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Abstract: We study the problem of non-preemptively scheduling jobs from two agents on an
unbounded serial-batch machine. Agents A and B have nA and nB jobs. The machine can process
any number of jobs sequentially as a batch, and the processing time of the batch is equal to the total
processing time of the jobs in it. Each batch requires a setup time before it is processed. Compatibility
means that the jobs from different agents can be processed in a common batch; Otherwise, the jobs
from different agents are incompatible. Both the compatible and incompatible models are considered,
under both the batch availability and item availability assumptions. Batch availability means that
any job in a batch is not available until all the jobs in this batch are completed. Item availability
means that a job in a batch becomes available immediately after it is completed processing. The
completion time of a job is defined to be the moment when it is available. The goal is to minimize the
makespan of agent A and the maximum lateness of agent B simultaneously. For the compatible model
with batch availability, an O(nA + n2

B log nB)-time algorithm is presented which improves the existing
O(nA + n4

B log nB)-time algorithm. A slight modification of the algorithm solves the incompatible
model with batch availability in O(nA + n2

B log nB) time, which has the same time complexity as the
existing algorithm. For the compatible model with item availability, the analysis shows that it is easy
and admits an O(nA + nB log nB)-time algorithm. For the incompatible model with item availability,
an O(nA + nB log nB)-time algorithm is also obtained which improves the existing O(nA + n2

B)-time
algorithm. The algorithms can generate all Pareto optimal points and find a corresponding Pareto
optimal schedule for each Pareto optimal point.

Keywords: two-agent scheduling; unbounded serial-batch; compatibility/incompatibility; batch/item
availability; maximum lateness
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1. Introduction

We study a problem of two-agent scheduling on an unbounded serial-batch machine. There are
two agents A and B having nA and nB jobs respectively, where nA + nB = n. Each agent has his own
objective function to optimize that depends on the completion times of his own jobs only. However, all
the jobs share a common processing resource (e.g., the serial-batch machine). In this paper we assume
that agent A expects the maximum completion time (makespan) of his jobs to be minimized, while
agent B expects the maximum lateness (to be defined later) of his jobs to be minimized. Using the
standard scheduling notation, see, for example, [1], this circumstance can be modeled as an objective
vector (CA

max, L
B
max). For the purpose of meeting the needs of two agents to the maximum extent, the

decision-maker has to design some strategies to stimulate the agents to cooperate.
The jobs are processed on the machine in batches, and a fixed setup time s > 0 is incurred before

each batch is started. The serial-batch machine can process at most one job at a time and cannot
process any job when a setup is being performed. The processing time of a batch is equal to the total
processing time of the jobs in it. This is different from parallel-batch, where the jobs in the same batch
are processed simultaneously and the processing time of a batch is equal to the largest processing time
of the jobs in it [2, 3]. An unbounded machine means that the batch capacity b (the maximum number
of jobs in a batch) is unlimited, i.e., b ≥ n; Otherwise, it is bounded, i.e., b < n. Compatibility means
that the jobs from different agents can be processed in a common batch; Otherwise, the jobs from
different agents are incompatible. We analyze both the compatible and incompatible models under
both the batch availability and item availability assumptions. Batch availability means that any job in
a batch is not available until all the jobs in this batch are completed. Item availability means that a job
in a batch becomes available immediately after it is completed processing. The completion time of a
job is defined to be the moment when it is available.

Problem formulation
There are two agents A and B, and agent X has a set JX = {JX

1 , J
X
2 , . . . , J

X
nX
} of jobs to be non-

preemptively processed on an unbounded serial-batch machine, X ∈ {A, B}. The jobs in JX are called
X-jobs. Assume that JA ∩JB = ∅. Let JA ∪JB = J and nA + nB = n. Each job JX

j has a processing
time pX

j . Each B-job JB
j has a due date dB

j .
A schedule can be specified by a sequence of batches B1, B2, . . . , Bx. A fixed setup time s > 0 is

incurred before each batch. Let p(Bi) and C(Bi) denote the processing time and completion time of Bi,
respectively. Clearly, C(Bi) = i · s +

∑i
q=1 p(Bq), i = 1, 2, . . . x. For the case of batch availability, all

jobs in Bi are completed simultaneously at time C(Bi). In contrast, for the case of item availability, a
job is completed immediately after it is completed processing.

A batch containing only X-jobs is an X-batch, X ∈ {A, B}. A mixed batch refers to a batch that
contains both A-jobs and B-jobs.

Given a feasible schedule σ of the n jobs, let CX
j (σ) denote the completion time of JX

j in σ. Let
LB

j (σ) = CB
j (σ) − dB

j denote the lateness of job JB
j . If there is no confusion, we simply use CX

j and LB
j

to denote CX
j (σ) and LB

j (σ), respectively. Let CX
max = maxnX

j=1{C
X
j } and Cmax = max{CA

max,C
B
max} denote

the makespan of X-jobs and the makespan of σ, respectively. Let LB
max = maxnB

j=1{L
B
j } be the maximum

lateness of B-jobs. Notice that the makespan and maximum lateness criteria are both regular, i.e., they
are non-decreasing in the job completion times.

This paper studies the two-agent scheduling problem on an unbounded serial-batch machine to
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minimize the makespan CA
max of agent A and the maximum lateness LB

max of agent B simultaneously.
Using the three-field notation introduced by Graham et al. [4] and extended by T’kindt and
Billaut [5], the four variants of the problem under consideration are denoted by
1|s − batch, b ≥ n, co, batch − avail|(CA

max, L
B
max), 1|s − batch, b ≥ n, inco, batch − avail|(CA

max, L
B
max),

1|s − batch, b ≥ n, co, item − avail|(CA
max, L

B
max) and 1|s − batch, b ≥ n, inco, item − avail|(CA

max, L
B
max),

where “co” and “inco” mean “compatibility” and “incompatibility”, and “batch − avail” and
“item − avail” denote the “batch availability” and “item availability”, respectively.

Since we are dealing with two criteria CA
max and LB

max which are not non-conflicting, we focus on the
calculation of Pareto optima for CA

max and LB
max. The approach is called Pareto optimization which is

one of the most popular approaches in multi-criteria scheduling [5, 6].
Let f A and gB denote the two objectives of agents A and B respectively to be minimized. A

feasible schedule σ is Pareto optimal with respect to f A and gB if there is no feasible schedule σ′ such
that f A(σ′) ≤ f A(σ) and gB(σ′) ≤ gB(σ) with at least one strict inequality. The objective vector
( f A(σ), gB(σ)) is called a Pareto optimal point [5, 6].

Literature review
The problem under consideration falls into the categories of batch scheduling [2, 3, 7] and multi-

criteria optimization [5,6], which are hotspots in scheduling research. Multi-agent scheduling [1,8–10]
is a research topic in multi-criteria optimization. Here, we only review the results closely related to our
study.

Webster and Baker [11] proposed an O(n2)-time algorithm for
1|s − batch, b ≥ n, batch − avail|Lmax (single-criterion problem). Wagelmans and Gerodimos [12]
improved the time complexity to O(n log n). He et al. [13] presented an O(n2)-time algorithm for
1|s − batch, b ≥ n, batch − avail|(Cmax, Lmax) (Pareto optimization problem). Later, the result has been
extended to an O(n5)-time algorithm for 1|s − batch, b ≥ n, batch − avail|(Cmax, fmax) (maximum
lateness Lmax is replaced by maximum cost fmax) [14]. He et al. [15] obtained an O(n6)-time algorithm
for 1|s − batch, b < n, batch − avail|(Cmax, Lmax) (bounded serial-batch). Geng et al. [16] presented
O(n4)-time algorithms for 1|s − batch, b ≥ n, batch − avail|(Cmax, fmax) and
1|s − batch, b < n, batch − avail|(Cmax, fmax). Hence, problems 1|s − batch, b ≥ n, batch − avail| fmax

and 1|s − batch, b < n, batch − avail| fmax can also be solved in O(n4) time.
There are many research results for two-agent scheduling on an incompatible serial-batch machine

with batch availability. Kovalyov et al. [17] derived polynomial and pseudo-polynomial time
algorithms for constrained optimization problems with various combinations of the objective
functions. Constrained optimization means that minimizing the objective value of agent A, subject to
the condition that the objective value of agent B is bounded by a given threshold value. Feng et
al. [18] provided an O(nA + nB

4)-time algorithm for 1|s − batch, b ≥ n, inco, batch − avail|(CA
max, L

B
max).

He et al. [19] presented an O(nA + nB
5)-time algorithm for

1|s − batch, b ≥ n, inco, batch − avail|(CA
max, f B

max) and an O(nA + nB
4 log nB)-time algorithm for

1|s − batch, b < n, inco, batch − avail|(CA
max, L

B
max). He and Lin [20] gave an improved algorithm for

1|s − batch, b ≥ n, inco, batch − avail|(CA
max, L

B
max) that runs in O(nA + nB

2 log nB) time. He et al. [21]
presented an O(nA + nB

5)-time algorithm for 1|s − batch, b < n, inco, batch − avail|(CA
max, f B

max). He et
al. [22] presented an O(nA

3nB
3n2)-time algorithm for

1|s − batch, b ≥ n, inco, batch − avail|(LA
max, L

B
max).

To the best of our knowledge, very few results have been published for two-agent scheduling on
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a serial-batch machine with compatibility or item availability. For a compatible model, Li et al. [23]
provided either polynomial or pseudo-polynomial time algorithms for some constrained optimization
problems arising from different combinations of several regular criteria, including the maximum cost,
the total completion time, and the (weighted) number of tardy jobs. He et al. [22] presented an O(nA +

nB
4 log nB)-time algorithm for 1|s − batch, b ≥ n, co, batch − avail|(CA

max, L
B
max), and an O(nAnBn3)-time

algorithm for 1|s−batch, b ≥ n, co, batch−avail|(LA
max, L

B
max). They also presented an O(nA+nB

2)-time
algorithm for 1|s − batch, b ≥ n, inco, item − avail|(CA

max, L
B
max), and an O(nA

2nB
2n)-time algorithm for

1|s − batch, b ≥ n, inco, item − avail|(LA
max, L

B
max).

Contribution and organization
The main result of this paper is an O(nA + nB

2 log nB)-time algorithm for
1|s − batch, b ≥ n, co, batch − avail|(CA

max, L
B
max), improving the O(nA + nB

4 log nB)-time algorithm
presented in [22]. A slight modification of the algorithm can solve
1|s − batch, b ≥ n, inco, batch − avail|(CA

max, L
B
max) in O(nA + nB

2 log nB) time, which has the same time
complexity as the algorithm in [20]. We also consider the item availability. For
1|s − batch, b ≥ n, co, item − avail|(CA

max, L
B
max) and 1|s − batch, b ≥ n, inco, item − avail|(CA

max, L
B
max),

we present O(nA + nB log nB)-time algorithms. The algorithm for
1|s − batch, b ≥ n, inco, item − avail|(CA

max, L
B
max) improves the O(nA + nB

2)-time algorithm presented
in [22].

The paper is organized as follows. In Section 2, we present an O(nA+nB
2 log nB)-time algorithm for

1|s−batch, b ≥ n, co, batch−avail|(CA
max, L

B
max), and indicate the slight modification of the algorithm for

the incompatible model. In Section 3, we present O(nA+nB log nB)-time algorithms for 1|s−batch, b ≥
n, co, item − avail|(CA

max, L
B
max) and 1|s − batch, b ≥ n, inco, item − avail|(CA

max, L
B
max). Some concluding

remarks are drawn in Section 4.

2. The batch availability

In this section we will present an O(nA+nB
2 log nB)-time algorithm for 1|s−batch, b ≥ n, co, batch−

avail|(CA
max, L

B
max). At the end of this section, we will indicate the slight modification of the algorithm

for the incompatible model.
We need the following lemma which describes the structure of the Pareto optimal schedules we are

searching for.

Lemma 2.1. ( [22]) For any Pareto optimal point of 1|s − batch, b ≥ n, co, batch − avail|(CA
max, L

B
max),

there is a corresponding Pareto optimal schedule so that all A-jobs belong to a common batch, and all
B-jobs are scheduled in EDD (earliest due date first) order.

By this lemma, we re-index all B-jobs in EDD order so that dB
1 ≤ dB

2 ≤ · · · ≤ dB
nB

. The single batch
containing all A-jobs may also contain B-jobs. For brevity, we will represent a schedule by a batch
sequence B1, B2, . . . , BnB , BnB+1, . . . , B2nB+1, where BnB+1 is the batch containing all A-jobs and possibly
some B-jobs. Some batches in B1, B2, . . . , BnB , BnB+1, . . . , B2nB+1 may be empty or dummy. An empty
batch has processing time zero and setup time zero, while a dummy batch has processing time zero and
setup time s.

Let us roughly illustrate the basic idea of the algorithm, conveniently showing the difference
between the empty and dummy batches. There are many empty batches in the initial schedule. We
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iteratively adjust the schedule to decrease its LB
max-value. The adjustment is accomplished by moving

some B-jobs (whose lateness values are not less than the currently fixed LB
max-value) to the left.

Consequently, an empty batch may become nonempty and a setup time s incurs because some jobs
are moved into it, and a nonempty batch may become a dummy batch because all its jobs have been
moved out. Although the nonempty batch now contains no jobs, we retain it in the batch sequence
with processing time zero and setup time s. The motivation for introducing the concept of “dummy
batch” is to ensure that any job cannot be moved to the right. It is worth pointing out that a dummy
batch will never appear earlier than batch BnB+1.

Let Ω(J) denote the Pareto set which consists of all Pareto optimal points together with the
corresponding schedules. The algorithm below for constructing Ω(J) will repeatedly apply the
standard ε-constraint approach.

Lemma 2.2. ( [6]) Let y be the optimal value of constraint optimization problem α| f ≤ x̂|g, and let
x be the optimal value of constraint optimization problem α|g ≤ y| f . Then the standard ε-constraint
approach tells us that (x, y) is a Pareto optimal point for problem α||( f , g).

Let Π (J) denote the set of all feasible schedules for J = JA ∪ JB. Let Π (J , y) ⊆ Π (J) denote
the set of the schedules whose LB

max-values are less than y, where y is a given threshold value.
Algorithm BATCHCO:

Step 1. Initially, set Ω(J) = ∅, z = 0. Set h = 0, y(h) = +∞. Let
σ(h) = (B(h)

1 , B
(h)
2 , . . . , B

(h)
nB , B

(h)
nB+1, . . . , B

(h)
2nB+1) be the initial schedule, where B(h)

nB+1 consists of all
A-jobs, B(h)

2nB+1 consists of all B-jobs, and all other batches are empty batches.

Step 2. The (h + 1)-th iteration:

Set y(h+1) = LB
max(σ(h)). Invoke Procedure PBATCHCO(J , y(h+1)) to adjust σ(h) to construct σ(h+1)

so that σ(h+1) has minimum CA
max among the schedules in Π

(
J , y(h+1)

)
.

Step 3. If σ(h+1) = ∅, then set π∗ = σ(h). Let Ω(J) = Ω(J) ∪ {(CA
max(π∗), LB

max(π∗), π∗)} and return
Ω(J). Otherwise, if CA

max(σ(h+1)) > CA
max(σ(h)), then set z = z + 1, πz = σ

(h), and let Ω(J) =
Ω(J) ∪ {(CA

max(πz), LB
max(πz), πz)}.

Step 4. Set h = h + 1 and go to Step 2.

Procedure PBATCHCO(J , y(h+1)):

Step 1. Check the batches in σ(h) backwardly: For i = 2nB + 1, 2nB, . . . , 1, check the inequality
LB

j (C(B(h)
i )) < y(h+1) for each job JB

j in B(h)
i . Suppose that we find a job JB

k ∈ B(h)
i which violates

the inequality LB
k (C(B(h)

i )) < y(h+1). We distinguish two different cases:

Case 1. i ≤ nB + 1.

If i = 1, or i ≤ nB and JB
k has the largest due date in B(h)

i , then return σ(h+1) = ∅. Otherwise,
move all the B-jobs in B(h)

i with their due dates no more than dB
k into B(h)

i−1. If B(h)
i−1 is empty before

these jobs are inserted, then introduce a new setup time s for it.

Case 2. i > nB + 1

Subcase 2.1. Batch B(h)
i−1 is not an empty batch (but possibly it is a dummy batch).
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Move all the B-jobs in B(h)
i with their due dates no more than dB

k into B(h)
i−1. If B(h)

i contains no
job after these jobs are moved, then it becomes a dummy batch.

Subcase 2.2. Batch B(h)
i−1 is an empty batch, i.e., it has processing time zero and setup time zero.

Subcase 2.2.1. There is no dummy batch which succeeds B(h)
i .

Introduce a new setup time s for B(h)
i−1. Move all the B-jobs in B(h)

i with their due dates no more
than dB

k into B(h)
i−1. If B(h)

i contains no job after these jobs are moved, then it becomes a dummy
batch.

Subcase 2.2.2. There is a dummy batch which succeeds B(h)
i .

Move all the B-jobs in B(h)
i with their due dates no more than dB

k into B(h)
nB+1. If B(h)

i contains
no job after these jobs are moved, then it becomes a dummy batch. All the empty batches
B(h)

nB+2, B
(h)
nB+3, . . . , B

(h)
i−1 keep unchanged.

Step 2. Update the completion times of the jobs and the batches. Update the lateness values of the
jobs accordingly.

Step 3. Repeat Steps 1 and 2 until there is no inequality violation in adjusted σ(h). Let σ(h+1) be the
final σ(h).

In the h-iteration, Algorithm BATCHCO constructs σ(h) by adjusting σ(h−1). The adjustment of
σ(h−1) is accomplished by performing a series of inequality violation adjustments. During the iteration,
we get a series of tentative schedules σ(h)

1 , σ
(h)
2 , . . . , σ

(h)
λh

, where λh is the total number of tentative
schedules in the h-iteration. Note that σ(h)

1 is just the last tentative schedule in the preceding iteration,
i.e., σ(h)

1 = σ(h−1)
λh−1

. Each next tentative schedule is obtained from the current tentative schedule by
performing an inequality violation adjustment. When we describe Procedure PBATCHCO(J , y(h)), all
tentative schedules except for the last one are denoted by σ(h−1), and σ(h)

λh
is denoted by σ(h). Here, for

clarity of the discussion, the tentative schedules need to be distinguished more clearly. Among these
tentative schedules, only σ(h)

λh
belongs to Π

(
J , y(h)

)
.

If a schedule belongs to Π
(
J , y(h)

)
, then all jobs in it have lateness values less than y(h), and vice

versa. To analyze Procedure PBATCHCO(J , y(h)), we need the concept of candidate schedule. A
candidate schedule for y(h) is a schedule which has the potential to be in Π

(
J , y(h)

)
. Denote by

Λ
(
J , y(h)

)
the set of candidate schedules for y(h). If we find a job in a schedule with lateness greater

than or equal to y(h), then we get evidence that this schedule cannot be in Λ
(
J , y(h)

)
. It is possible that

at first a schedule is treated as in Λ
(
J , y(h)

)
because we have not found any job in it with lateness

greater than or equal to y(h), but later we find evidence and exclude this schedule from Λ
(
J , y(h)

)
.

Clearly, Π
(
J , y(h)

)
⊆ Λ
(
J , y(h)

)
.

For any given schedule σ = (B1, B2, . . . , BnB , BnB+1, . . . , B2nB+1), let σL = (B1, B2, . . . , BnB) and σR =

(BnB+2, BnB+3, . . . , B2nB+1) denote the left side and right side of σ, respectively. Let n(σL) and n(σR)
denote the numbers of nonempty B-batches on the left and right sides of σ, respectively. Let ΓB(σ)
denote the set of the B-jobs in

⋃nB+1
q=1 Bq, i.e., the set of the B-jobs in σ which are not on the right side.

Lemma 2.3. Let σ(h)
w = (B(h)

w,1, B
(h)
w,2, . . . , B

(h)
w,nB , B

(h)
w,nB+1, . . . , B

(h)
w,2nB+1) denote the w-th tentative schedule

(1 ≤ w ≤ λh) during the implementation of Procedure PBATCHCO(J , y(h)) (h = 0, 1. . . .). Let σ =
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(B1, B2, . . . , BnB , BnB+1, . . . , B2nB+1) denote any schedule in Λ
(
J , y(h)

)
. Then the following properties

hold:
(1) ΓB(σ(h)

1 ) ⊆ ΓB(σ(h)
2 ) ⊆ · · · ⊆ ΓB(σ(h)

λh
) ⊆ ΓB(σ);

(2) If ΓB(σ(h)
w ) = ΓB(σ), then

(i)
⋃nB+1

q=i B(h)
w,q ⊇

⋃nB+1
q=i Bq, i = nB + 1, nB, . . . , 1;

(ii) n(σ(h)
w,L) ≤ n(σL);

(iii) Batch B(h)
w,i starts and completes no later than batch Bi, i = 1, 2, . . . , nB + 1.

Proof. We prove the lemma by induction on h.
Consider PBATCHCO(J , y(0)). Obviously, the initial schedule σ(0) (described in Step 1 of Algorithm

BATCHCO) and any schedule in Λ
(
J , y(0)

)
= Π
(
J , y(0)

)
= Π (J) satisfy the properties of the lemma,

thus proving the base case.
Assume that the lemma holds for PBATCHCO(J , y(0)), PBATCHCO(J , y(1)), . . . , PBATCHCO(J , y(h)).
We now consider PBATCHCO(J , y(h+1)).
Since y(h+1) < y(h), we have: Λ

(
J , y(h+1)

)
⊆ Λ
(
J , y(h)

)
. Let σ be any schedule in Λ

(
J , y(h+1)

)
. Then

σ ∈ Λ
(
J , y(h)

)
. Note that σ(h+1)

1 , the first tentative schedule for PBATCHCO(J , y(h+1)), is just σ(h)
λh

, the
last one for PBATCHCO(J , y(h)). By the inductive assumption, σ(h+1)

1 and σ satisfy the properties of the
lemma. Assume that each of the first w (1 ≤ w < λh+1) tentative schedules and σ satisfy the properties
of the lemma. Below, we will prove that σ(h+1)

w+1 and σ also satisfy the properties of the lemma. Suppose
that we find a job JB

k ∈ B(h+1)
w,i which violates the inequality LB

k (C(B(h+1)
w,i )) < y(h+1). There are two

different cases to consider:
Case 1. i ≤ nB + 1.
As described in Case 1 of Step 1 of Procedure PBATCHCO(J , y(h+1)), we move all the B-jobs in B(h+1)

w,i

with their due dates no more than dB
k into B(h+1)

w,i−1. Denote the obtained schedule as σ(h+1)
w+1 .

By the inductive assumption, we have: ΓB(σ(h+1)
w ) ⊆ ΓB(σ). Since ΓB(σ(h+1)

w+1 ) = ΓB(σ(h+1)
w ), we get:

ΓB(σ(h+1)
w+1 ) ⊆ ΓB(σ). Hence, property (1) holds for σ(h+1)

w+1 and σ.
To prove that property (2) holds for σ(h+1)

w+1 and σ, we assume that ΓB(σ(h+1)
w+1 ) = ΓB(σ). Then we

have: ΓB(σ(h+1)
w ) = ΓB(σ). By the inductive assumption, we know that property (2) holds for σ(h+1)

w and
σ. Hence, we have: C(B(h+1)

w,i ) ≤ C(Bi). Since LB
k (C(B(h+1)

w,i )) ≥ y(h+1), we get LB
k (C(Bi)) ≥ y(h+1). Hence,

all the B-jobs in B(h+1)
w,i with their due dates no more than dB

k have to be scheduled earlier than Bi in σ.
The above argument ensures that property (i) of property (2) holds for σ(h+1)

w+1 and σ. Thus, properties
(ii) and (iii) of property (2) hold for σ(h+1)

w+1 and σ.
Case 2. i > nB + 1.
Subcase 2.1. Batch B(h+1)

w,i−1 is not an empty batch (but possibly it is a dummy batch).
As described in Subcase 2.1 of Step 1 of Procedure PBATCHCO(J , y(h+1)), we move all the B-jobs in

B(h+1)
w,i with their due dates no more than dB

k into B(h+1)
w,i−1.

If i > nB + 2, then the operation deals with only the right side of B(h+1)
w,nB+1 and does not affect the two

properties of the lemma. The lemma holds for σ(h+1)
w+1 and σ.

If i = nB + 2, then below we show an argument similar to the proof of Case 1, to prove that all the
B-jobs in B(h+1)

w,i with their due dates no more than dB
k have to be scheduled earlier than Bi in σ.

Let B(h+1)
w,z denote the earliest dummy batch which succeeds B(h+1)

w,i , where z > i. If there is no
dummy batch which succeeds B(h+1)

w,i , then set z = 2nB+2. It is easy to prove that
⋃z−1

q=i B(h+1)
w,q ⊆

⋃z−1
q=i Bq.
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Remove the jobs in (
⋃z−1

q=i Bq)\(
⋃z−1

q=i B(h+1)
w,q ) from batches Bi, Bi+1, . . . , Bz−1 and let the obtained batches

be B′i, B′i+1, . . . , B′z−1. Note that B′i, B′i+1, . . . , B′z−1 are all non-empty. We can get
⋃z−1

q=g B(h+1)
w,q ⊇⋃z−1

q=g B′q, g = z − 1, z − 2, . . . , i. Hence, we get C(B(h+1)
w,g ) ≤ C(B′g), g = i, i + 1, . . . , z − 1. It follows

that C(B(h+1)
w,g ) ≤ C(Bg), g = i, i + 1, . . . , z − 1. Since LB

k (C(B(h+1)
w,i )) ≥ y(h+1), we get LB

k (C(Bi)) ≥ y(h+1).
Hence, all the B-jobs in B(h+1)

w,i with their due dates no more than dB
k have to be scheduled earlier than

Bi in σ.
Hence, for i = nB + 2, property (2) holds for σ(h+1)

w+1 and σ.
Subcase 2.2. Batch B(h+1)

w,i−1 is an empty batch, i.e., it has processing time zero and setup time zero.
Subcase 2.2.1. There is no dummy batch which succeeds B(h+1)

w,i .
As described in Subcase 2.2.1 of Step 1 of Procedure PBATCHCO(J , y(h+1)), we move all the B-jobs

in B(h+1)
w,i with their due dates no more than dB

k into B(h+1)
w,i−1. The operation deals with only the right side

of B(h+1)
w,nB+1 and does not affect the two properties of the lemma. The lemma holds for σ(h+1)

w+1 and σ.
Subcase 2.2.2. There is a dummy batch which succeeds B(h+1)

w,i .
Let B(h+1)

w,z denote the earliest dummy batch which succeeds B(h+1)
w,i , where z > i. If we introduce

a new setup time s for B(h+1)
w,i−1, then the completion times of batch B(h+1)

w,i and its succeeding batches
will increase by s. Consequently, the jobs in B(h+1)

w,z−1 will have costs not less than y(h+1). In order
to decrease the undesirable costs of these jobs, we have to move all the jobs in B(h+1)

w,g into B(h+1)
w,g−1,

g = z − 1, z − 2, . . . , i. Job JB
k has to violate its inequality once again. Nothing has changed except that

the indices of B(h+1)
w,i , B

(h+1)
w,i+1, . . . , B

(h+1)
w,z−1 decrease by 1.

Therefore, we cannot introduce a new setup time s for B(h+1)
w,i−1. Instead, as described in Subcase 2.2.2

of Step 1 of Procedure PBATCHCO(J , y(h+1)), we move all the B-jobs in B(h+1)
w,i with their due dates no

more than dB
k into B(h+1)

w,nB+1. Denote the obtained schedule as σ(h+1)
w+1 .

Assume that ΓB(σ(h+1)
w ) = ΓB(σ) before we do the operation described in Subcase 2.2.2 of Step 1 of

Procedure PBATCHCO(J , y(h+1)). Let E denote the set of the jobs in B(h+1)
w,i , B

(h+1)
w,i+1, . . . , B

(h+1)
w,z−1. In σ, the

number of the batches containing jobs in E is not less than that number in σ(h+1)
w , i.e., z − i. Hence, if

JB
k is scheduled to the right side of BnB+1, then either JB

k or the jobs in the latest batch containing jobs
in E will have cost not less than y(h+1). Therefore, in σ, all the B-jobs in B(h+1)

w,i with their due dates no
more than dB

k cannot be scheduled to the right side of BnB+1.
The above argument shows that property (1) of the lemma holds for σ(h+1)

w+1 and σ. Since we moved
all the B-jobs in B(h+1)

w,i with their due dates no more than dB
k into B(h+1)

w,nB+1, combining the inductive
assumption, we know that property (2) of the lemma also holds for σ(h+1)

w+1 and σ. This completes the
proof for PBATCHCO(J , y(h+1)).

By the principle of induction, we complete the proof of the lemma.
□

We get:

Lemma 2.4. Let σ(h) denote the last schedule upon the completion of Procedure PBATCHCO(J , y(h))
(h = 0, 1. . . .). If σ(h) = ∅, thenΠ

(
J , y(h)

)
= ∅; Otherwise σ(h) has minimum CA

max among all schedules

in Π
(
J , y(h)

)
.

Proof. During the entire implementation of Algorithm BATCHCO, any job can only be moved to the
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left. Consequently, the completion time of any batch will not decrease, which in turn ensures that any
job cannot be moved to the right.

Suppose that in implementing PBATCHCO(J , y(h)) we find a job JB
k ∈ B(h−1)

i such that LB
k (C(B(h−1)

i )) ≥
y(h). If i = 1, then JB

k cannot be feasibly scheduled in any schedule in Π
(
J , y(h)

)
, implying that

Π
(
J , y(h)

)
= ∅. Therefore, we return σ(h) = ∅. If i ≤ nB and B(h−1)

i contains no jobs after we move
all the B-jobs in B(h−1)

i with their due dates no more than dB
k into B(h−1)

i−1 , we also return σ(h) = ∅. This
can be verified by the minimality of the number of nonempty B-batches in σ(h−1)

L (by property (ii) of
property (2) of Lemma 2.3).

On the other hand, ifσ(h) , ∅, then by property (iii) of property (2) of Lemma 2.3,σ(h) has minimum
CA

max among all schedules in Π
(
J , y(h)

)
.

□

We get:

Theorem 2.5. Algorithm BATCHCO solves 1|s− batch, b ≥ n, co, batch− avail|(CA
max, L

B
max) in O(nA +

nB
3) time.

Proof. The correctness of the algorithm follows from Lemma 2.2 and Lemma 2.4.
In PBATCHCO(J , y(h+1)), finding and adjusting an inequality violation requires O(nB) time. In each

adjustment, at least one B-job has to be moved to the left. Since any B-job can only be moved to the
left, in the entire implementation of Algorithm BATCHCO, each B-job can go through at most 2nB

batches. The total number of adjustments is O(nB
2). The running time of Algorithm BATCHCO is

O(nA + nB
3) time.

□

Next, we show how to improve the time complexity of the algorithm to O(nA + nB
2 log nB).

For storing the completion times of all B-jobs, we use an array Abcompl, where the j-position of
Abcompl stores the completion time of job JB

j in the current schedule, j = 1, 2, . . . , nB. The completion
times of all jobs in a common batch are equal. Recall that all B-jobs are scheduled in EDD order. We
set an indicator for each batch that points to the first B-job (which has the smallest due date among
the B-jobs in this batch) in this batch, whereby we immediately know the contents of all batches in the
schedule.

It is useful to store the lateness values of all B-jobs in a max-heap [24], so that the LB
max-value of

the current schedule can be extracted in O(log nB) time. However, the difficulty comes from how to
efficiently maintain the heap. Therefore, we give up the idea. Instead, we use a max-heap Hblateness
to store the lateness values of all batches consisting of at least one B-job, where the lateness value of
a batch is defined to be the maximum lateness value of the B-jobs in this batch, which is equal to the
completion time of the batch minus the due date of the first B-job in it. Thus, the LB

max-value of the
current schedule can be extracted from Hblateness in O(log nB) time.

Let us illustrate how to efficiently maintain the array and the max-heap. Suppose that we are
adjusting σ(h) = (B(h)

1 , B
(h)
2 , . . . , B

(h)
nB , B

(h)
nB+1, . . . , B

(h)
2nB+1) in Step 1 of Procedure PBATCHCO(J , y(h+1)), and

we find a job JB
k ∈ B(h)

i violating its inequality. As described in Step 1, there are two different cases to
consider:

Case 1. i ≤ nB + 1.
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If i = 1, or i ≤ nB and JB
k has the largest due date in B(h)

i , then return σ(h+1) = ∅. Otherwise, let B(h)
i,1

denote the set of the jobs to be moved from B(h)
i to B(h)

i−1, i.e., B(h)
i,1 consists of the B-jobs with their due

dates no more than dB
k in B(h)

i . Let p(B(h)
i,1 ) =

∑
JB

j ∈B(h)
i,1

pB
j .

Subcase 1.1. B(h)
i−1 is not an empty batch.

After the jobs in B(h)
i,1 are moved into B(h)

i−1, the completion time of batch B(h)
i−1, C(B(h)

i−1), will increase
by p(B(h)

i,1 ). The lateness value of B(h)
i−1 will also increase by p(B(h)

i,1 ). All the other batches keep their
completion times and lateness values unchanged. We just update the lateness value of B(h)

i−1 in
Hblateness. Therefore, finding a B-job violating its inequality can be done in O(log nB) time. Each
job movement can be done in constant time. Since there are O(nB

2) job movements, it takes
O(nB

2 log nB) time to deal with this case.
Subcase 1.2. B(h)

i−1 is an empty batch.
After the jobs in B(h)

i,1 are moved into B(h)
i−1, B(h)

i−1 becomes nonempty and a setup time s incurs before it
is started. The completion times of all the jobs in B(h)

i−1 and succeeding batches will change. Therefore,
we recalculate them and update Abcompl accordingly. Then, we recalculate the lateness values of
B(h)

i−1 and succeeding batches and update Hblateness accordingly in O(nB log nB) time. Since this case
occurs at most O(nB) times, it takes O(nB

2 log nB) time to deal with it.
Case 2. i > nB + 1.
Subcase 2.1. Batch B(h)

i−1 is not an empty batch (but possibly it is a dummy batch).
Similarly to Subcase 1.1, let B(h)

i,1 denote the set of the jobs to be moved from B(h)
i to B(h)

i−1. Let
p(B(h)

i,1 ) =
∑

JB
j ∈B(h)

i,1
pB

j . After the jobs in B(h)
i,1 are moved into B(h)

i−1, the completion time of batch B(h)
i−1,

C(B(h)
i−1), will increase by p(B(h)

i,1 ). The lateness value of B(h)
i−1 will also increase by p(B(h)

i,1 ). We update
the lateness value of B(h)

i−1 in Hblateness. Moreover, if B(h)
i contains no job after the jobs are moved,

then it becomes a dummy batch and thus we delete the lateness value of B(h)
i from Hblateness. Since

there are O(nB
2) job movements, it takes O(nB

2 log nB) time to deal with this case.
Subcase 2.2. Batch B(h)

i−1 is an empty batch, i.e., it has processing time zero and setup time zero.
Subcase 2.2.1. There is no dummy batch which succeeds B(h)

i .
Similarly to Subcase 1.2, let B(h)

i,1 denote the set of the jobs to be moved from B(h)
i to B(h)

i−1. Let
p(B(h)

i,1 ) =
∑

JB
j ∈B(h)

i,1
pB

j . After the jobs in B(h)
i,1 are moved into B(h)

i−1, B(h)
i−1 becomes nonempty and a setup

time s incurs before it is started. The completion times of all the jobs in B(h)
i−1 and succeeding batches

will change. Therefore, we recalculate them and update Abcompl accordingly. Then, we recalculate
the lateness values of B(h)

i−1 and succeeding batches and update Hblateness accordingly in O(nB log nB)
time. Particularly, if B(h)

i contains no job now, then it becomes a dummy batch and thus we delete the
lateness value of B(h)

i from Hblateness.
Since this case occurs at most O(nB) times, it takes O(nB

2 log nB) time to deal with it.
Subcase 2.2.2. There is a dummy batch which succeeds B(h)

i . After we move all the B-jobs in
B(h)

i with their due dates no more than dB
k into B(h)

nB+1, we need to update the lateness value of B(h)
nB+1 in

Hblateness. Moreover, if B(h)
i contains no job after the jobs are moved, then it becomes a dummy batch

and thus we delete the lateness value of B(h)
i from Hblateness. Since this case occurs at most O(nB)

times, it takes O(nB
2) time to deal with it.

The array Abcompl and max-heap Hblateness have sizes of O(nB). Hence, we get:
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Theorem 2.6. A careful implementation of Algorithm BATCHCO leads to an O(nA + nB
2 log nB)-time

algorithm for 1|s − batch, b ≥ n, co, batch − avail|(CA
max, L

B
max) with O(nB) memory requirements.

With respect to the incompatible model, recall that we always represent a schedule by a batch
sequence B1, B2, . . . , BnB , BnB+1, . . . , B2nB+1, where BnB+1 is the batch containing all A-jobs. Note that
batch BnB+1 can no longer contain any B-job. Therefore, we simply treat batch BnB as the left adjacent
batch of BnB+2 so that BnB+1 can be bypassed. When we move the B-jobs from right to the left, those
jobs moved out of batch BnB+2 should be directly put into batch BnB . With such a slight modification,
the above algorithm and its analysis work properly for the incompatible model. Therefore, we get:

Theorem 2.7. There is an O(nA + nB
2 log nB)-time algorithm for 1|s − batch, b ≥ n, inco, batch −

avail|(CA
max, L

B
max) with O(nB) memory requirements.

3. The item availability

In this section we will present O(nA+nB log nB)-time algorithms for the compatible and incompatible
models under item availability, i.e., 1|s− batch, b ≥ n, co, item− avail|(CA

max, L
B
max) and 1|s− batch, b ≥

n, inco, item − avail|(CA
max, L

B
max).

For the compatible model, we have the following lemma:

Lemma 3.1. For any Pareto optimal point of 1|s− batch, b ≥ n, co, item− avail|(CA
max, L

B
max), there is a

corresponding Pareto optimal schedule with the following properties:
(1) All jobs are contained in a single batch;
(2) All A-jobs are processed consecutively, i.e., they form a block such that no B-job is scheduled

between two A-jobs;
(3) All B-jobs are scheduled in EDD order.

Proof. For any two consecutive batches, we can merge them into one batch with only a single setup
retained. Repeat this process and we will obtain a schedule satisfying property (1), without increasing
CA

max or LB
max.

Fix the position of the last A-job in this single-batch schedule. Move all the earlier A-jobs to later
such that all A-jobs are processed consecutively, without increasing CA

max or LB
max. This schedule thus

satisfies properties (1) and (2).
Fix a Pareto optimal schedule satisfying properties (1) and (2). If there are two B-jobs such that the

earlier one has a larger due date than the later one, then we reschedule the B-job with a larger due date
to let it complete immediately after the B-job with a smaller due date. Repeat this process and finally,
we will obtain the desired Pareto optimal schedule.

□

Re-index all B-jobs in EDD order so that dB
1 ≤ dB

2 ≤ · · · ≤ dB
nB

. By Lemma 3.1, there are O(n) Pareto
optimal schedules, each for an intermediate position of the block of A-jobs. Based on the idea, we
present Algorithm ITEMCO below which solves 1|s− batch, b ≥ n, co, item− avail|(CA

max, L
B
max) easily.

Algorithm ITEMCO:

Step 1. Let σ(0) be the initial schedule consisting of a single batch. The A-jobs in the batch are first
processed in arbitrary order, and the B-jobs in the batch are then processed in EDD order. Let
Ω(J) = {(CA

max(σ(0)), LB
max(σ(0)), σ(0))}.
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Step 2. For j = 1, 2, . . . , nB, perform the j-th iteration to get schedule σ( j): Move job JB
j earlier

such that it starts immediately before the block of A-jobs. If LB
max(σ( j)) < LB

max(σ( j−1)), then let
Ω(J) = Ω(J) ∪ {(CA

max(σ( j)), LB
max(σ( j)), σ( j))}.

We get:

Theorem 3.2. Algorithm ITEMCO solves 1|s − batch, b ≥ n, co, item − avail|(CA
max, L

B
max) in O(nA +

nB log nB) time.

For the incompatible model, we have the following lemma:

Lemma 3.3. For any Pareto optimal point of 1|s− batch, b ≥ n, inco, item− avail|(CA
max, L

B
max), there is

a corresponding Pareto optimal schedule with the following properties:
(1) All A-jobs belong to a common batch;
(2) All B-jobs are scheduled in EDD order;
(3) There are at most two B-batches and they are separated by the batch containing all A-jobs.

Re-index all B-jobs in EDD order so that dB
1 ≤ dB

2 ≤ · · · ≤ dB
nB

. By Lemma 3.3, there are O(n)
Pareto optimal schedules, each for an intermediate position of the batch containing all A-jobs. Based
on the idea, we present Algorithm ITEMINCO below which solves 1|s − batch, b ≥ n, inco, item −
avail|(CA

max, L
B
max) easily.

Algorithm ITEMINCO:

Step 1. Let σ(0) = (B1, B2, B3) be the initial schedule, where B1 is an empty batch, B2 consists of
all A-jobs, and B3 consists of all B-jobs. The B-jobs in B3 are processed in EDD order. Let
Ω(J) = {(CA

max(σ(0)), LB
max(σ(0)), σ(0))}.

Step 2. For j = 1, 2, . . . , nB, perform the j-th iteration to get schedule σ( j): Move job JB
j from B3

into B1. If B1 is empty before JB
j is moved, then a setup incurs after JB

j is moved into B1. If
LB

max(σ( j)) < LB
max(σ( j−1)), then let Ω(J) = Ω(J) ∪ {(CA

max(σ( j)), LB
max(σ( j)), σ( j))}.

We get:

Theorem 3.4. Algorithm ITEMINCO solves 1|s−batch, b ≥ n, inco, item−avail|(CA
max, L

B
max) in O(nA+

nB log nB) time.

4. Conclusions

In this paper, we studied the two-agent scheduling problem on an unbounded serial-batch machine
to minimize the makespan of agent A and the maximum lateness of agent B simultaneously. We
presented improved algorithms for compatible and incompatible models under batch availability and
item availability assumptions. For future research, it is interesting to consider the combinations of
general min-max and min-sum criteria, for example, ( f A

max, f B
max), ( f A

max,
∑

CB
j ) and (

∑
CA

j ,
∑

CB
j ). The

bounded batch scheduling model with multiple agents can also be considered.
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