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Abstract: Cardiovascular disease (CVD) has now become the disease with the highest mortality 
worldwide and coronary artery disease (CAD) is the most common form of CVD. This paper makes 
effective use of patients’ condition information to identify the risk factors of CVD and predict the 
disease according to these risk factors in order to guide the treatment and life of patients according to 
these factors, effectively reduce the probability of disease and ensure that patients can carry out timely 
treatment. In this paper, a novel method based on a new classifier, named multi-agent Adaboost 
(MA_ADA), has been proposed to diagnose CVD. The proposed method consists of four steps: pre-
processing, feature extraction, feature selection and classification. In this method, feature extraction is 
performed by principal component analysis (PCA). Then a subset of extracted features is selected by 
the genetics algorithm (GA). This method also uses the novel MA_ADA classifier to diagnose CVD 
in patients. This method uses a dataset containing information on 303 cardiovascular surgical patients. 
During the experiments, a four-stage multi-classification study on the prediction of coronary heart 
disease was conducted. The results show that the prediction model proposed in this paper can 
effectively identify CVDs using different groups of risk factors, and the highest diagnosis accuracy is 
obtained when 45 features are used for diagnosis. The results also show that the MA_ADA algorithm 
could achieve an accuracy of 98.67% in diagnosis, which is at least 1% higher than the compared 
methods.  

Keywords: CVD; multi-classifier Adaboost; MA_ADA algorithm; principal component analysis; 
genetic algorithm 
 



1631 

Networks and Heterogeneous Media  Volume 18, Issue 4, 1630–1656. 

1. Introduction 

Today, cardiovascular disease (CVD) has become the leading cause of death in the world. In the 
meantime, coronary artery disease (CAD) is the most common type of CVD, whose diagnosis in the 
early stages can save people’s lives. However, finding and analyzing the disease symptoms in its initial 
stages is not an easy task. Usually, accurate diagnosis of the disease is a time-consuming, expensive, 
and error-prone process. If CVD is not detected in its early stages, the patient may face bad 
consequences and life-threatening situations, which makes handling their condition more challenging. 
These conditions make the lack of timely diagnosis of CVD, in addition to threatening the patient’s 
life, put double pressure on their condition and the medical system; and at the same time, it also 
aggravates the tension of medical resource allocation [1,2]. 

The occurrence of CVD is affected by a variety of risk factors. These factors are related to 
attributes such as basic information about the patient, the patient’s blood routine, heart ultrasound, and 
biochemical examination of the patients; and the risk of CVD can be predicted and regulated by 
controlling these risk factors [3]. So in real life, we can, through the observation of the risk factors 
associated with CVD in patients, predict whether CVD happens in them, and according to these CVD 
risk factors, the possibility of disease in people can be minimized. At the same time, the prediction of 
CVD needs to be accurate and fast, so as to ensure the timely treatment, prevention and control of 
CVD, and to cope with various emergencies [4]. Therefore, an important problem in the prediction of 
CVD is how to make effective use of the disease information provided by patients to achieve rapid and 
effective prediction of CVD [5,6]. Today, machine learning techniques are widely used in disease 
diagnosis applications, and CVD diagnosis has been one of the topics of researchers' attention in recent 
years due to its importance. But despite the many kinds of research done on this issue, there are still 
challenges that motivate the current research. Relatively low accuracy is one of the limitations of 
classical machine learning techniques. Whereas it seems that this problem can be solved to some extent 
by using combined classifiers on the other hand, a CVD diagnosis system should be able to predict the 
disease based on different information so that the diagnosis process can still be performed with 
acceptable accuracy in the presence of incomplete clinical information or lack of access to some tests. 

This paper will make effective use of the patient’s condition information through scientific and 
effective methods, identify the risk factors of CVD and predict CVD according to these risk factors in 
order to guide the treatment and life of patients according to these factors, effectively reduce the 
probability of disease of patients, ensure that patients can carry out timely treatment, improve the 
physical health of patients, reduce the medical burden of patients and society and optimize the 
allocation of social medical resources. The contribution of this paper is twofold: 

1. This research conducts a four-stage multi-classification study on the prediction of coronary heart 
disease. In this regard, a set of 54 features is divided into four cumulative groups based on their 
acquisition period, and a set of top N features is used for prediction. This scheme can be effective 
in determining the most relevant features of the existence of CVD in patients.  

2. In this research, a new architecture of the Adaboost classifier, named Multi-Agent Adaboost 
(MA_ADA) has been proposed to diagnose CVD. This classifier model includes a set of 
Adaboost classifiers, each of which is formed separately by a different subset of database 
instances and weighted according to its training performance. Also, the multi-agent principle is 
used to produce the output of MA_ADA for test instances.  

The remainder of this paper is organized as follows: Section 2 contains the literature review. In 
Section 3, the research method is described in detail, and in Section 4, implementation results are 
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discussed. In Section 5, conclusions have been made and several suggestions are provided for 
continuing this research path.  

2. Literature review 

CVD has become the world’s highest mortality rate of chronic diseases at present and brought a 
heavy burden of medical resources to various countries. At the same time, it seriously influences the 
patient’s life, reduces the patient’s quality of life and fast effective projections for CVD will be able to 
help patients and doctors find patients with CVD risk as soon as possible. In this way, patients can be 
provided with effective treatment, avoid the deterioration of the disease and reduce the burden of 
disease on patients and the medical system. 

The prediction of CVD is usually based on the associated risk factors, and the way in which 
information on these risk factors is obtained varies. Some risk factors can be obtained by doctors’ direct 
inquiry or simple examination, while some risk factors need to be obtained through complex medical 
examination, which will consume a lot of time and have certain requirements on medical conditions. 
Therefore, it takes a lot of time to obtain complete information about the patient’s condition, and 
assessing the patient’s condition will be delayed. A lot of scholars have pointed out the importance of 
fast and accurate prediction, such as Gregor [7], who pointed out that making a rapid accurate diagnosis 
for the disease forecast has a vital significance, will help the patient’s condition for effective 
management and control and make the patient get timely and effective treatment. Uguroglu et al. [8] 
tried to predict Coronary Heart Disease (CHD) in patients by using the most convenient and fast 
information of risk factors, so as to achieve the risk stratification of CHD in patients and provide 
guidance for the follow-up treatment of patients. However, the above kinds of literature that 
emphasized the need for rapid prediction of CVDs did not put forward a feasible criterion to guide the 
rapid and accurate prediction of CVDs, and the selection of risk factors for rapid prediction was highly 
subjective and fuzzy. The different ways of gaining information about CVD risk factors, and the time 
needed to obtain this information, cause some limitations on the ability of this method for accurate and 
quick predictions of CVD in patients. Because, some risk factors require a longer time to be acquired. 
Therefore, considering time required to obtain information on each risk factor is important.      
Kukar et al. [9] proposed that the characteristics of the information be divided into several different 
categories according to the cost of access to information and how fast the information of risk factors 
can be obtained. The authors examined CVD diagnosis with a variety of machine learning methods. 
Different combinations of risk factors were evaluated, so the effect of each risk factor on CVD 
prediction accuracy was examined. This article, motivated the idea of our study, which categorize 
different risk factors of CVD according to time spent for obtaining their information and attempting to 
determine the risk factors which can lead to an accurate CVD diagnosis model with least required time 
to obtain patient information. 

At present, research on CVD prediction can be mainly divided into two categories, one is the 
traditional research on CVD prediction, and the other is about the application of new machine learning 
methods in CVD prediction. Traditional studies on the prediction of CVDs are mainly about the 
establishment of CVD risk assessment models. Such studies mainly collect massive follow-up data 
from a large number of patients for long-term follow-up and build risk assessment models based on 
these follow-up data according to risk factors.    

For CVD, a series of risk assessment models have been developed at home and abroad. Among 
these models, the Framingham risk assessment model in the United States is the earliest one. This risk 
assessment model was organized by the US government in the 1940s to carry out CVD-related research 
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by relevant medical staff on the basis that CVD had become the leading cause of death in the American 
population [10]. Researchers conducted long-term studies and follow-ups on a large number of people 
and proposed the concept of risk factors, thus laying a basic model for the subsequent establishment 
of CVD risk assessment models. Researchers constructed CVD risk assessment models based on risk 
factors using the logistic multiple regression method. To evaluate the patient’s risk of CVD in 10 years, 
this model included multiple CVD events as the endpoint time, such as CVD and stroke [11–13]. The 
Framingham model is of pioneering significance for the prediction of CVD, and a large number of 
CVD risk assessment models have been established on the basis of the Framingham model since then. 

Since the Framingham model was mainly targeted at white Americans when it was established, 
its prediction effect in other groups was not good [14–16]. Therefore, it can be seen that Framingham’s 
risk assessment model cannot be perfectly applied to all groups. Countries are developing CVD risk 
assessment models suitable for their populations. 

In view of the serious situation of the development of CVDs around the world, in 2008, the World 
Health Organization (WHO) issued a pocket guide for CVD risk assessment and management, aiming 
at the prevention and control of CVDs [17]. The guidelines are intended to provide advice on CVD 
prevention and control for potential patients with CVD and to provide WHO/ International Society of 
Hypertension (ISH) CVD risk projections, which are only valid for prediction in the WHO subregion 
of middle and high-income countries in the Western Pacific. 

For prediction models of CVD in general, the method used by most is based on the traditional 
method of survival analysis, mainly for the analysis of logistic regression and Cox proportional hazards 
on the risk factors in the selection of certain subjective factors. At the same time, due to differences in 
study population, the risk assessment model can’t apply to all people. With the passing of time, the 
research population based on the prediction model is different from today's population, and the original 
evaluation system is not necessarily suitable for today's population. With the development of science 
and technology and the acceleration of information exchange, modern popular machine learning 
methods provide another brand new possibility for CVD risk analysis. 

The machine learning method is a scientific computing method based on the rapid development 
of modern computers and information technology. Relying on its powerful computing power, any 
problem that can be abstracted into machine learning can be solved by using the machine learning 
method. 

2.1. CVD diagnosis using machine learning techniques 

In the medical field, traditional disease prediction relies on doctors’ personal experience and 
expensive examinations, which are prone to errors and increase medical costs for patients and society. 
Machine learning methods rely on their powerful ability to learn. Data are being gradually applied to 
the field of medical information with machine learning methods, to predict the patient’s illness based 
on the patient’s data. This prediction can assist the doctor in medical decision making and reduce the 
medical burden of patients, compared with traditional statistical analysis methods. At present, a large 
number of domestic and foreign scholars have applied machine learning methods to the prediction of 
CVDs. 

At present, many machine learning methods have been applied to the prediction of CVDs, among 
which, K-nearest neighbor classifier, support vector machine, neural network and other algorithms 
have been widely used. Weng et al. [18] evaluated whether machine learning could improve the 
prediction of cardiovascular risk based on prospective cohort studies and concluded that the machine 
learning algorithm could significantly improve the prediction effect of cerebrovascular disease risk, 
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indicating the effectiveness and feasibility of the machine learning method in the prediction of CVD. 
Gilani et al. [19] used a K-nearest-neighbor classifier to classify electrocardiogram (ECG) signals and 
predict atrial fibrillation, and the results showed that the K-nearest-neighbor classifier achieved 98% 
sensitivity and 95% specificity, showing good applicability in the prediction of ECG signals. In 
addition, researchers also combined the K-neighbor classifier with other methods for prediction.  
Porta et al. [20] combined a K-nearest neighbor classifier with conditional entropy to control and 
analyze the complexity of short-term CVDs, while Polat et al. [21] combined a K-nearest neighbor 
classifier with an artificial immune recognition system. Heart disease was diagnosed and validated 
using data from the University of California, Irvine (UCI) dataset, resulting in 87% accuracy. Support 
vector machines and neural networks are also widely used in the prediction of CVDs. Patidar et al. [22] 
applied least-squares support vector machines to the analysis of ECG signals and predicted the 
occurrence of CVDs by improving the kernel function of support vector machines. Amin et al. [23] 
made use of the neural network to diagnose and predict heart disease based on related risk factors and 
optimized and adjusted the weight in the Genetic Algorithm (GA) degree neural network, finally 
achieving a prediction accuracy of 89%. Alizadehsani et al. [24] applied the Bagging algorithm, 
Sequential Minimal Optimization (SMO), Naive Bayes and decision tree algorithm to the classification 
and prediction of CVDs, and found that SMO and Bagging algorithm achieved the best classification 
effect with an accuracy of 89%. Hijazi et al. [25] applied the K-nearest neighbor algorithm, support 
vector machine, random forest and integrated learning algorithm to the ECG data processing of patients 
with a large amount of data generated by portable devices to predict the risk of CVD and achieved 
good results. Acharya et al. [26] used a convolutional neural network to predict myocardial infarction 
according to electrocardiogram signals, achieving an accuracy of 93.53% and 95.22%, respectively, in 
the case of noise and no noise elimination. Fuster-Parra et al. [27] applied a Bayesian network to build 
a CVD risk prediction model. To analyze the relationship between different risk factors and their 
impact on the risk of developing or dying from CVD, so as to prevent and control CVD. 

In the prediction of CVD, because of the characteristics of the clinical data, usually the 
characteristics of high dimensional data of CVD, the medical data usually contains a large number of 
features. In the process of disease prediction, however, too much information will affect the 
performance of the model. Therefore, in the process of classification prediction, we need the raw data 
for dimension reduction. Key features conducive to prediction were screened out and irrelevant and 
redundant features were eliminated so as to identify the risk factors that have a key impact on the 
occurrence of the disease. At present, there is a lot of research combining the dimensionality reduction 
method with the classification prediction model to obtain a better prediction effect. 

In current studies, dimensionality reduction of high-dimensional data can be mainly divided into 
two types. One is feature extraction, that is, combining original features to form new mutually 
independent features. At present, this dimensionality reduction method is mainly based on principal 
component analysis. Giri et al. [28] applied linear discriminant analysis (LDA) and independent 
principal component analysis (ICA) to the feature screening of ECG signal data, and the methods of 
support vector machine, probabilistic neural network and K-nearest neighbor classification are used to 
process the data after dimensionality reduction. Good results are achieved. Davari et al. [29] applied 
principal component analysis to ECG signal analysis, extracted heart rate variability signal and applied 
support vector machine method for diagnosis, reaching 99.2% accuracy. This study shows that the 
method based on biological signal feature extraction is conducive to improving the accuracy of patient 
health prediction. 
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Dimension reduction methods in the literature use the characteristics of the original information 
to form a new set of features. But in the actual clinical application, it is preferred to reduce the 
dimensionality of data without changing the original feature information. This operation is usually 
done on the basis of final prediction results or relevance of attributes; and has formed the second kind 
of dimension reduction approaches namely feature selection. The feature selection algorithm of filter 
form, which separates feature selection from the classification prediction model, has been widely used 
in feature selection of CVDs. Dominic et al. [30] conducted feature screening on heart disease data 
containing 13 features and 75 features in the UCI dataset, respectively, based on the genetic algorithm 
and information gain method. Naive Bayes, decision trees, support vector machines, linear regression, 
multilayer perceptron and integrated learning algorithms were used to classify the heart disease data 
after feature screening. It was found that the effect of feature screening on the heart disease data 
containing 75 features was better than that on the heart disease data containing 13 features, indicating 
that feature screening on the data containing a large number of features is necessary to extract key 
information. Kukar et al. [4] diagnosed and predicted ischemic heart disease by analyzing 
electrocardiogram signals, applied information gain, relied-F and Chi-square test to screen features, 
and analyzed data by Back Propagation (BP) neural network, naive Bayes, decision tree and K-nearest 
Neighbor algorithm. By observing the expression of the Receiver Operating Characteristic (ROC) 
curve to evaluate the effect of prediction classification, it is found that the classification algorithm can 
achieve better results on the data after feature screening. Verma et al. [31] used the combination of 
particle swarm optimization and K-means clustering to identify risk factors in feature subsets selected 
according to correlation features and used supervised learning methods such as multi-layer perceptron, 
multiple Logistic regression, fuzzy disordered rule induction algorithm and C4.5 to predict CVDs. The 
final results show that the multilayer perceptron has a higher classification accuracy of 88.4%. 

At the same time, the feature selection method in wrapper form by combining the classifier with 
the corresponding feature search algorithm is also widely used in the prediction of CVDs. At present, 
support vector machine (SVM) is the most widely used low-level classifier in wrapper-form feature 
selection algorithms. Shilaskar et al. [32] proposed a feature selection method based on SVM forward 
selection, applied it to the diagnosis and prediction of CVDs, and conducted experiments on multiple 
data sets. The results show that compared with other feature selection methods such as backward 
elimination and forward inclusion, the proposed method can obtain maximum accuracy. At the same 
time, Tania et al. [33] applied the method of support vector machine combined with backward recursive 
elimination to the analysis of arterial pulse waveform, and proposed the key waveform signal features, 
achieving an accuracy of 95.2%. 

Ozcift et al. [34] used the method of random forests to feature selection for cancer data, and by 
using 15 kinds of widely used classifiers, such as support vector machine (SVM) and naive Bayesian 
classifier, results show that the classifier in a random forest performs better. Hu et al. [35] applied the 
random forest feature selection method to the selection of important symptoms of five endogenous 
pathogens and established evaluation criteria for feature selection through the random forest. The 
results showed that the method was a high-performance diagnostic model. 

Shah et al. [36] used a combination of feature selection and feature extraction algorithms for 
diagnosing CVD. In their work, they used two feature selection mechanisms, including the Mean 
Fisher-based feature selection algorithm (MFFSA) and the accuracy-based feature selection algorithm 
(AFSA). Then, the results of these two algorithms were further reduced by PCA. Finally, an SVM 
model was used to predict CVD. Burse et al. [37] researched the effect of various preprocessing 
techniques on the prediction accuracy of Artificial Neural Networks (ANNs) for CVD diagnosis. Their 
ANN is a multi-layer pi-sigma neuron model (MLPSNM), which uses a bi-planar sigmoid as its 
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activation function and back-propagation as the training algorithm. This model is fed with normalized, 
PCA, and linear discriminant analysis (LDA) features for CVD diagnosis.  

Repaka et al. [38] introduced a Naïve Bayes model for predicting CVD. They have implemented 
their method on a mobile framework to be used in real-world applications. Reza et al. [39], made an 
attempt to improve the accuracy of CVD prediction by majority voting mechanism of ensemble 
learning systems. Their ensemble model consists of logistic regression, multi-layer perceptron and 
Naïve Bayes classifiers. The voting mechanism is effective in improving prediction accuracy compared 
to individual learners. Velusamy and Ramasamy [40] proposed a heterogeneous ensemble model for 
predicting CVD. Their model includes SVM, Random Forest (RF) and K-nearest neighbor algorithms. 
They also used RF and SVM for feature selection and determining the feature importance, respectively. 
This research utilized majority voting, average voting and weighted average voting for CVD prediction, 
where the last two mechanisms outperform the first one.  

Li et al. [41] focused on diagnosing CVD by analyzing ECG and phonocardiogram (PCG) signals 
and proposed a novel multi-modal machine learning-based model for this task. In their research, they 
used a Convolutional Neural Network (CNN) to encode features of ECG and PCG signals. Then, GA 
was used to select the most relevant feature set. Finally, the selected features were classified by an 
SVM model. The multi-modal strategy has proved to be superior to single-modal methods and other 
alternative methods.  

Despite the abundant research conducted in the field of CVD diagnosis using machine learning 
techniques, there are still some gaps in this research area. The functionality of the model with 
incomplete patient information is one of the main issues targeted in this research. 

3. Research method 

Diagnosing CVD is a challenging task because various attributes may be effective in designing 
an accurate diagnosis system. Choosing the right set of features in addition to using an efficient 
classifier are among the most effective factors. In this section, the proposed method for diagnosing 
CVD is described in detail. The proposed method includes four main steps: 

1. Pre-processing and stage-wise grouping of features; 
2. Feature extraction by PCA; 
3. Feature selection/reduction by GA; 
4. classification by MA_ADA. 

These steps are illustrated in a diagram in Figure 1. 
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Figure 1. Diagram of the proposed method. 

In Figure 1, the steps of the training phase are illustrated as black solid lines, while the steps of 
the test (diagnosing CVD in new instances) phase are illustrated as red dashed lines. According to this 
diagram, the proposed method starts with pre-processing data and a stage-wise combination of 
coronary heart disease risk factors. In the second step of the proposed method, the PCA approach is 
used to extract principal components from initial features. This step is followed by a features reduction 
mechanism which is performed by GA. Finally, selected features are fed to an MA_ADA model to be 
trained based on training instances. This classifier is used for diagnosing CVD in new instances. In the 
following, each step of the proposed method is described.  

3.1. Preprocessing and stage-wise grouping of features 

For predictive analysis of coronary heart disease, the data used in this study were collected from 
Z-Alizadeh Sani data in the UCI dataset, which contains data from 303 patients with cardiovascular 
surgery, including 87 patients without coronary heart disease and 216 patients with coronary heart 
disease [24,42,43]. After preliminary analysis of the original data, each sample of data contained a 
total of 54 variables which can be divided into seven main groups: 

(1) Basic information of patients: including age, height, weight, sex, BMI, current smoking, past 
smoking and obesity; 

(2) Patient medical history: including history of diabetes, hypertension, family history of coronary 
heart disease, history of chronic renal failure, history of stroke, history of airway disease, 
history of thyroid, history of congestive heart failure and dyslipidemia; 

(3) Auscultation symptom information of patients: including blood pressure, pulse, edema, weak 
pericardia pulse, pulmonary rates, systolic murmurs, diastolic murmurs, typical chest pain, 
dyspnea, cardiac function classification, atypical chest pain, non-angina pectoris chest pain, 
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fatigue chest pain and low-threshold angina pectoris; Among them, the laboratory examination 
information of patients is divided into blood routine examination, biochemical examination, 
electrocardiogram and cardiac color ultrasound: 

(4) Blood routine examination: including Erythrocyte sedimentation rate, hemoglobin, white 
blood cells, lymphocytes, neutrophils and platelets; 

(5) Biochemical tests: including fasting blood glucose, certain, triglyceride, low-density 
lipoprotein, high-density lipoprotein, blood urea nitrogen, potassium and sodium; 

(6) ECG: including abnormal Q wave, ST-segment elevation, ST segment depression, T wave 
inversion, left ventricular hypertrophy and poor increasing R wave; 

(7) Cardiac color ultrasound: including cardiac ejection fraction, segmental ventricular wall 
movement abnormalities and valvular heart disease. 

The preprocessing step starts with converting nominal attributes to numeric ones. To do this, for 
each nominal variable in the database (e.g., sex, current smoking, etc.) a list of unique variable values 
is extracted. Then, a unique discrete number is assigned to each unique value, and variable nominal 
values are replaced with discrete numbers.  

The specification of database variables after converting nominal attributes to numeric are listed 
in Appendix A, Table A1. Figure 2 illustrates the matrix of correlation coefficients of the database 
variables. In this Figure, each variable is shown as a column/row in the matrix and the value in each 
cell represents the correlation between variable pairs. Figure 3 also shows the correlation of each 
independent variable (V1–V54) with the target variable (V55). 

 

Figure 2. The correlation between selected variables. 
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Figure 3. The correlation of each independent variable (V1–V54) with the target variable (V55). 

Figure 3 shows that some independent variables have a high correlation with the target variable. 
The convergence of the values of these features with the presence of CVD shows that these variables 
can be useful in a more accurate diagnosis of the disease. On the other hand, based on Figure 2, it can 
be seen that some independent input variables have a high correlation with others, and this high 
correlation can be a sign of data redundancy. Accurate diagnosis of CVD should be based on a set of 
characteristics that have a high relevance with the target variable; and at the same time, have minimal 
redundancy. Therefore, it will be necessary to utilize processes such as feature extraction and selection 
to identify this collection. 

After converting nominal attributes to numeric ones, each attribute is normalized. At present, the 
commonly used data normalization methods include decimal scaling, minimum-maximum 
normalization and standard deviation processing. In this paper, by comprehensively considering the 
structural form of the original data and the subsequent analysis model, we adopt the minimum-
maximum normalization method for the original data. As is the value 𝑥௜

௝ of the i-th variable of the j-

th sample, whose normalized value is 𝑥௜
௝ᇲ, then the mapping form is: 

 

(3.1) 

The (xi)min is the original data, the minimum value of i variable, and (xi)max is the maximum value, 
after mapping. The value range of the i variable will be between 0 and 1. This mapping form is applied 
to other variables in the original data. The original data are made into the data form of the value range 
of [0,1] in order to facilitate subsequent data analysis. 

Various characteristics can be used to describe the risk factors related to CVD, but it should be 
noted that obtaining the necessary information to describe each of these characteristics requires 
methods that are different in terms of time. For example, the basic information of the patient (sex, age, 
weight, etc.) can be extracted in the shortest time, while the characteristics related to ECG are time-
consuming due to the need to perform tests. So this paper will use the time needed to obtain the risk 
factor information of 54 coronary heart disease risk factors in the data-phased combination. Before 
combining risk factors in stages, the opinions of several cardiologists were used to determine the 
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number of categories of risk factors and the time required for the acquisition of data in each category. 
Therefore, by considering the time spent to collect the information on each risk factor, four groups of 
factors were obtained. The first category includes the basic information of the patient, which is 
collected based on his statements. On the other hand, the factors of the second to fourth categories, due 
to the need to conduct tests, are collected within 20, 25, and 50 minutes, respectively. The resulting 
categories of CVD risk factors are as follows: 

(1) The patient’s basic information, medical history, and simple listening to the clinic risk factors 
are divided into the first category. Because these risk factors can be directly obtained by the 
doctor asking a set of simple examination questions, the time needed to obtain the risk factors 
information is within 20 minutes. 

(2) The patient’s blood routine and electrocardiogram are divided into the second category. 
Compared with the first category of risk factors, such risk factors need to undergo some 
laboratory tests to obtain, but the time of such examination is short, and the results are faster, 
usually within 25 minutes. 

(3) Heart color ultrasound is divided into the third category, and the examination results of heart 
color ultrasound are usually obtained within 50 minutes. 

(4) The fourth category is the biochemical examination. Compared with the previous three types 
of risk factors, the biochemical examination takes a long time, and there are disadvantages of 
patients who do not cooperate, so it is regarded as the fourth category of risk factor. 

The combination of these four types of risk factors can get four stages of risk factors divided 
according to the time consumption. The combination of risk factors for coronary heart disease in these 
four stages is summarized in Table 1: 

Table 1. Risk factor combination stages. 

Stage Combination of risk factors 

1 Basic information + medical history + simple auscultation 
2 Basic information + medical history + simple auscultation + blood routine + electrocardiogram 
3 Basic information + medical history + simple auscultation + blood routine + electrocardiogram + 

cardiac ultrasound 
4 Basic information + medical history + simple auscultation + blood routine + electrocardiogram + 

cardiac ultrasound + biochemical examination 

As the stage increases and the patient’s information continues to become more complete, the 
doctor's understanding of the patient’s condition becomes more comprehensive. The number of risk 
factors at each stage is presented in Table 2. 

Table 2. Overview of variables by stage. 

Stage The number of discrete variables The number of continuous variables Total number 

1 23 6 29 
2 35 10 45 
3 36 14 50 
4 39 15 54 

As can be seen from the above table, from the first stage to the fourth stage, the completeness of 
patient disease information shows an increasing state, and in clinical practice, the more clear it becomes 
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to understand the patient’s condition. In the context of the need to quickly and accurately predict the 
patient’s coronary heart disease acutely, the patient’s condition information that we can obtain is 
limited, so in clinical practice, we need to make reasonable and full use of this limited information. 
Therefore, according to the time consumption of patients’ disease information acquisition, this paper 
combines the information in stages, so as to analyze the prediction of coronary heart disease in patients 
with different information integrity and realize the rapid prediction of patients with coronary heart 
disease. 

3.2. Feature extraction by PCA 

Principal component analysis is a statistical analysis method proposed by Hotelling that maps 
multiple features into a few comprehensive features. In pattern recognition, principal component 
analysis is an unsupervised feature extraction algorithm, which mainly adopts the idea of 
dimensionality reduction. Find several comprehensive features in a new space to represent many 
features in the original space, so that these new comprehensive features can reflect as much as possible 
the information to be expressed by the original features, and there is no correlation between each other, 
so as to abandon the rest of the relevant feature information, to achieve the purpose of simplification. 

The mathematical essence of principal component analysis is to transform a group of related 
variables into a group of unrelated variables through a mathematical transformation. Now, given a 
dataset X of n samples, and p variables x1,x2,⋯xp. Then the principal component mathematical model 

of X can be expressed by the following matrix. 

 

(3.2) 

where:  

.
 

 

The principal component analysis is to synthesize p related variables into p unrelated variables, 
namely: 

.
 

(3.3) 

Abbreviated to: 
F୨ ൌ a୨ଵxଵ ൅ a୨ଶxଶ ൅ ⋯൅ a୨୮x୮ (j ൌ 1,2,⋯ , pሻ. (3.4) 

In the above equation, there are altogether p principal components, among which F1 is called the 
first principal component, F2 is the second principal component, and the proportion of F1 is the largest, 
decreasing successively, and aij is called the principal component coefficient. Let the sample data set 
X matrix be expressed as: 

X ൌ ൮

x11 x12
x21 x22

  
⋯ x1p
⋯ x2p

⋮ ⋮
xn1 xn2

⋮ ⋮
⋯ xnp

൲ ൌ ൫x1, x2,⋯ xp൯ 

 xj ൌ ൮

x1j
x2j

⋮
xnj

൲, j ൌ 1,2,⋯ , p 

൞

F1 ൌ a11x1 ൅ a12x2 ൅⋯൅ a1pxp

F2 ൌ a21x1 ൅ a22x2 ൅⋯൅ a2pxp
⋯

Fp ൌ ap1x1 ൅ ap2x2 ൅⋯൅ appxp
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.
 

(3.5) 

The calculation steps of principal component analysis are mainly divided into the following four 
steps: 
1) Standardization: 

x୧୨
∗ ൌ

୶౟ౠି୶തౠ

ට୴ୟ୰൫୶ౠ൯
  ሺi ൌ 1,2,⋯ , n; j ൌ 1,2,⋯ , pሻ. (3.6) 

2) Calculate sample correlation coefficient matrix: 

R=

⎝

⎜⎜
⎛

r11 r12
r21 r22

  
⋯ r1p

⋯ r2p

⋮ ⋮
rp1 rp2

⋮ ⋮

⋯ rpp ⎠

⎟⎟
⎞

, (3.7) 

where matrix R represents the sample correlation coefficient, in which the element rij can be calculated 
as follows: 

r୧୨ ൌ
1

n െ 1
෍ x୲୧x୲୨  ሺi, j ൌ 1,2,⋯ , pሻ
୬

୲ୀଵ

ሺ3.8ሻ 

3) Find the eigenvalues and eigenmatrices of the correlation coefficient matrix R: By solving the 
characteristic equation |λI–R| = 0, the eigenvalue of the correlation coefficient matrix R is λi and the 

eigenvector is ai = ൫ai1,ai2,⋯,aip൯, and the order of the eigenvalue from large to small is λ1 ≥ λ2 ≥ ⋯ ≥ λp. 

4) Calculate principal component contribution rate and cumulative contribution rate: Normalize the 
eigenvalue λi, the contribution rate corresponding to principal component zi is: 

𝐶௜ ൌ
𝜆௜

∑ 𝜆௞
௣
௞ୀଵ

  ሺ𝑖 ൌ 1,2,⋯ ,𝑝ሻ ሺ3.9ሻ 

The cumulative contribution rate of the first i principal components are calculated as follows: 

AC୧ ൌ
∑ λ୧
୩ୀଵ ୩

∑ λ୩
୮
୩ୀଵ

  ሺi ൌ 1,2,⋯ , pሻ ሺ3.10ሻ 

Generally, the larger the contribution rate of a principal component is, the more data information 
the principal component contains in the original feature space. In the process of practical application, 
we generally believe that as long as the cumulative contribution rate of the principal component reaches 
more than 90%, it can be considered that the selected principal component contains the information of 
most of the data in the original space. In this sense, the cumulative contribution rate actually describes 
a kind of reliability. 

3.3. Feature selection by GA 

Feature selection refers to the selection of d optimal Feature subsets (D > d) in a space containing 
D original features, which is an optimization problem to design search optimal or suboptimal subset. 
In the third step of the proposed method, GA is used to reduce the number of features which were 
extracted by PCA. The basic genetic algorithm consists of chromosome coding, fitness function and 

X ൌ ൮

x11 x12
x21 x22

  
⋯ x1p
⋯ x2p

⋮ ⋮
xn1 xn2

⋮ ⋮
⋯ xnp

൲ 
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genetic operator. 
The coding method of chromosomes refers to the transformation of the solution space of the 

problem into the search space that can be processed by a genetic algorithm, which determines the 
sequence of individual genes in the chromosome. At present, the main encoding methods include 
binary encoding, symbol encoding, floating point encoding, and gray encoding. Binary coding is the 
most commonly used coding method in genetic algorithms. It uses fixed-length binary symbol {0,1} 
string to represent the individual in the population, and each bit of the individual represents a gene. In 
the proposed method, each chromosome is represented as a binary vector. The length of each 
chromosome is equivalent to the number of initial features (extracted by PCA). Each gene of the 
chromosome describes the selection status of its corresponding feature. In this case, selected features 
are represented by ones, while others are represented as zeroes.  

The fitness function is defined according to the optimization problem and search target. The 
fitness function is used for determining whether a chromosome is appropriate for use in crossover 
operations or ignoring it in a population; so, the choice of the fitness function in GA is very important. 
In the proposed method, the fitness function is defined using the correlation criterion. The goal of GA 
in the proposed method is to select a subset of features having the most correlation with the target 
variable and at the same time, having the least inner correlation. So, the fitness function of GA for 
selecting features can be formulated as follows: 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠ሺ𝑥⃗ሻ ൌ

1
𝑁ଶ ∑ ∑ ห𝐶൫𝑥⃗௜ , 𝑥⃗௝൯ห

ே
௝ୀଵ

ே
௜ୀଵ

√𝑁 ቀ1 ൅ 1
𝑁∑ |𝐶ሺ𝑥⃗௞ ,𝑇ሻ|ே

௞ୀଵ ቁ
ሺ3.11ሻ 

where 𝑥⃗ defines the solution vector, which is equivalent with the set of features with values of 1 in 
chromosome, and N represents the length of 𝑥⃗  (number of selected features). Also, 𝑥⃗௜  is the i-th 
selected feature in the solution vector and T is the target variable. Function 𝐶ሺ𝐴,𝐵ሻ represents the 
correlation coefficient between vectors A and B. In this equation, the abstract value of the correlation 
coefficient is used, because two vectors with high negative correlation can still provide information 
about each other (if one decreases, the other one increases). So, the goal of GA is to find a solution 
that can minimize the Eq (3.11).  

In order to do this, genetic operators are used during each generation of the optimization algorithm. 
Genetic operators include: selection, crossover and mutation operators. Selection operator refers to the 
selection of individuals from the parent generation into the offspring generation according to a certain 
method. In proposed method, the roulette wheel selection mechanism has been used.  

Crossover operators embody the principle of genetic information exchange and generate complex 
new individuals with stronger adaptability. In the proposed method, the two-point crossover operation 
was utilized. Mutation operator reflects the idea of individual gene mutation in nature, and its operation 
idea is to select several individuals from the population according to a certain probability, and then 
modify the genes of that chromosome. In proposed method, the mutation probability of each individual 
was set as 0.01, and during each mutation, the binary value of one gene was inverted. After selecting 
features through the chromosome with the minimum fitness value, these features are fed to MA_ADA 
classifier which has been described in the following section.  

3.4. Classification by MA_ADA 

The ultimate goal of our research on pattern recognition is to increase recognition performance 
as much as possible. There is no classical learning model with perfect accuracy. Each learning model 
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encounters errors in some situations based on its training conditions. On the other hand, the pattern of 
errors in these models are different from each other and can depend on characteristics such as training 
conditions, model configuration and characteristics of input data. Therefore, by combining several 
learning models, the partial error of each individual classification can be covered through cooperation 
with other models. On the other hand, by combining different single classifiers, the characteristics of 
the samples to be identified can be reflected from different aspects to achieve a better classification 
performance. There are ideas behind introducing the multi-agent architecture of the Adaboost classifier. 

Through the unremitting efforts of researchers, a large number of classifier fusion algorithms have 
emerged, and they have achieved good classification results. According to the output form of a single 
classifier, the classifier fusion algorithm can be divided into the following three types: decision level 
fusion, ranking level fusion and measure level fusion. Decision-level fusion refers to the fusion of 
category labels obtained by single classifier classification. Decision level fusion refers to ranking the 
possibility of category labels output by a single classifier from highest to lowest and giving a sorted 
list. Measurement layer fusion refers to making fusion decisions by classifying the output measures 
(probability, distance measure reliability) obtained by a single classifier. It can be seen that the fusion 
information used for the combination of the three types of fusion algorithms becomes richer and richer 
with the higher level of fusion. Compared with the single classifier algorithm, the advantage of the 
classifier fusion algorithm is that it can fuse the classification information obtained by different 
classifier algorithms, avoid the one-sidedness of the single classifier algorithm and thus improve the 
recognition rate of the classification target.  

3.4.1. Principle of fusion algorithm 

In the field of multi-classifier fusion, Adaboost is a successful multi-classifier ensemble learning 
algorithm, which has been widely used in the fields of face detection and text classification. Its core 
idea is to train multiple weak classifier sets with differences through repeated sampling of training 
sample sets, then integrate the weak classifier sets into a strong classifier and finally output the final 
classification results by voting rules. However, the algorithm simply sums the weights of the weak 
classifiers belonging to each category, and then puts the samples into the category with the largest sum. 
The consequence of this process is to lose a lot of useful information output by weak classifiers, such 
as the output categories of samples by weak classifiers and the posterior probability of samples 
belonging to each category. 

The difference between member classifiers is the premise of most fusion algorithms, which has 
an important effect on the performance of the fusion system. The main idea of MA_ADA multi-
classifier fusion algorithm is to use various sets of training samples to train Adaboost algorithm and 
obtain a series of single classifiers with different diagnosis capabilities, and then use this series of 
single classifiers to test the training set samples and obtain the classification information of the training 
samples. 

Based on the fusion idea of multi-agent (MA), the classification information obtained by statistics 
is introduced into decision co-occurrence matrix. Its definition is as follows: 

D ൌ ሾd୨ౡభ,୨ౡమ ,୧,୩భ,୩మሿ୏ൈ୏ൈ୏ൈ୬ൈ୬ 

In the formula, K represents the number of sample categories and n represents the number of single 

classifiers. Its element d୨ౡభ,୨ౡమ ,୧,୩భ,୩మ is defined as: 
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d୨ౡభ,୨ౡమ ,୧,୩భ,୩మ ൌ
Aଷ

ඥAଵ ൈ Aଶ

ሺ3.12ሻ 

Aଵ ൌ ห൛Fሺxሻ ൌ i, f୩భሺxሻ ൌ j୩భ,∀x ∈ Sൟห ሺ3.13ሻ 

Aଶ ൌ ห൛Fሺxሻ ൌ i, f୩మሺxሻ ൌ j୩మ,∀x ∈ Sൟห ሺ3.14ሻ 

Aଷ ൌ ห൛Fሺxሻ ൌ i, f୩భሺxሻ ൌ j୩భ,f୩మሺxሻ ൌ j୩మ,∀x ∈ Sൟห ሺ3.15ሻ 

Where, A1 represents the number of samples belonging to class i in the training sample set divided 
into class jk1

 by single classifier k1. A2 represents the number of samples belonging to class i in the 

training sample set divided into class jk2
  by single classifier k2 . A3  represents the number of 

samples belonging to class i in the training samples divided into class jk1
 by single classifier k1 and 

class jk2
 by single classifier k2. 

When a test samples is used for classification, the posterior probability information of each trained 
classifier for the test sample is obtained. The posterior probability shows the probability of belonging 
sample to each category and is determined by each trained classifier. In MA_ADA the posterior 
probability of an instance, obtained by the series of trained single classifiers is organized as a 
confidence matrix which is defined as follows: 

B ൌ ൣb୧୨൧୬ൈ୏ ሺ3.17ሻ 

In the formula, K represents the number of sample categories and n represents the number of 
single classifiers. The sum of each row in the confidence matrix B is 1, and the element bij represents 

the posterior probability value that single classifier i considers sample x to belong to category j. 
The proposed MA_ADA model uses an iteration-based strategy to form multiple single classifiers 

with different structures and describes the performance quality of each classifier based on a weight 
value. The matrix of weight values obtained from individual classifiers is combined with the 
confidence matrix to describe the effectiveness of each classifier in determining the output of the 
MA_ADA model in the form of a traceability matrix. Compared with other multi-classifier fusion 
algorithms, the MA_ADA fusion algorithm is an integrated system, which integrates the information 
of each weak classifier together to enrich the information. Moreover, by defining individual behavior 
of single classifier and the interaction between individuals, it realizes the group behavior composed of 
multiple individuals, achieves their respective goals to the maximum extent and effectively improves 
the ability to solve problems.  

3.4.2. Implementation of fusion algorithm 

It is assumed that the training set for fusion contains N samples, and the number of categories is 
K. The steps of MA_ADA fusion algorithm are as follows. It should be noted that the first three steps 
are related to the training phase of the MA_ADA model, while the next steps describe the process of 
predicting CVD in test samples. 

Step 1) Initialize the sample weight distribution of the training set as D1(i) = 1/N. 
Step 2) In this step, every single classifier iterates the training algorithm n times to produce n 

trained models with different performances. After each iteration, the weight distribution of the data in 
the training set is updated according to the classification results. Larger weights are assigned to the 
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classifiers with less training error, and more attention is paid to these training individuals in the next 
iteration. The single classifier learning algorithm obtains n single classifier sets through repeated 
iteration. The better the single classifier results are, the larger the corresponding weight is. By 
combining the weight values of each single classifier during iterations, a weight matrix 𝑊௡ൈ௖  is 
obtained. Each element of W is defined as follows: 

𝑊௜௖ ൌ
𝑇

𝑁 ൈ 𝐶
ሺ3.18ሻ 

Where, T represents the number of training samples with correct predicted labels by classifier c after 
iteration i. Also, N and C represent the number of training samples and single classifiers, respectively. 

Step 3) Through Step 2, the weight matrix W and the class label information generated by each 
single classifier for training set sample classification can be statistically obtained, and then the decision 
co-occurrence matrix D can be calculated according to Eq (3.12). 

Step 4) For a test sample X to be classified, the posterior probability values determined by each 
single trained classifier will be obtained, and based on these values, the confidence matrix B is 
constructed. Then the weight matrix W is introduced to show the performance for each single classifier. 
Initialize the traceability matrix S ൌ ሾs୩୧ሿ୬ൈ୏ with WB. 

Step 5) Define the maximum value of elements in the traceability matrix S as V, representing the 
decision confidence of each single classifier to test samples, and L representing the decision threshold. 
If V > L, it indicates that all single classifiers basically reach a consensus, then go to Step 7. Otherwise, 
Eq (3.19) is used to adjust the value of each element in the traceability matrix S. 

s୩୧ ൌ s୩୧ ൅ λ ෍ d୨ౡభ,୨ౡమ ,୧,୩భ ൈ ඥs୩୧ ൈ s୩భ୧

୬

୩భୀଵ,୩భஷ୩

ሺ3.19ሻ 

Step 6) Normalize each row of the updated traceability matrix S to ensure that the sum of each 
row is 1. Go to Step 5 to recalculate the value of V. 

Step 7) Each single classifier finally reaches an agreement, and the final classification decision 
result can be output. 

4. Results and discussion 

In this experiment, considering the same feature information set, the comparison of classification 
performance between MA_ADA multi-classifier fusion algorithm and various single-classification 
algorithms and multi-classification algorithms is discussed. The single classifiers set include: support 
vector machine [36], artificial neural network [37] and Bayesian [38] algorithm. he multi-classification 
fusion algorithms set includes: majority voting method [39], averaging algorithm [40] and weighted 
averaging method [40], among which the single classifier algorithm adopted by the three multi-
classifier fusion algorithms are the three different classification algorithms mentioned above. It should 
be noted that during the comparisons, all these classifier models were implemented and then trained 
and evaluated based on the same instances. Also, all features were fed to each diagnosis model. 

These experiments were implemented using MATLAB 2016a software. A 10-fold cross-
validation (CV) experiment was performed to evaluate the performance of the proposed method. In 
this scenario, the training and testing phases were repeated 10 times and during each iteration, 90% of 
samples were used to train the classifiers, while the rest of samples were used for testing them. During 
each iteration, a new set of samples were selected as test instances; therefore, at the end of the 
experiments, all database samples were tested. 
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In this research, principal component analysis was used to reduce the dimensionality of data. 
Considering the measurement noise to be 10%, a variance threshold of 0.9 was used to determine the 
appropriate number of principal components. To do so, first the principal components of the input data 
were extracted and ranked, and then the variance of these principal components was calculated. Finally, 
the number of principal components is equal to a number whose variance is equal to 90% of the 
variance of the original data. For the first stage, the PCA reduced the group of 29 risk factors to 11 
principal components. Also, for the second and third stages, the dimensionality of data reduced to 22 
and 26, respectively. Finally, for the fourth stage, this procedure led to reducing the dimensionality of 
data from 54 variables to 29 principal components.  

Principal component analysis is highly effective in describing the relation among data. Figure 4, 
compares the distribution of the first three variables/principal components among target classes. In 
Figure 4a, the distribution of the first three original variables (age, weight and height) and their 
relationships with target classes are shown. Figure 4b illustrates these results for the first three principal 
components extracted from the data. As shown in this Figure, the extracted principal components can 
better separate the instances of each target class, while it is much more difficult to do this through the 
original variables. This means that the principal component analysis can provide a clearer description 
of the data, and this can be effective in improving the efficiency of the classifiers. Because in this case, 
classification models can discover hidden patterns and relationships between features and target classes 
more easily.  

 

Figure 4. The distribution of the (a) first three original variables, and (b) first three 
principal components, and their relationships with target classes. 

After reducing the dimensionality of the data by principal component analysis, the GA was used 
for selecting an optimal subset of features. In the experiments, the population size and number of 
generations in GA were considered as 100 and 150, respectively. Also, the crossover rate of 0.8 and 
mutation rate of 0.01 were considered in the experiments. Figure 5 shows the best fitness discovered 
during generations of the GA. 
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Figure 5. The best fitness discovered during generations of the GA for feature selection. 

As shown in Figure 5, the feature selection mechanism of GA tries to find a better set of features 
during each generation and identifies a more optimal subset of selected features by improving the 
chromosomes discovered in previous generations. After applying the GA-based feature selection 
algorithm on the risk factors of the first stage, 6 features were selected. Also, 9 and 10 features were 
selected by GA for the second and third group of risk factors, respectively. Finally, the result of the 
feature selection process for the fourth stage was to reduce the number of features to 11, which was 
used as input to the classification model. 

A 10-fold CV experiment was performed to evaluate the classification quality of the proposed 
method for different stages of risk factors used in diagnosis. During these experiments, the efficiency 
of single-classifier and multi-classifier models were compared with the proposed method, using the 
accuracy, sensitivity and specificity criteria. The sensitivity criterion is used to describe the ability of 
a diagnosis system in identifying patients with the disease: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ൌ
𝑇𝑃

𝑇𝑃 ൅ 𝐹𝑁
ሺ4.1ሻ 

where, TP and FN refer to number of true positive and false negative samples, respectively. On the 
other hand, the specificity criterion refers to the ability of a diagnosis system in identifying instances 
without the disease: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 ൌ
𝑇𝑁

𝑇𝑁 ൅ 𝐹𝑃
ሺ4.2ሻ 

where, TN and FP refer to number of true negative and false positive samples, respectively. Also, the 
accuracy criterion is used to describe the ratio of correctly classified test instances and is calculated as 
follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ൌ
𝑇𝑃 ൅ 𝑇𝑁

𝑇𝑃 ൅ 𝑇𝑁 ൅ 𝐹𝑃 ൅ 𝐹𝑁
ሺ4.3ሻ 

Figure 6 compares the classification quality obtained by the proposed method with other 
classifiers during these experiments. 
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Figure 6. Classification quality obtained by the proposed method and other classifiers 
during (a) the first, (b) second, (c) third and (d) fourth stages. 

In Figure 6, the boxplots drawn over the accuracy bars demonstrate the accuracy changes during 
10 folds of CV. The upper and lower thin lines in these boxplots show the first and fourth quartiles of 
accuracy changes, respectively. The thick line—divided by the median accuracy value—demonstrates 
the second and third quartiles of the accuracy changes during 10 folds of experiments. The results 
report higher and more compact boxes of accuracy changes, which means higher efficiency of the 
proposed method in diagnosis. According to the results presented in Figure 6, multi-classifier models 
perform the classification task more accurately compared to single-classifier models, and among them, 
the proposed MA_ADA model is superior in terms of accuracy, sensitivity and specificity criteria.  

For a better demonstration, the average accuracy of classifiers for four stages of risk factors is 
shown in Figure 7. Two features can be seen in this Figure. First, using the second stage risk variables, 
the accuracy of all classifiers is higher compared to other stages, which means these variables may 
provide a better description of the disease. By considering other risk variables in the third and fourth 
stages, the accuracy of the classifiers decreases, which may be the result of including noisy or irrelevant 
variables in these sets. Second, the accuracy of the proposed MA_ADA model is higher than other 
classifiers in all stages and it is maximized using the second stage risk variables.   
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Figure 7. Accuracy the proposed method and other classifiers during different stages. 

Table 3 shows the performance comparison of single and multiple classifiers. 

Table 3. Performance comparison of single and multiple classifiers. 

Classifiers Classification stage 

First Stage Second Stage Third Stage Fourth Stage 

Acc. Sens. Spec. Acc. Sens. Spec. Acc. Sens. Spec. Acc. Sens. Spec. 

SVM [36] 88 86.39 90.07 91 91.12 90.84 89.67 89.94 89.31 82 82.84 80.92 
ANN [37] 92.33 89.34 96.18 93.67 94.67 92.37 91 91.12 90.84 83.33 84.62 81.68 
Bayes [38] 89 90.53 87.02 91.67 88.76 95.42 88 88.76 87.02 82.67 81.07 84.73 
Voting [39] 91 90.53 91.60 94.67 94.08 95.42 90 91.12 88.55 86 87.57 83.97 
AVG. [40] 93 92.89 93.12 96 97.04 94.66 92 92.31 91.60 87 85.79 88.55 
W.AVG. [40] 92.67 94.67 90.07 97.67 98.22 96.94 95.33 95.86 94.66 88.33 88.17 88.55 
MA_ADA 97.67 97.04 98.47 98.67 98.22 99.24 97 96.45 97.71 90.33 89.94 90.84 

As can be seen from the above table, the classification effects of single and multiple classifiers 
are different. Among the three single classifiers, ANN has the highest classification effect, and the 
total classification accuracy in the four stages of coronary heart disease reaches 92.33, 93.67, 91.0 and 
83.33, respectively. This outcome is mainly due to the excellent learning ability of ANN in processing 
high-dimensional data. Comparatively speaking, however, the classification performance of SVM 
algorithm is not satisfactory. Comparing the classification results of the multi-classifier algorithm and 
the single-classifier algorithm, it can be seen that the multi-classifier algorithm is better than the single-
classifier algorithm on the whole. Due to their construction principle, the classification accuracy of 
these three multi-classifier fusion algorithms is better than ANN and other single-classifier models. 
Among all the classification algorithms, MA_ADA fusion algorithm has the best classification effect, 
and the total classification accuracy in the four stages of coronary heart disease reaches 97.67, 98.67, 
97 and 90.33 respectively. The reason for the superiority of MA_ADA can be attributed to its 
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mechanism to form a more accurate prediction model. This model tries to improve the prediction 
quality through two levels. In the first level, by training various single classifiers and weighting them 
according to their performance in an iterative manner, an effort is made to obtain a set of the most 
accurate single classifiers. Then, in the second level, by using the traceability matrix and determining 
the effect of each single classifier on the final output, efforts are made to improve the overall efficiency 
of MA_ADA. In the process of integration, the MA_ADA fusion algorithm, unlike other fusion 
algorithms, is not independent between individual classifier decisions, but rather through negotiation 
between single classifiers, making full use of the decision information between single classifier, the 
probability of change back and eventually achieving group decision-making to get the final category. 

The results of the experiments showed that, in general, the diagnosis of CVD based on the group 
of second-stage risk factors will lead to higher prediction accuracy. This trend is clearly observed in 
all the studied prediction methods. As a result, it can be said that the set of basic information, medical 
history, simple auscultation, blood routine and electrocardiogram features, will have the strongest 
relationship with the existence of CVD. On the other hand, the analysis of the correlation between 
these features and the target variable showed that in this set of factors, the two groups of blood routine 
and electrocardiogram features had the greatest effect in improving the accuracy of diagnosis. This 
reveals that focusing on the characteristics of these two groups of features can be effective in achieving 
a CVD detection system with higher accuracy. 

5. Conclusion 

CVD has the world's highest mortality rate among chronic diseases, with serious influence on the 
health and quality of life of the patients, and also social burden. Therefore, effective prevention, control 
and management become the important measures to curb the popular form of CVD. The effective 
prediction of CVD will help timely and effective management of patients with CVD, so as to inhibit 
the development of the disease. Because of this, a new multi-classifier fusion algorithm called 
MA_ADA was proposed in this study. The experimental results also show that the MA_ADA multi-
classifier fusion algorithm can improve the prediction accuracy of CVD. According to the results, the 
proposed MA_ADA algorithm could achieve accuracy of 98.67% in diagnosis, which is at least 1% 
higher than compared methods. 

One of the limitations of the proposed method, was its higher computation time, which is the 
result of using multiple classifiers for diagnosis. However, this difference in computation time is only 
noticeable during training phase of MA_ADA and it can be reduced using parallel processing 
techniques. The results showed that weighted averaging technique is an accurate method for diagnosis 
purposes. However, determining the optimal weight of classifier components in this model is an 
important issue that should be addressed. In future research, optimization algorithms can be used to 
determine the optimal weight of classifiers in the weighted averaging models in order to increase their 
diagnosis accuracy.  
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Appendix A 

The database features are listed in Table A1. 

Table A1. Variable assignments. 

Variable ID Name Type Assignment processing 

V1 Age Continuous variable None 

V2 Weight Continuous variable None 

V3 Height Continuous variable None  

V4 Gender Continuous variable 0 = female, 1 = male 

V5 BMI Continuous variable None 

V6 History of diabetes Discrete variable 0 = no, 1 = yes 

V7 History of hypertension Discrete variable 0 = no, 1 =yes 

V8 Whether to smoke at present Discrete variable 0 = no, 1 = yes 

V9 Whether to smoke before Discrete variable 0 = no, 1 = yes 

V10 Family history of coronary heart disease Discrete variable 0 = no, 1 = yes 

V11 Obesity Discrete variable 0 = no, 1 = yes 

V12 Chronic renal failure Discrete variable 0 = no, 1 = yes 

V13 Medical stroke history Discrete variable 0 = no, 1 = yes 

V14 airway disease Discrete variable 0 = no, 1 = yes 

V15 History of thyroid disease Discrete variable 0 = no, 1 = yes 

V16 Congestive heart failure Discrete variable 0 = no, 1 = yes 

V17 Dyslipidemia Discrete variable 0 = no, 1 = yes 

V18 Blood pressure Continuous variable None 

V19 Pulse Continuous variable None 

V20 Oedema Discrete variable 0 = no, 1 = yes 

V21 Weak periardiac pulse Discrete variable 0 = no, 1 = yes 

V22 Pulmonary rale Discrete variable 0 = no, 1 = yes 

V23 Systolic murmur Discrete variable 0 = no, 1 = yes 

V24 Diastolic murmur Discrete variable 0 = no, 1 = yes 

V25 Typical chest pain Discrete variable 0 = no, 1 = yes 

V26 Dyspnea Discrete variable 0 = no, 1 = yes 

V27 Cardiac function grade Discrete variable None 

V28 Atypical chest pain Discrete variable 0 = no, 1 = yes 

V29 Nonangina heartache Discrete variable 0 = no, 1 = yes 

V30 Overworked chest pain Discrete variable 0 = no, 1 = yes 

V31 Low threshold angina Discrete variable 0 = no, 1 = yes 

V32 abnormal Q wave Discrete variable 0 = no, 1 = yes 

V33 ST segment elevation Discrete variable 0 = no, 1 = yes 

V34 ST segment depression Discrete variable 0 = no, 1 = yes 

V35 T wave inversion Discrete variable 0 = no, 1 = yes 

V36 Left ventricular hypertrophy Discrete variable 0 = no, 1 = yes 

V37 Poor R-wave escalation Discrete variable 0 = no, 1 = yes 

V38 Fasting blood glucose Continuous variable None 

V39 Creatine, triglycerides Continuous variable None 
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Variable ID Name Type Assignment processing 

V40 Triglycerides Continuous variable None 

V41 Low density lipoprotein Continuous variable None 

V42 High density lipoprotein Continuous variable None 

V43 Blood urea nitrogen Continuous variable None 

V44 Red cyte sedimentation rate Continuous variable None 

V45 Hemoglobin Continuous variable None 

V46 Potassium Continuous variable None 

V47 Sodium Continuous variable None 

V48 White blood Continuous variable None 

V49 Lymphocytes Continuous variable None 

V50 Neutrophils Continuous variable None 

V51 Platelets Continuous variable None 

V52 Cardiac ejection fraction Continuous variable None 

V53 Segmental ventricular wall motion 

abnormalities 

Discrete variable None 

V54 Valvular heart disease Discrete variable 

0 = normal  

1 = mild 

2 = moderate 

3 = severity 

V55 Results Discrete variable None 
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