that this upper
bound is not tight. Previously, it is required to solve Problem 2 for the DSG of any k-regular graph G
of order n, with vertex set V(G) = {vo, ..., Vv,-1}, so that V(DS(G)) = V(G) U {w,}. That is, we only add
a control node wy supervising all the participants of the communication network. The following result
establishes the relationship between the dynamic chromatic numbers of both graphs G and DS(G).

Proposition 7. Let G be a k-regular graph of order n. Then,

x(G)+1, ifr=1,
x/(DS(G)) =1 max{r, y,.i((G)}+1, ifl<r<n,
n+1, otherwise.

Proof. From Lemma 1, it is enough to prove the case r < A(DS(G)) = n. (Note here that
max{n, y,-1(G)} + 1 = n + 1, because y,_;(G) < n.) Particularly, the case r = 1 follows from Lemma
6. So, we focus on the case 1 < r < n. To this end, let @ = max{r, y,_1(G)}.

Since the vertex wy is connected to every vertex in G, every proper coloring of DS(G) requires an
exclusive color for w;. As a consequence, the removal of this control node from DS(G) implies readily
that every r-dynamic proper y,(DS(G))-coloring of DS(G) gives rise to an (r — 1)-dynamic proper
(x-(DS(G)) — 1)-coloring of G. Hence, y,-1(G) < x,(DS(G)) — 1. Furthermore, since n = A(DS(G)),
Lemma 1 implies that y,(DS(G)) > r + 1. As a consequence, y,(DS(G)) > a + 1.

In order to prove the reciprocal, let ¢ be an (r — 1)-dynamic proper a-coloring of G, and let ¢ be
the proper coloring of DS(G) such that c(v;) = ¢(v;) for all i < n, and c¢(wy) = @ + 1. This map c is an
r-dynamic proper (a + 1)-coloring of DS(G) because the following assertions hold from Lemma 1.

a) For each i < n, we have that |[c(Npsi)(vi))l = lc(Ng(v))l + 1 > min{r — 1, deg;(v))} + 1 =

mln{ v, degDS(G) (Vi) } .

b) IeNose) (0wl = @ = max{r, x,1(G)) = max {r, min{r ~ 1, AG)} + 1) = max {r, min{r, k + 1))
r = min{r, n} = min{r, ngDS(G)(Wk)}-

Hence, y,(DS(G)) < a + 1, and the result holds. O

The extra color for the control node implies that the solutions of both Problems 1 and 3 for any
(k,r + 1)-threshold secret sharing scheme, with k > r + 1, which is based on the DSG of any regular
communication network G, coincide for each of them with the solution of Problem 1 for any (k — 1, r)-
threshold secret sharing scheme based on G. That is, the minimum number of rounds of communication
that are necessary so that all the participants in a regular communication network can recover the secret
coincides with that associated with its DSG, once the threshold of the scheme is increased by one unity.
Moreover, it does not matter whether the control node is also a participant of the scheme, or not. It is an
advantage, because the inclusion of this control node prevents the appearance of dishonest participants,
without thereby worsening the flow of communication.

Networks and Heterogeneous Media Volume 18, Issue 4, 1713-1746.
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We illustrate Proposition 7 by solving the dynamic coloring problem (and hence, Problem 2) for
wheels and DSGs of cocktail party graphs. (Note that the 2-dynamic chromatic number of a wheel was
already established by Kaliraj et al. [24].)

Theorem 8. Let r and n > 2 be two positive integers. Then,

3, ifre{l,2}and n is even,
. i {re{l,Z}andnisodd,
r =3 and n = 0 (mod 3),
W= s, if{r:3and5¢n$0(mod3),
r=4<n#+S5,
6, ifre{3,4tandn =35,

r+1, ifS5<r<n,

n+1, otherwise.

Proof. The result holds readily from Lemma 2 and Proposition 7 once it is observed that every cycle is
2-regular and DS(C,) = W, for all n > 2. O

Figure 6 illustrates the previous result, for different values of r and n.

re{l,2} re{1,2} r=3 r e {3,4}

r>3 r==9
Figure 6. r-dynamic colorings of wheels.
Except for the control node, every participant in a wheel communication network receives
information from three distinct neighbors. Thus, based on the described dynamic coloring, only those

cases in which r < 3 give rise to exactly one round of communication as a solution of both Problems 1
and 3. The remaining cases require two rounds of communications for both problems.

Networks and Heterogeneous Media Volume 18, Issue 4, 1713-1746.
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We focus now on the DSG of a cocktail party graph Cp, of vertex set V(Cp,) = {vo,...,V2,-1} and
edge set E(Cp,) = {viv;: 0<1i,j<2n,i#% j(modn))}. First, the following lemma corrects a previous
result concerning the r-dynamic chromatic number of any cocktail party graph, which was not accurate
(see [21, Theorem 4.2]).

Lemma 9. Let r and n > 1 be two positive integers. Then,

n, ifr<n,
xA(Cp,) =3 r+2, ifn<r<2n-2,

2n, otherwise.

Proof. From Lemma 1, it is enough to prove the case r < A(Cp,) = 2n — 2. Since Cp,, contains an
n-clique, we have that y,(Cp,) > n. This lower bound is tight for all » < n because of the r-dynamic
n-proper coloring graph ¢ of Cp, that is described so that c(v;) = c¢(vi,) = i for all i < n. Further, if
n <r <2n-2=A(Cp,), then Lemma 1 implies that y,(Cp,) > r + 1. However, this lower bound is
not reached. Otherwise, since N(v;) = N(v;;,) for all i < n, Condition (1.1) implies that both vertices
v; and v;,, would be equally colored for all i < n. But then, r + 1 < n, which is a contradiction. So,
Xx+(Cp,) = r + 2. This new lower bound is reached because of the r-dynamic (r + 2)-proper coloring
graph c of the graph Cp,, that is described so that

) I ifeitheri<nori>3n—-r-2,
c\v;) = . .
i —n, otherwise.

Figure 8 illustrates the dynamic coloring described in the previous proof, for n = 4.

Figure 7. r-dynamic colorings of Cp,, for r = 3 (left) and r = 4 (right).

Since the graph Cp, is (2n — 2)-regular, the following result holds readily from Lemma 9 and
Proposition 7.

Theorem 10. Let r and n > 1 be two positive integers. Then,

n+1, ifl1<r<n,
x(DS(Cp,)) =4 r+2, ifn<r<2n,

2n+ 1, otherwise.

Networks and Heterogeneous Media Volume 18, Issue 4, 1713—-1746.
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Figure 8 illustrates the previous result for n = 4.

Figure 8. r-dynamic colorings of DS(Cp,), for r = 4 (left) and r = 5 (right).

Except for the control node, every participant in the DSG of a cocktail party communication network
Cp,, receives information from 2n distinct neighbors. Thus, based on the described dynamic coloring,
only those cases in which r < 2n give rise to exactly one round of communication as a solution of
both Problems 1 and 3. The remaining case r = 2n requires two rounds of communications for both
problems.

4. The non-regular case

In practice, the direct application of Condition (1.1) and Lemma 1 constitutes the most common
way to start solving the dynamic coloring problem of a given graph. We illustrate this fact by focusing
in this section on the DSGs of book, comb, fan and jellyfish graphs.

4.1. Degree splitting of book graphs

For each non-negative integer i < n, let {vg, vy, vg, vg} be the set of vertices of the (i + 1)™ copy of
the cycle C4 within the book graph B,. Its set of edges is {vovi, vivh, V55, vovi). The edge vov, is the
unique common edge shared by all these copies. Moreover, let w, and w,,; be the additional vertices
that are respectively joined to the sets of vertices V,(B,) = {vé, vg: O0<i<n}and V,_(B,) = {vo,v1}
in order to get DS(B,).

Proposition 11. Let n > 2 be a positive integer. Then,

3, if re{l,2},
x-DS(B,) =4 r+3, if3<r<2n,

2n+ 3, otherwise.

Proof. Lemma 1 enables us to focus on the case r < A(B,) = 2n. Let us study each case separately.

First, we consider the case r € {1,2}. Since the induced subgraph of B, with set of vertices
{vo, v1, w,41} constitutes a 3-clique, it must be 3 < y,(DS(B,)). This lower bound is tight because of
the r-dynamic proper 3-coloring ¢ of DS(B,) that is described so that c(w,) = c(w,4+1) = 2 and, for
each non-negative integer i < n, it is c(vy) = c(vo) = 0 and (V) = c(vy) = 1.
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Now, we suppose that 3 < r < 2n. From Condition (1.1) applied to the vertex w,_;, every r-
dynamic proper coloring ¢ of the DSG DS(B,) requires r distinct colors for coloring the set of vertices
V>(B,). In addition, the set of vertices {vy, v{, w;} requires three extra distinct colors because of the
adjacency of the graph together with the fact that r > 3 = degDS(Bn)(vj.) forall j€{2,3}and 0 <i < n.
Hence, r + 3 < x,(DS(B,)). This lower bound is tight because of the r-dynamic proper (r + 3)-
coloring ¢ of DS(B,) that is described so that c(vy) = r, c(vi) = r+ 1, c(wp) = c(W,41) = r+ 2 and
c(vj.):(2i+j—2)modrforallje{2,3}and0£i<n. O

Figure 9 illustrates the dynamic coloring described in the previous proof, for n = 4.

Figure 9. r-dynamic colorings of By, for r € {1,2} (left) and r = 5 (right).

Based on the described dynamic coloring, since degpg g ,(w2) = 2, only the case r € {1,2} gives
rise to exactly one round of communication as a solution of Problem 1. The remaining cases requires
two rounds of communications for this problem. Similarly to the regular case, since both control nodes
are colored with the same extra color, it is readily verified that Problem 3 for DS(B,) has exactly the
same solution as Problem 1. Thus, it does not matter whether the control nodes are participants of the
scheme or not.

4.2. Degree splitting of comb graphs

Let Cb,, with n > 2, be the comb graph that results after connecting n new vertices v, ...,V _, to
the path P, = (v, ..., v,_1 ) by means of the edges v;v for all i < n. Moreover, let w, be the additional
vertex that is joined to the set of vertices V,(Cb,) = {vy, v,-1} to get the graph DS(Cb,,). Similarly, if
n > 3, then let w3 be the additional vertex associated to the set of vertices V3(Cb,) = {vy,..., v,-»}. In
particular,

3, ifn=3,
A(DS(Cb3)) =1 4, if n € {4,5,6},

n—2, otherwise.

The following result holds.
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Proposition 12. Let n > 2 be a positive integer. Then,

2, if (r,n) = (1,3),

lr=1andn > 3,
3, lf{
r=2,
L |r=3,
4, if
Xx-(DS(Cby)) = {r >3 =n,
5,

|r=4andn > 3,
i

r>4andn € {4,5,6},
r+1, ifd<r<n-2,

n—1, otherwise.

Proof. Lemma 1 enables one to focus on the case r < A(DS(Cb,,)). The following study of cases arises.

e Caser=1.
Lemma 1 implies that 2 < y(DS(Cbs)). In addition, 3 < y(DS(Cb,)) for all n > 3, because the
set of vertices {vy, v,, w3} induces a 3-clique in DS(Cb,,). To see that both lower bounds are tight,
it is enough to consider the proper coloring ¢ of Cb,, described in the proof of Lemma 5, together
with either c(w;) = 1, if n = 3, or c(w,) = c(w3) = 2, if n > 3. (Figure 10 illustrates the case

n € {3,4}.)

Figure 10. Dynamic proper coloring of DS(Cb;) and DS(Cb,).

e Caser € {2,3}.
Lemma 1 implies that r + 1 < y,(DS(Cb,)). Figure 12 (left) illustrates that this lower bound is
reached for r = n = 3. For the remaining cases, it is enough to consider the r-dynamic proper
(r + 1)-coloring that is described so that c¢(w3) = r (only if n > 3),

. ifr=2
UCY e TN

and, for each non-negative integer i < n, we have that

imod2, ifi<n-1,
c(vy) =
2, ifi=n-1.
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and

, 2, ifi<n-1,
c(v;) = )
c(v,—3), ifi=n-1.

(Figure 11 (right) illustrates the case r = 2 and n € {3, 4}, while Figure 12 (right) illustrates the

case (r,n) = (3,4).)

Figure 11. 2-dynamic proper 4-colorings of DS(Cb3) and DS(Cby,).

7 N

Figure 12. 3-dynamic proper 4-colorings of DS(Cb;) and DS(Cby).

e Caser =4 andn > 3.
Lemma 1 implies that 5 < y4(DS(Cb,)). If n # 1 (mod 4), this lower bound is reached because of
the proper coloring ¢ of Cb,, described in the proof of Lemma 35, together with c(w;) = c(ws) = 4.
Otherwise, if n = 1 (mod4), it is enough to consider the same proper coloring, except that we
interchange the colors of both vertices v,_; and v/ _,. (Figure 13 illustrates the case n € {4, 5}.)

< <

Figure 13. 4-dynamic proper 5-colorings of DS(Cb,4) and DS(Cbs).
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e Cased <r<n-2.
Lemma 1 implies that » + 1 < y,(DS(Cb,)). If n # 1(modr), then this lower bound is tight
because of the r-dynamic proper coloring that is described so that c¢(w;) = c(w3) = r, and, for
each positive integer i < n, we have that c(v;) = i (mod r) and c¢(v}) = (i + r) (mod r). Otherwise,
if n = 1 (modr), it is enough to consider the same proper coloring, except that we interchange
the colors of both vertices v,_; and v/ _,. (Figures 14 and 15 illustrate, respectively, the cases
(r,n) =(5,7) and (r,n) = (5,11).)

Figure 14. 5-dynamic proper 6-coloring of DS(Cby).

Figure 15. 5-dynamic proper 6-coloring of DS(Cby;).

The existence of pendant vertices in any comb graph implies that only the case r = 1 gives rise to
exactly one round of communication as a solution for both Problems 1 and 3. Moreover, it is readily
verified from the described dynamic coloring that, in both problems, two rounds of communication are
required for r € {2, 3}, and three rounds for the remaining cases. Again, since both control nodes are
colored with the same extra color, it does not matter whether the control nodes are participants of the
scheme or not.

4.3. Degree splitting of fan graphs

Let m € {1,2} and n > 2 be two positive integers. We focus now on solving the dynamic coloring
problem for the DSG of the fan graph F),, of set of vertices V(F,,,) = {uo, Un-1,Vo,---,Vu-1}, Which
is associated to the path P, = (v, ..., v, ). According to their degrees, these vertices are distributed
into the following sets.
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e The sets V,(Fy..) = {uo, -1,v0, Voo1} and Vo i (Fip) = {vi, ..., vp2), ifn=m + 1.

e The sets V,_1(Fy.n) = {vo, Vo1 } and V,,(F) = {tbo, -1, V15 -« - s V2, J ifn =m + 2.

e The sets Vm+1(Fm,n) = {vo, Va1 h Vm+2(Fm,n) = i,V and Vn(Fm,n) = {uo, up—1}, ifn ¢
{m+1,m+ 2}

Each set Vi(F,,,) for which |Vi(F,,)| > 1 is associated to an additional vertex wy to get the DSG
DS(F,.,). A preliminary lemma is required to deal with the case m = 1.

Lemma 13. Let n and r be two positive integers such that 4 < r < n. Then,

r+2 S/\/F(DS(Fl,n))-

Proof. Since r < n, Condition (1.1) implies that every r-dynamic proper coloring of the DSG DS(F )

requires r distinct colors for coloring the set of vertices {Vy, ..., V,_i}, and hence, an (r + 1)* color is
necessary for the vertex up. Moreover, since degpgr, . (v;) = 4 for all positive integer i < n— 1, an extra
(r + 2)'" color is required for the vertex ws. |

The following result solves the dynamic coloring problem for the fan graph F .

Theorem 14. Let n > 2 and r be two positive integers. Then,

L |r=1
3, if
r=2andnis even,
r=2andnis odd,

4, if
r=3and4 <n=2(mod3),
Xxr(DS(Fy ) = ne{3,4},
_|r=3and
5, i 4 <n #2(mod3),
(r,n) = (4,3),

r+2, if4d<r<n,

n+2, otherwise.

Proof. Lemma 1 enables us to focus on the case r < A(DS(F;,,)). This maximum degree is 4, if n = 3,
and it is n otherwise. The following study of cases arises.

e Caser=1.
Proposition 4 and Lemma 6 imply that y(DS(F,)) € {3,4}. Thus, Figure 16 (left) illustrates that
X(DS(F,3)) = 3. Moreover, y(DS(F,,)) = 3 for all n > 3, because of the proper 3-coloring of
DS(F,,) that is described so that c(uy) = c(w;) = c(ws) = 2 and ¢(v;) = imod 2 for all i < n.

Networks and Heterogeneous Media Volume 18, Issue 4, 1713-1746.



1731

Figure 16. r-dynamic proper (r + 2)-coloring of DS(F,), for (r,n) = (1,3) (left), (r,n) =
(3, 3) (center) and (r, n) = (3,4) (right).

e Caser =2.
From Lemma 1, we have that 3 < y»(DS(F;,)). This lower bound is tight for n even because of
the same map ¢ described in the previous case. If n is odd, then every 2-dynamic proper coloring
of the DSG DS(F,,) requires two distinct colors for the set of vertices Npsr, ,)(W2) = {vo, Va-1},
and hence, at least four colors for the set of vertices {u, vo,...,v,—1}. Hence, 4 < y»(DS(F,))
when n is odd. This lower bound is tight because of the proper coloring ¢ of DS(F;,) that is
described so that c(w3) = ¢(v,—1) = 2, c(up) = c(wp) = 3 and ¢(v;) = imod2 foralli <n - 1.

e Case r = 3.
From Condition (1.1), every 3-dynamic proper coloring of DS(F'; ,,) satisfies that the four vertices
Vo, Vn—1, Up and w, are pairwise distinct colored. In the case of being a proper 4-coloring, if n > 4,
then the vertex w; must be colored as 1, while the vertex v; must be colored as vy, if i = 0 (mod 3);
as v,_, if i = 1 (mod 3); and as w, otherwise. Hence, this proper 4-coloring is possible only if
4 < n =2 (mod3).
In order to prove that y»(DS(F;,)) = 4, whenever 4 < n = 2 (mod 3), it is enough to consider
the 3-dynamic proper 4-coloring ¢ of DS(F,) such that c(w,) = 2, c(up) = c(ws) = 3 and
c¢(v;) = imod3 for all i < n. Furthermore, in order to prove that y,(DS(F;,)) = 5, whenever
4 < n # 2 (mod 3), it is enough to consider the same proper coloring c that we have just described,
except for c(v,-1) = 4.
A fifth color is also required in the case of being n € {3,4}. It is due to the fact that Condition
(1.1) implies that every 3-dynamic proper coloring of DS(F,) requires at least three distinct
colors for the set of vertices {vy,...,v,_1} and exactly four distinct colors for each one of the
sets of vertices {ug, Vo, Vu—1, W2}, {to, Vo, V1, wo} and {ug, v,—2, v,—1, wo}. Thus, Figure 16 (center and
right) illustrates that y3(DS(F;,)) = 5, whenever n € {3, 4}.

e Case (r,n) = (4,3).
From Lemma 1, 5 < y4(DS(F3)). Figure 16 (center) shows that this lower bound is tight.

e Cased4 <r<n.
Lemma 13 implies that r + 2 < y,(DS(F;,)). This lower bound is tight because of the r-dynamic
proper (r + 2)-coloring ¢ such that c(uy) = r, c(w,) = c(w3) =r+ 1 and

) o li<n-1,
imodr, if

c(v)) = i=n—-1%0(modr), 4.1)
2, otherwise.

O
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The just described dynamic coloring implies that every participant in a fan communication network
F,, which is distinct from a control node, can reconstruct the secret under consideration in just one
round of communication only if r € {1,2,3}. Control nodes do the same only for r € {1,2}. For the
remaining cases, except for the control node w, when r > 5, all the participants receive all the pieces
of information in two rounds. For r > 5, three rounds are enough for all the nodes.

Now, we solve the dynamic coloring problem for the fan graph F,,.

Theorem 15. Let n > 2 and r be two positive integers. Then,

Xr(DS(FZ,n)) =

3,

r+3,
n+3,

_|lr=1andn + 4,
if
r=2andn =73,
_ {r€{1,3}andn:4,
1

r=72andnis even,

r=3andn + 4,
ifr=4,
ifS<r<n+l1,

) {r:2andn>3is0dd,
if

otherwise.

Proof. From Lemma 1, we only dealt with » < A(DS(F,,)) = n+ 1. The following cases arise.

e Caser=1.

Proposition 4 and Lemma 6 imply that y(DS(F,,)) € {3.4}.

Figure 17 illustrates that

X(DS(F,3)) = 3. Further, it is readily verified that every proper coloring of F,4 requires three
distinct colors for the set of vertices V4(F,4). So, x(DS(F,4)) = 4. Finally, if n > 4, then let us
consider the proper 3-coloring ¢ of the double fan graph F;, that is described so that c(w,) = 0,
c(up) = c(uy) = c(wz) = c(wy) = 2 and c(v;) = imod?2 for every non-negative integer i < n.
Condition (1.1) holds and hence, x(DS(F>,)) = 3 for all n > 4.

Figure 17. r-dynamic proper 3-coloring of DS(F,3) for r € {1, 2}.

e Caser=2.

From Lemma 1, we have that y,(DS(F>,,)) > 3. Figure 17 also illustrates that this lower bound
is tight for n = 3. Further, Lemma 1 implies that 4 = y(DS(F14)) < x2(DS(F,4)). Figure 18
illustrates that this lower bound is indeed reached. Finally, if n > 4, then every 2-dynamic proper
coloring of DS(F3,) requires four distinct colors for the set of vertices {uo, u, vo, v,—1}. Moreover,

if n is odd, then it requires at least five distinct colors for the set of vertices {ug, u;, vo, v1, - .
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As a consequence, x2(DS(F,,)) > 4 if n is even, and > 5 otherwise. Both lower bounds are
reached because of the 2-dynamic proper coloring ¢ of DS(F,,)) that is described so that c(w,) =
0, c(up) = c(ws) = c(wy) = 2, c(uy) = 3 and

imod2, ifi<n-1,
c(vi) =11, ifi =n—11s odd,

4, otherwise.

Figure 18. r-dynamic proper 4-coloring of DS(F,4) for r € {2, 3}.

e Caser = 3.

From Lemma 1, we have that 4 < y3(DS(F,,)). Figure 18 also illustrates that this lower bound is
tight for n = 4. Further, every 3-dynamic proper coloring of DS(F’, 3) requires five distinct colors
for the set of vertices {ug, u;, vy, vi, ws} and hence, 5 < y3(DS(F,3)). Figure 19 (left) illustrates
that this lower bound is indeed reached. Finally, if n > 4, then 5 < y3(DS(F,,,)), because every
3-dynamic proper coloring of DS(F’,,) requires at least five distinct colors for the set of vertices
Va(F5,) U V,(F,,). In order to prove that this lower bound is tight, it is enough to consider the
3-dynamic proper 5-coloring ¢ of the DSG DS(F,,) satisfying (4.1) and such that c(w,) = 0,
c(ug) = c(wz) = c(wy) =3, c(uy) = 4

Figure 19. r-dynamic proper (r + 2)-coloring of DS(F,3) for r = 3 (left) and r = 4 (right).

e Case (r,n) = 4,3).
It is readily verified that every 4-dynamic proper coloring of DS(F,3) must color each one of its
vertices in a unique way (see Figure 19 (right)). So, y4(DS(F,3)) = 6.

e Case4<r<n+1.
Condition (1.1) implies that every r-dynamic proper coloring ¢ of the DSG DS(F, ) satisfies that
C(M()) * C(I/tl). Then, since NDS(Fz,n)(MO) = NDS(FZ‘,,)(MI) and degDS(Fz,,,)(MO) = degDS(sz,,)(ul) =n+l >
r, the same condition enables one to ensure that r + 2 < y,(DS(F,,,)). Figures 20 illustrates that
this lower bound is reached for (r,n) € {(4,4), (5,4), (4,5)}.
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Figure 20. r-dynamic proper (r + 2)-coloring of DS(F,,) for (r,n) = (4,4) (left), (r,n) =
(5,4) (center) and (r,n) = (4,5) (right).

Furthermore, the following subcases arise for n > 4.

— Subcase r =4 <n-2.
In order to prove that the lower bound 6 < y4(DS(F,,)) is tight, it is enough to consider the
4-dynamic proper 6-coloring of DS(F, ) satisfying (4.1) and such that c(w,) = 0, c(w3) = 2,
c(up) = c(wy) = 4, c(uy) = 5.

— Subcase 5 < r < n.
From Condition (1.1), it is readily deduced that every r-dynamic proper coloring of the DSG
DS(F,,) requires at least r + 3 distinct colors for the set of vertices V(F5,,) \ {ws, w,}. This
lower bound is tight because of the r-dynamic proper (r+ 3)-coloring ¢ of DS(F3,,) satisfying
(4.1) and such that c(ug) = r, c(u;) = r+ 1, c(wz) = c(wy) = c(w,) = r + 2.

— Subcase5S <r=n+1.
It is readily verified from Condition (1.1) that every r-dynamic proper coloring of DS(F>,,)
requires at least n + 3 distinct colors for V(F;,) \ {ws, w,}. This lower bound is tight because
of the (n + 1)-dynamic proper (n + 3)-coloring ¢ of DS(F,,) that is described so that c(wsz) =
cwy) =cw,) =n,clug) =n+1,c(u;) =n+2and c(v;) =iforalli <n.

O

The just described dynamic coloring implies that every participant in a fan communication network
F,, can reconstruct the secret under consideration in just one round of communication only if either
n=3andr <4,orn > 3and r < 2. In any other case, two rounds are always necessary as a solution
of both Problems 1 and 3.

4.4. Degree splitting of jellyfish graphs

Let m and n be two positive integers such that m < n. Let us finish this section by solving the
dynamic coloring problem for the jellyfish graph J,, of set of vertices arising from the cycle
C4 = (vp, V1, V2, v3 ) in the way described in the preliminary section. Particularly, let {v(l), - v’l’H} and
{9, ...,v471} be the sets of pendant vertices that are respectively added to the vertices v; and v;. The

following sets of vertices play a fundamental role in the description of the DSG DS(J,,,,).

The set V3(J1,1) = {Vo,V], V2,V3}, if l =m=n.

The set V3(J1,) = {vo, vi, v}, if 1 =m < n.

The sets V3(J,.) = {vo, v2} and V,0(J) = {vi,va) if 1 <m =n.
The set V3(Jy) = {vo, v}, if 1 <m < n.
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Each one of these sets V(J,,,) 1s associated to an additional vertex wy to get DS(J,,,). The following
result establishes the r-dynamic chromatic number of the DSG DS(/; ).

Proposition 16. Let n and r be two positive integers. Then,

max{4, r+ 1}, ifr<n+2,
x-(DS(J1,.) =1 5, ifn=1andr > 4,

n+3, otherwise.

Proof. Let @ = max{4, r+ 1}. Lemma 1 allows for a focus on the case r < A(DS(J,,,)). This maximum
degree is 4, if n = 1, and it is n + 2 otherwise. Since the induced subgraph of J; ,, arising from the set
of vertices {vo, v, V2, w3} is a 4-clique, we have from Lemmas 1 and 2 that @ < x,(DS(J;,)). In order
to prove that this lower bound is tight, we describe an appropriate r-dynamic proper a-coloring ¢ of
DS(J, ). The following cases arise.

e If either r < nmor (r,n) € {2,3} x {1}, t_hen we define the map c so that ¢(v;) =i for all i € {0, 1,2},
c(ws) =3, c(v(l)) = max{3, r} and c(vg) = jmod r for all non-negative integer j < n. In addition,
c(v3) = 1,if n = 1, and c(v3) = (1Y) otherwise.

o If (r,n) = (4,1), then it is enough to consider the same map ¢ described in the previous case,
except for c(v3) =1and c(v;) =

elfn>1landr e {n+1,n+ 2}, then the map c is defined so that c(vg) = jforalli < n,
c(v3) = c(v(l)) =n, c(vg) = n+1and c(v{) = 0. In addition, if »r = n + 1, then ¢(v,) = 1 and
c(wsz) = 2. Otherwise, if r = n + 2, then ¢(v;) = n + 2 and c¢(w;) = 1.

Figure 21 illustrates the dynamic coloring described in the previous proof.

2l

r € {2,3} r=
Figure 21. r-dynamic colorings of some DSGs of jellyfish graphs.

The existence of pendant vertices in the DSG of any jellyfish graph J;, implies that only the case
r = 1 gives rise to exactly one round of communication as a solution for both Problems 1 and 3.
The dynamic coloring described in the proof of Proposition 16 implies that, for r > 1, two rounds of
communications are enough for both problems.

Now, we solve the dynamic coloring problem for DS(J,,,,), with 1 < m < n.
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Proposition 17. Let m and n be two positive integers such that 1 < m < n. Then,

3 i r=1,
, i
r=2andm < n,

4, ifr=2and m = n,
r+1, if3<r<ADSUnn)),

n+3, ifm<nandr>n+?2,

Xr(DS(Jy)) =

n+4, otherwise.

Proof. Lemma 1 enables us to focus on the case r < A(DS(J,,,)). This maximum degree is n + 2, if
m < n, and n + 3, if m = n. The following study of cases arises.

e Caser=1or(r=2andm < n).
Since the set of vertices {vy,v;,v,} describes a 3-clique within DS(J,,,), we have that
3 < x,(DS(J,.,))- In order to prove that this lower bound is tight for » = 1 and also for r = 2 and
m < n, it is enough to consider the proper 3-coloring ¢ of DS(J,,,) that is described so that
c(v‘i) = c(vg) =0foralli <mand j <n, c(vs) = c(ws) =1and c(v;) = k for all k € {0, 1,2}. In
addition, if » = 1 and m = n, then c(w,4,) = 2.

e Caser=2andm = n.
Condition (1.1) applied to the vertex w,,,, together with the already mentioned 3-clique, implies
that every 2-dynamic proper coloring of DS(J,,,) requires four distinct colors for the set of
vertices {vo, vi, V2, v3,}. Hence, 4 < x,(DS(J,,)). This lower bound is tight because of the
2-dynamic proper 4-coloring ¢ of DS(J,,,) that is described so that c(v)) = c(V}) = c(Wy12) = 0
forall i <n, c(w3) = 1 and c(v;) = jforall j < 3.

e Case 3 < r < A(DS(Jp.n))-
From Lemma 1, we have that r + 1 < y,(DS(J,,,)). In order to prove that this lower bound is
tight, it is enough to define an appropriate r-dynamic proper (r + 1)-coloring ¢ of DS(J,,,). The
following subcases arise. (See Figure 22 for some illustrations of the proposed maps.)

— Subcase 3 <r <m+2.
We consider the map c that is described so that
c(vp) = mmod r;
cv) =r;
c(vy) =(m+ 1)modr
c(v3) = (m+2)modr;
c(wz) = (m— 1)mod r;
if m = n, then c(w,..») = mmod r;
c(v') = imodr for all i < m; and

* ¥k KX X X ¥ ¥

o) imodr, ifi# (m+2)modr,
x c(Vy) =
3 r, otherwise.

— Subcase m =nand r =n + 3.
We consider the same map ¢ described in the previous subcase, except for c(w,42) = (m +
2)mod r and c(v3) = 0.
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— Subcase m + 3 < r < n + 2. (In particular, m < n.)
Similarly to the first subcase, we define the map ¢ so that
c(vp) = nmod r;
c(vi) =(m+2)modr;
c(vy) =(m+ 1)modr
c(v3)=r;
c(wz) =(n—1)modr;
¢(v;) = imod r for all i < n; and
{lmodr if i # (n+2)modr,
* c(v )=

* ¥ KX X ¥ ¥

7, otherwise.

(r,m,n) =(3,3,4)  (r,m,n)=(4,3,4) (r,m,n)=(5,3,4)
(r,m,n) = (3,4,4) (r,m,n) = (4,4,4) (r,m,n) = (5,4,4)

rmn 744

Figure 22. r-dynamic proper (r+1)-colorings of DS(J,,,,), for 3 < r < A(DS(J,,.,))-

(r,m,n) = (6,3,4)

Again, the existence of pendant vertices implies that every node in a jellyfish communication
network J,,,, with 1 < m < n, can reconstruct the secret under consideration in exactly one round of
communication only if » = 1. The dynamic coloring in the proof of Proposition 17 implies that, for
r > 1, all the nodes, except for the control node w3, can recover all the secret shares in two rounds.
(Note here the relevance of both nodes v; and v3.) This control node would require two rounds to this
end only if r € {2, 3,4}, and three rounds if r > 4. Hence, the solution of Problem 1 is 1, if r = 1; 2, if
re{2,3,4},and 3,if4 <r <n+ 3. Thatof Problem3is lifr=1,and2if 1 <r <n+ 3.

Networks and Heterogeneous Media Volume 18, Issue 4, 1713-1746.



1738

5. A new lower bound

To fit much better a lower bound for the dynamic chromatic number of a DSG, and similarly to
Lemma 6, this section delves into the relationship among the dynamic chromatic number of a given
graph G and that of DS(G).

Lemma 18. Let r > 1 be a positive integer and let G be a finite simple graph. Then,
max{y,—;(G), min{r, [Vi(G): 1 <[Vi(O)l} + 1} < x,(DS(G)).

Proof. Let ¢ be an r-dynamic proper coloring of DS(G) and let k > 1 be a positive integer such that
[Vi(G)] > 1. From Condition (1.1), we have that |c(N(wy))| > min{r,|Vi(G)|}. Hence,
ming. ({7, |Vi(G)|: 1 < |Vi(G)|} + 1 < x,(DS(G)). Further, let ¢’ denote the restriction of the map ¢ to
the vertices within V(G). Then, for each vertex v € V(G), the following assertions hold.

|’ (Ne(W))| = |c(Nps) (V)| = min{r, degpgg)(v)} = min{r, deg;(v)} > min{r — 1, deg;(v)}.
o If deg;(v) > 1 and [Viee, (n(G)| > 1, then it is verified that |c'(Ng(v))| > |c(Npsy(W) = 1 =
min{r, degpg;)(V)} — 1 = min{r — 1, deg;(v)}.

Thus, Condition (1.1) holds and hence, y,_1(G) < x,(DS(G)). O

o If degs(v) < 1 or [Vig,w(G) = 1, then Ng(v) = Npse(v) and hence, it is

In order to illustrate how the previous lemma may be used to solve the dynamic coloring problem of
DSGs, let us finish our study by determining the r-dynamic chromatic number of the DSG of windmill
and barbell graphs.

Proposition 19. Let r and m,n > 2 be three positive integers. Then,

n, ifl1 <r<n,
x-(DS(Wd,,0) =4 r+2, ifn<r<mmn-1),
m(n—1)+2, otherwise.
Proof. From Lemma 1, we may focus on the case r < A(DS(Wd,,,)) = m(n—1). For each non-negative
integer j < m, let {w,v/: 0 < i < n — 1} be the set of vertices of the (j + 1) copy of the complete
graph K, within the windmill graph Wd,, ,. Here, w denotes the vertex that all of these copies have in

common. In addition, let w,_; denote the additional vertex that is uniquely joined to all the vertices
within V,_1(Wd,,,) to get DS(Wd,, ;). From Lemmas 3, 6 and 18, we have that

n, ifl <r<n,
X-(DSWd,, ) >4 r+1, fn<r<mn-1),
m(n—1)+1, otherwise.
Then, the following study of cases arises.

e Case 1 <r<n.
In order to prove that the previous lower bound is tight, let ¢ be an r-dynamic proper n-coloring of
the windmill graph Wd,,,,. Then, it is enough to consider the proper n-coloring ¢’ of DS(Wd,, )
such that ¢’(v) = ¢(v) for all v € V(Wd,,,) and ¢’(w,—;) = c(w). Condition (1.1) holds and hence,
x-(DS(Wd,,,)) = n. (Figure 23 (left) illustrates the case (m,n) = (3,4).)
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e Casen<r<mn-1).
Let ¢ be an r-dynamic proper coloring of DS(Wd,,,). Then, Condition (1.1) implies that

lc(w, i1} U Npswd,,)Wa-1))l 2 1 + 2,

because degDS(de,n)(w,,_l) =m(n—1) > rand c(w) # c(w,—). (For the last inequality, note that
degpscwa,, (V1) = n < rand {w,w,} C Npswa,,)(v}).) As a consequence, x,(DS(Wd,,,)) > r + 2.
This lower bound is tight because of the proper coloring ¢ of DS(Wd,,,) such that c(w) = r,
c(w,) = r + 1 and, for each pair of non-negative integers i < n — 1 and j < m,

; jn—-1)+i, ifjmn-1+i<r,
c(v;)) =19 .
I otherwise.

(Figure 23 (right) illustrates the case (m,n,r) = (4,3,5).)

X

r=2>5

Figure 23. r-dynamic colorings of a pair of DSGs of windmill graphs.

The just described dynamic coloring implies that every participant in a windmill communication
network Wd,,,, can reconstruct the secret under consideration in just one round for all r < m(n — 1).
Two rounds will be necessary for r = m(n — 1) + 1 because of both vertices w and w,,_;.

We finish our study by solving the dynamic coloring problem for barbell graphs.

Proposition 20. Let n > 2 be a positive integer. Then,

n+l, ifl<r<n,
x-(DS(Ba,)) =qr+3, ifn<r<2n-2,

2n+ 1, otherwise.

Proof. Lemma 1 enables us to focus on the case r < A(DS(Ba,)) = 2n — 2. For each j € {0, 1},
let {v{ : 0 < i < n} be the set of vertices of the (j + 1)™ copy of the complete graph K,, within Ba,
so that vg_ 1\/,11_1 constitutes its bridge. In addition, let w,_; and w, denote the additional vertices that
are respectively joined to all the vertices within V,_;(Ba,) = {vl./ :0<i<n-1,j€{0,1}} and

V.(Ba,) = {0_, vl  }to get DS(Ba,). From Lemmas 3, 6 and 18, we have that

n—-1°> "n
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n, if 1 <r<n,
x-(DSBa,)) =1 r+1, fn<r<2n-2,
2n—1, otherwise.

Then, the following study of cases arises.

e Casel <r<n.
Let us suppose the existence of an r-dynamic proper n-coloring ¢ of DS(Ba,,). In particular, for
each j € {0, 1}, both sets {c(v)): 0 < i < n} and {c(v)),c(w,): 0 < i < n— 1} are formed by
n distinct colors. Hence, it must be c(vg_l) = c(w,) = c(vi_l), which is not possible because
the map c is a proper coloring and v)_ vl | constitutes the bridge within Ba,. As a consequence,
x-(DS(Ba,)) > n+1. This lower bound is tight because of the proper (n+ 1)-coloring ¢ of DS(Ba,,)
such that c(W) = c(v! | ) =iforalli < n, and c(w,) = c(w,_1) = n. (Figure 24 (left) illustrates
the case n = 4.)

e Casen<r<2n-2.
Let ¢ be an r-dynamic proper coloring of DS(Ba,). From Condition (1.1), we have, for each
j €10, 1}, that |c(N(vi DI = dDS(BaH)(vf; _;) =n+1 < r. Then, the underlying adjacency, together
with the mentioned Condition (1.1), implies that the set

{e@), cw): 0<i<n, jefo, 1))

is formed by at least r + 3 distinct colors. Hence, y,(DS(Ba,)) > r + 3. This lower bound is tight
because of the proper (r + 3)-coloring ¢ of DS(Ba,) such that c(w,) = c¢(w,—1) = r + 2 and, for
each pair of non-negative integers i < n and j € {0, 1},

rel, if (i, j) = (n - 1,1),
. =0,
cvhy=1 i, if {7
j=landi<2n-2-r,

r—n+1i+?2, otherwise.

(Figure 24 (right) illustrates the case (n,r) = (4,5).)

r<4 r==9

Figure 24. r-dynamic colorings of a pair of DSGs of barbell graphs.
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The just described dynamic coloring implies that, except for the control node w,, every participant
in a barbell communication network Ba, can reconstruct the secret under consideration in just one
round for all » < n. For the remaining cases, two rounds are necessary for all the participants, except
for the control node w,_;, which only requires two rounds for r = 2n. The control node w, would
require just one round for r € {1,2}, and two rounds otherwise. Hence, the solution of Problem 1 is 1,
ifre{l,2},and 2,if 2 < r < 2n. That of Problem 3is 1 if r <m,and 2 if n < r < 2n.

6. Conclusion and further work

The dynamic coloring of DSGs constitutes a valuable approach to improve cryptographic protocols
based on secret sharing. First, the dynamic coloring enables the dealer to distribute secret shares so
that all the participants can recover the secret after a minimum number of rounds of communication.
Second, DSGs enable the dealer to avoid dishonesty by adding control nodes supervising participants
with the same influence in the communication network. This paper has delved into this topic by
solving completely the dynamic chromatic problem for DSGs (Problem 2) of regular graphs. To this
end, we have established the relationship among the dynamic chromatic number of a regular graph
and that of its DSG. In addition, the dynamic coloring problem for DSGs (Problem 2) of non-regular
graphs has partially been solved by establishing a new lower bound for the dynamic chromatic number
under consideration. More precisely, we have solved the dynamic coloring problem for DSGs of
eight families of graphs: cycles, cocktail, book, comb, fan, jellyfish, windmill and barbell graphs.
Whenever it has been possible, we have detailed the dynamic coloring of each graph, so that they can
naturally be translated to describe optimal secret share distributions in secret sharing schemes defined
on this type of graphs. These colorings have enabled us to establish the minimum number of rounds of
communications that are necessary so that all the participants of a communication network defined on
such graphs can reconstruct the secret under consideration. To this end, we have distinguished whether
the control nodes are also participants of the scheme (Problem 1), or not (Problem 3). Table 2 collects
the solution of both problems for all the DSGs that have been studied throughout the paper. Those
cases in which the solution of both problems coincide have been indicated by the symbol = in the third
column of Table 2.

The methodology here used may indeed be considered as a starting point to deal similarly with the
dynamic coloring problem of other DSGs. Of particular interest is the study of Problems 1 and 3 for
DSGs of graph products, which give rise to more complex graphs, more representative of real
communication networks. Note in this regard that the dynamic chromatic problem has already been
considered for different graph products [22-24, 34], but the implementation into a secret sharing
scheme, together with the corresponding study of minimum rounds of communications to reconstruct
the secret, has still not being dealt with.

Another aspect to study is the relationship between the respective dynamic chromatic numbers
of a {ky, ky}-regular graph (and, more generally, of a {k,...,k,}-regular graph) and its DSG would
constitute a subsequent stage for generalizing Proposition 7. It is established as further work. A main
weakness to note here is the fact that, before solving Problems 1 and 3, it is necessary to solve the
corresponding dynamic chromatic problem, which is by itself an NP-complete problem, as it has been
indicated in the introductory section.
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Table 2. Solutions of Problems 1 and 3, for (y,(G), r + 1)-threshold secret sharing schemes
based on the DSG of a graph G.

G

Problem 1 (DS(G))

Problem 3 (DS(G))

C,

Jm,”(l<m§n)

Wd,,

Ba,

|
|
|

—— N —

1,
2,

p—
M

- - -

-

- - -

WO R W =N =N

-

p—
M

- - -

-

- - - -

NI e NS T N N N i

-

if r <3,
if3<r<n.
if r < 2n,
if r = 2n.
ifr <2,
if2<r<n.
ifr=1,
if r € {2, 3},
if3<r<mn-2.
ifr<2,
if2<r<5,
ifS<r<mn+1.
" {n:3,r§4,
n>3r<2,
ifn>3<r<n+2.
ifr=1,
ifl<r<mn+?2.
ifr=1,
ifl <r<4,
if4d<r<mn+3.
ifr<mmn-1),
ifr=mn-1)+1.
if r € {1,2},
if 2 <r<2n.

, ifr<3,

2, if3<r<n+l.

—_——
—_

ifr=1,

ifl<r<n+3.

—N—
[\ I

1, ifr<n,
2, ifn<r<2n.

Finally, note that the minimum number of rounds of communication in both Problems 1 and 3 refer
to any (y, (DS(G)), r + 1)-threshold secret sharing scheme based on the DSG of the communication
network G under consideration. This number could be decreased if the secret splits into more pieces of
information. That is, if we consider a (k, r + 1)-threshold secret sharing scheme, with k > y, (DS(G)).
In this regard, the following question could be of interest for futher studies on the topic.

Problem 4. What is the minimum positive integer greater than y, (DS(G)) into which the secret has to
split for improving the solutions of Problems I and 3?

Networks and Heterogeneous Media
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