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Abstract: Recently, researchers have proposed a lot of methods to boost the performance of 
convolutional neural networks (CNNs) for classifying remote sensing images (RSI). However, the 
methods’ performance improvements were insignificant, while time and hardware costs increased 
dramatically due to re-modeling. To tackle this problem, this study sought a simple, lightweight, yet 
more accurate solution for RSI semantic classification (RSI-SC). At first, we proposed a set of 
mathematical derivations to analyze and identify the best way among different technical roadmaps. 
Afterward, we selected a simple route that can significantly boost a single CNN’s performance while 
maintaining simplicity and reducing costs in time and hardware. The proposed method, called RE-
EfficientNet, only consists of a lightweight EfficientNet-B3 and a concise training algorithm named 
RE-CNN. The novelty of RE-EfficientNet and RE-CNN includes the following: First, EfficientNet-B3 
employs transfer learning from ImageNet-1K and excludes any complicated re-modeling. It can 
adequately utilize the easily accessible pre-trained weights for time savings and avoid the pre-training 
effect being weakened due to re-modeling. Second, RE-CNN includes an effective combination of data 
augmentation (DA) transformations and two modified training tricks (TTs). It can alleviate the data 
distribution shift from DA-processed training sets and make the TTs more effective through 
modification according to the inherent nature of RSI. Extensive experimental results on two RSI sets 
prove that RE-EfficientNet can surpass all 30 cutting-edge methods published before 2023. It gives a 
remarkable improvement of 0.50% to 0.75% in overall accuracy (OA) and a 75% or more reduction in 
parameters. The ablation experiment also reveals that RE-CNN can improve CNN OA by 0.55% 
to 1.10%. All the results indicate that RE-EfficientNet is a simple, lightweight and more accurate 
solution for RSI-SC. In addition, we argue that the ideas proposed in this work about how to choose 
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an appropriate model and training algorithm can help us find more efficient approaches in the future.  

Keywords: RE-EfficientNet; RE-CNN; remote sensing image classification; deep learning 
 

Abbreviations: CAM: class activation mapping; CNN: convolutional neural network; DA: data 
augmentation; DARS: DA and regularization strategy, DL: deep learning; LR: learning rate; m-CutMix: 
modified CutMix; m-OLS: modified Online Label Smoothing; M: million; ML: machine learning, 
NPSC: number of parameter-setting combinations; OA: overall accuracy; OLS: online label smoothing; 
RE: regularization-enhanced; RSI: remote sensing images; SC: semantic classification; SE: squeeze-
and-excitation; SOTA: state-of-the-art; TR: training ratio; TT: training trick; ViT: vision transformer.  

1. Introduction  

Remote sensing is a crucial technique for Earth observation. With the expansion of onboard, 
ground-based [1] and underwater sensors [2], monitoring data has become too large to be interpreted 
all by hand. Consequently, machine learning (ML) algorithms have played a prominent role in 
satisfying automatic and intelligent recognition needs. As the deep learning (DL) era comes, CNNs 
totally dominate the recognition tasks of RSI, including but not limited to semantic classification (SC), 
segmentation [3] and object detection or recognition [4]. As the fundamental algorithm, researchers 
have proposed a lot of CNN methods for RSI-SC in the past decade. To boost the model’s performance, 
these methods have commonly paid more attention to human re-modeling strategies, including 
modifying pre-trained models, fusing features from models, creating combined models and so on, 
resulting in a remarkable increase in hardware and time costs. However, these ingenious methods still 
achieved insignificant performance advances due to some imperceptible flaws. The reasons are given 
as follows:  

First, a model’s training can be viewed as searching in the parameter space for an optimal solution. 
On this premise, the shallow model of traditional ML corresponds to a small search space, and 
consequently, its training can employ exhaustive computation. Hence, all the strategies using human 
modeling can be proven effective or not for shallow models. Given the far larger capacity, however, it 
is impossible to perform an exhaustive search for deep CNNs. Besides, re-modeling will enlarge the 
search space due to increased parameters. Therefore, it is more difficult to identify the effectiveness of 
modeling strategies if the methods encounter an expanded parameter space but still employ finite 
training steps in searching.  

Second, the benchmark RSI sets are commonly much smaller than natural images. For example, 
the Aerial Image Dataset (AID) and Northwestern Polytechnical University (NWPU) [5,6] RSI sets 
only have smaller amounts of 10,000 and 31,500, while the ImageNet-1K has one million more. 
Currently, all the off-the-shelf CNNs for RSI recognition are developed on ImageNet-1K. Hence, a 
CNN is easy to overfit on RSI datasets due to its large capacity. To avoid overfitting, data augmentation 
(DA) was widely employed in previous studies. However, a DA-processed training set will have a data 
distribution shift compared to the original one. With this shift problem unhandled, a CNN will easily 
achieve suboptimal performance [7]. To the authors’ best knowledge, the problem has been commonly 
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ignored in previous studies. 
Third, some emerging TTs can boost a CNN model’s performance, but they are also developed 

based on the attributes of natural images. Nonetheless, several previous methods for RSI-SC have 
employed TTs in training and achieved better performance. However, these studies only copied the 
TTs’ usage from ImageNet-1K without considering the inherent difference in RSI. Therefore, this 
simplistic operation may also be suboptimal due to the domain gap. In addition, previous methods 
commonly employed transfer learning as the technical route. However, most of them break several 
basic rules of transfer learning, e.g., using a larger learning rate (LR) of 1E-02. Some evidence reveals 
that a larger LR can easily make a CNN overfit on RSI sets [8].  

To solve these problems, we proposed a simple experiment by training a lightweight CNN [9] 
(i.e., EfficientNet-B0) on RSI sets. In detail, an EfficientNet-B0 using pre-trained weights on 
ImageNet-1K is retrained on AID and NWPU using a smaller LR of 1E-04. The whole training only 
includes 60 epochs without any secondary modeling. Given the same training ratios (TRs), the OA 
results are compared to some previous state-of-the-art (SOTA) CNN methods published before 2023 
(see Table 1, where “None” means no data presented in related studies). As shown in the table, we can 
see that the single EfficientNet-B0 method can clearly surpass all other methods by using beginner-
friendly transfer learning with much fewer parameters. Therefore, it reveals that there may be a more 
efficient but accurate solution for RSI-SC by using a single CNN.  

Table 1. OA (%) comparison of CNN methods on AID and NWPU. 

Methods Roadmap Param Size (M) AID NWPU 
TR–20%  TR–10%  

[10] at 2018 Fine-tuning loss 23.4 90.82 ± 0.16 89.22 ± 0.50 
[11] at 2019 Feature fusion 276 95.02 ± 0.28 91.30 ± 0.18 

[12] at 2019 CNNs ensemble 167 None 92.44 ± 0.37 
[13] at 2020 Attention aided 14 95.73 ± 0.22 92.70 ± 0.32 
[14] at 2020 Feature fusion 24 None 92.17 ± 0.08 
[15] at 2021 Attention aided 24 94.45 ± 0.76 None 
[16] at 2022 Models combination 54 96.19 ± 0.48 93.67 ± 0.21 
[17] at 2022 Attention aided 8 95.43 ± 0.32 93.39 ± 0.39 
[18] at 2022 CNNs ensemble 47 96.20 ± 0.15 93.24 ± 0.15 
[this work] Single EfficientNet-B0 5.3 96.08 ± 0.07 93.47 ± 0.05 

To tackle the problem, we proposed a simple, lightweight but accurate method for RSI-SC named 
regularization-enhanced EfficientNet (RE-EfficientNet). It consists of a single EfficientNet-B3 model 
and a concise training algorithm called RE-CNN. The EfficientNet-B3 has better performance on 
ImageNet-1K and much fewer parameters if compared to other classical CNNs such as Resnet and so 
on. Some experiments also prove that EfficientNet-B3 can achieve better performance on RSI sets 
compared to other CNNs [19]. The RE-CNN algorithm includes some special ideas to handle the 
aforementioned problems coming from DA and a simple copy of TTs’ usage. It presents an effective 
combination of regularizations that can significantly boost the CNN’s performance. The experimental 
results on AID and NWPU show that RE-EfficientNet can prevail over 30 SOTA CNN and ViT 
methods published before 2023. The study’s contributions are summarized as follows: 

First, the work presents a simple, lightweight but more accurate single-CNN method for 
classifying RSI. The RE-EfficientNet only consists of an off-the-shelf EfficientNet-B3 with 12 M 
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parameters and employs a replicable open-source training algorithm through transfer learning. 
Extensive experimental results on AID and NWPU prove that RE-EfficientNet can surpass other SOTA 
methods with not only remarkable OA improvements but also much fewer parameters.  

Second, this work demonstrates that modified TTs based on the inherent characteristics of RSI 
can significantly improve a CNN’s performance for RSI-SC. Ablation experimental results prove that 
the RE-CNN algorithm can boost a CNN's performance by 1% OA if the TTs are effectively combined. 

Third, the work proves that classification tasks for RSI can be better performed by using a simpler 
roadmap at lower hardware and time costs. The easily accessible EfficientNet-B3 and transfer learning 
pipeline mean that RE-EfficientNet is a time-saving and beginner-friendly solution. In addition, based 
on the authors’ viewpoints, the model training ideas proposed in this paper can also help us develop 
more efficient approaches in the future.  

The paper’s following sections are as follows: Section 2 is a brief review of related works. 
Sections 3 and 4 present the proposed theory and method. Section 5 presents experimental results, and 
Sections 6 and 7 present the discussion and conclusions. 

2. Related works  

In the beginning, CNNs were used as a fixed feature extractor for RSI-SC due to a lack of 
sufficient knowledge accumulation. For example, with the pre-trained CNNs from ImageNet-1K, 
Chaib et al. [20] directly took the model’s outputs as the representation of RSI but skipped retraining. 
The method greatly improved its OA if compared to previous approaches using shallow models. 
However, the roadmap also lacks effective retraining on RSI sets, which undoubtedly results in poor 
performance. Afterward, some researchers proposed another roadmap by retraining the CNN on RSI 
sets using fine-tuned objective functions. For example, Cheng et al. [9], Liu et al. [21,22] and   Bazi 
et al. [23] proposed new auxiliary losses for training CNNs. These ideas consist of complex human-
modeling procedures and indicators but do surpass the extractor roadmap.  

Following that, more creative methods were tried to find better solutions. These ideas mainly 
include architecture fine-tuning, feature fusion and model combination. For example,        Zhang 
et al. [24] proposed a method by combining two CNNs with capsule nets to verify the effectiveness of 
multi-mode combinations. Xie et al. [25] proposed another approach by fine-tuning CNN’s last pooling 
layer to make the model capable of processing arbitrary resolutions of input images. With the layer’s 
activated information, Zhu et al. [10], Guo et al. [11] and Li et al. [14] proposed similar methods by 
choosing relatively important features that can boost the model’s performance.      Sun et al. [26] 
proposed a method by fusing outputs from a CNN’s different layers to generate the so-called semantic 
and appearance features that can boost the model’s performance. These methods presented meaningful 
novelty, but the improvements were not very remarkable.  

With the success of vision transformers (ViTs), attention mechanisms were widely introduced into 
a CNN’s architecture for gaining advances. For example, Tong et al. [13], Guo et al. [27] and Tang et 
al. [28] proposed similar methods by adding attention modules to a pre-trained CNN and verified that 
attention-enhanced CNNs can be better for RSI-SC than the original models without attention modules. 
Moreover, by using pre-trained models with built-in attention modules,   Alhichri et al. [15], Li et 
al. [16] and Chen et al. [17] proposed other methods by fusing the CNN’s outputs with human-
engineered indicators or feeding the CNN’s outputs into a sequential model to boost the method’s 
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performance. All these methods are creative and achieve better performance to some extent, but the 
final performance still lacks exciting advancement.  

In addition, Minetto et al. [12] and Zhao et al. [18] proposed two different ensemble methods 
using multiple CNNs. The first method employs twelve CNNs coarsely trained on RSI sets and uses 
the weighted outputs of individual models as votes for prediction. The second method employs a single 
CNN as the main classifier but embeds multiple different CNNs as functional branch modules to boost 
the method’s performance. These two methods are competitive for RSI-SC to some extent. However, 
the two methods also have the disadvantages of high hardware costs and tedious training procedures. 
As the ViT arose, Bazi et al. [29], Zhang et al. [30] and Wang et al. [31] proposed different methods 
by using a single ViT and proved ViTs can be competitive for RSI-SC as CNNs. However, all these 
methods’ performances are still not exciting if compared to the results shown in Table 1. 

Moreover, researchers also proposed other creative approaches to find better solutions for RSI-
SC. Shi et al. [32] proposed a single-CNN method by using a so-called self-compensating module to 
obtain a lightweight model that can achieve acceptable performance compared to ready-made CNNs. 
Chen et al. [33] proposed a single-CNN approach by inserting two different attention modules as 
functional branches in a pre-trained CNN to find performance advances.   Deng et al. [34] proposed 
a dual-model combining method by fusing the outputs of a pre-trained CNN and ViT and showed 
competitive performance. Miao et al. [35] proposed a multi-granularity decoupling CNN method by 
using class-imbalanced pseudo-label selection. It aims to tackle CNN’s dependence on a great number 
of training samples and shows acceptable performance.        Song et al. [36] proposed a single 
CNN method by applying clustering to the extracted features and demonstrated improved performance 
when training samples were limited. Wang et al. [37] proposed a multi-CNN method by employing 
two CNNs as cooperative classifiers and an adaptive image size transformer. The model can achieve 
competitive performance when processing images with different resolutions. Xu et al. [38] proposed a 
knowledge distillation method by distilling out the long-range features contained in a ViT teacher and 
transferring them to a CNN student. However, all these methods still share a poor tradeoff between 
hardware costs and accuracy.     

Currently, regularization and DA are commonly used in CNN training, although these techniques 
also need professional implementation [39]. For example, with finite training epochs, too strong 
regularization results in poor fitting, and likewise, too weak regularization leads to over fitting. 
Similarly, a DA-processed training set will have a significant shift in data distribution, making the 
model suboptimal if the shift is well handled [7]. Moreover, most of the TTs are developed on 
ImageNet-1K, which has a domain gap compared to RSI. Nevertheless, TTs are very meaningful due 
to their obviously low hardware dependency and common open-source nature. Therefore, we should 
conduct careful research on the usability of TTs before using them. However, most of the previous 
methods simply copied the TT's procedure from natural images without any modifications.  

To tackle the above problems and enhance the findings of previous studies, we first proposed 
some novel ideas for the model choice and training algorithm based on a deeply theoretical analysis. 
Then, we selected a simple pipeline that not only can achieve better performance for RSI-SC but also 
has much lower hardware and time costs. First, the proposed RE-EfficientNet method only employs 
an EfficientNet-B3 as the base model and excludes any re-modeling procedures to keep the search in 
parameter space unexpanded. Second, to adequately utilize the pre-trained weights on ImageNet-1K, 
this method still employs transfer learning to reduce time costs in training. Third, the RE-CNN training 
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algorithm employs two different combinations of DA transformations in the whole training process to 
ensure the shift problem of data distribution coming from DA can be alleviated. Fourth, we modified 
two TTs named CutMix [40] and Online Label Smoothing (OLS) [41] according to the inherent 
properties of RSI. Then, the RE-CNN algorithm employs the combination of modified CutMix (m-
CutMix) and OLS (m-OLS) as regularization in training to boost the model’s performance. In brief, 
the RE-EfficientNet method is a simple, lightweight but more accurate approach for RSI-SC. The 
proposed method’s pipeline is thoroughly different from the previous studies. 

3. Methodologies 

3.1. Theoretical basis 

The CNN learns the image features through the operation of convolution. In the architecture, the 
implementation of convolution is called the convolutional layer. Let 𝑋 ∈  ℝ஼,ு,ௐ be the input signals 
for a convolutional layer, and 𝐶, 𝐻 and 𝑊 denote its channel number, height and width in pixels. 
Let 𝑌 ∈  ℝ஼ೀ,ுೀ,ௐೀ be the layer’s output, with C0, H0 and W0 denoting the same definitions as C, H 
and W. Then, the convolution processing can be described as follows: 

 
(3.1) 

where 𝑊𝑡 denotes the adjustable weights of every convolution kernel, and 𝐵𝑖𝑎𝑠 denotes a random 
variable. 

In training, based on the common gradient descent technique, we employ the back-propagation 
algorithm to fit a set. Let 𝑍 be the output of the following layer defined in Eq (3.1), with the same 𝑌, 
𝑊𝑡 and 𝑋 as in Eq (3.1). Then, the gradient of 𝑍 at 𝑊𝑡 can be described as 

 
(3.2) 

The convolution processing, as shown in Eq (3.1), is an element-wise multiplication and 
accumulation operation in mathematics. Then, according to the chain rule in differential calculus, the 
gradient of 𝑍 at w can also be described as 

. 
(3.3) 

According to Eqs (3.1) and (3.3), we can derive that every parameter of a convolutional kernel 
shares the same gradient value in a back-propagation process due to the addition operation. Hence, in 
the simplest case, we can treat every kernel of a layer as a single meta-function. Let 𝐹 be the meta-
function, with the same definitions for 𝑋, 𝑌, 𝐻ை, 𝑊ை and 𝐶ை in Eq (3.1). Then, the sliding window 
operation of a convolutional layer can be described as 
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. 

(3.4) 

Currently, the architecture of deep CNNs commonly consists of cascaded convolutional layers 
with a fully connected classifier at the tail. Let 𝑃𝑟𝑒𝑑  be the prediction of a CNN model with 𝑖 
neurons and 𝑘 layers. Let 𝐿 denote the operation of every convolutional layer of the model, with the 
same definition of 𝑋 as in Eq (3.1). Then, in the simplest case, the predicting process of the CNN can 
be described as follows: 

.
 

(3.5) 

In the back-propagation process, we can set all the parameters of a CNN to a certain value at each 
training step. The state of all these parameters, according to the definitions of permutation and 
combination in probability theory, is a combination problem. Let us hypothesize that the setting value 
of every parameter, in the simplest case, can only be 0 or 1. Let 𝐶ே௉ௌ஼  be the number of parameter-
setting combinations (NPSC). Then, the NPSC for a certain CNN layer with a number of 𝑁 
parameters can be described as follows: 

. (3.6) 

Let 𝐶ே௉ௌ஼ି஼ேே  be the NPSC for a whole CNN, with a number of 𝑀  layers and the same 
number of 𝑁 parameters in each layer. Then, according to Eq (3.6), its NPSC can be described as 

. (3.7) 

Note that the interval for a CNN’s single parameter is 0 to 1 in the real training state. As a result, 
the real NPSC is much larger than 𝐶ே௉ௌ஼ି஼ேே in Eq (3.7). The CNN predicting function 𝐹 in   Eq 
(3.5) is a complex composite function consisting of multidimensional variables. To date, we commonly 
employ the average gradient of a mini-batch to train a CNN with finite training epochs because an 
exhaustive search is unrealistic. Hence, a CNN method is essentially a non-convex problem that has a 
number of different locally optimal solutions achieved in training. Therefore, a method with a larger 
NPSC apparently corresponds to a lower frequency to gain locally optimal solutions unless the 
searching process employs some efficient modes, such as regional sampling or greedy searching. 
Unfortunately, to the authors’ best knowledge, such an efficient and common enough training 
algorithm has not emerged yet. As a result, we can simply conclude that a CNN with a smaller NPSC 
corresponds to a higher probability of achieving its best potential performance in finite training epochs, 
or, in other words, a shallow model easily achieves convergence. 
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Figure 1. Squeeze-and-excitation block. 

The attention module in the CNN’s architecture commonly employs two techniques, including 
channel-wise or spatial-wise attention, to re-weight each output stream of the current layer. For 
example, Hu et al. [42] proposed the squeeze-and-excitation (SE) block as channel-wise attention to 
boost a CNN’s performance. The SE structure, as shown in the red rectangle of Figure 1, performs SE 
and another scale operation on the inputs and outputs of the current layer, respectively. Let 𝑋 and 
𝑋ௌ௖௔௟௘ be the original and weighted signals as defined in Eq (3.1), with the same 𝑊, 𝐻 and C. Then, 
the scale can be described as follows: 

,
 

(3.8) 

where 𝑊𝑡ௌா ∈ ሾ0, 1ሿ denotes the SE output weight matrix. Note that the 𝑊𝑡ௌா still has 𝐶 channels 
after channel-wise compression, and in the same channel, all weights are equal.  

After pre-training, the weights of 𝑊𝑡ௌா in Eq (3.8) are set to larger or smaller values correlated 
to the channel-wise feature’s importance. In Eq (3.8), 𝑋  multiplied by 𝑊𝑡ௌா  yields 𝑋ௌ௖௔௟௘ . As a 
result, 𝑋ௌ௖௔௟௘ multiplied by a larger weight becomes more important. In the back-propagation process, 
according to Eq (3.3), the gradient value of prediction is more sensitive to the parts with great 
information entropy. Therefore, with the SE attention activated, each iteration step in training becomes 
sensitive to partial channel-wise regions of the CNN’s architecture, resulting in the other regions being 
slightly updated. Then, according to Eq (3.7), with the attention module inside, the NPSC of a pre-
trained CNN is essentially smaller than the one without attention because the former’s searching 
process always ignores its partial channels. Therefore, given finite training steps, a CNN with built-in 
attention modules commonly performs better. In contrast, we more often employ the class activation 
mapping technique [43] to intuitively prove this selective importance. 

In the feature fusion method, however, the NPSC is always larger than the one without fusion if 
the feature extractors are hooked in the same back propagating chain. Let 𝐶ே௉ௌ஼ିிி be the NPSC of 
a fusion method, with 𝑘 types of deep features extracted from different layers in a single CNN. Let 
us hypothesize that the method concatenates all the fused features as the input for the last classifier, or 

𝑋𝑆𝑐𝑎𝑙𝑒𝐶
′ ൌ 𝑋𝑐  ⨀ቌ
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more accurately, hooks all the features in the chain. Then, its NPSC, according to Eq (3.7), can be 
described as follows: 

,
 

(3.9) 

where 𝐶ே௉ௌ஼ିா் is the NPSC of a certain extractor. Comparing Eqs (3.7) and (3.9), we can easily find 
that, with the larger NPSC, these fusion methods concatenating all the fused features will have a lower 
frequency to gain more locally optimal solutions than the ones without fusion if equal training steps 
are given. Therefore, with finite training epochs, the common fusion strategy may face a worse 
probability of achieving better performance unless it employs some efficient searching modes or 
unhooks the features. 

Similarly, the method of combining CNNs will have a much larger NPSC if the combined CNNs 
are in cascaded mode. Theoretically, the method’s NPSC is the product of the NPSCs of each CNN. 
Similarly, with multiple CNNs inside, the NPSC of the combined method in parallel mode is the same 
as the cascaded CNNs if the combined CNNs are hooked. Therefore, a combining-CNN method also 
requires some efficient searching algorithms to ensure its true performance can be achieved in finite 
training steps.  

However, the ensemble of CNNs does not increase the NPSC of a single CNN due to its 
independent training process for its individual classifiers. Similarly, this rule is also right if a method 
has multiple CNNs but employs independent training processes for each model, or more accurately, 
unhooks its multiple CNNs. Nonetheless, these two strategies are more complicated and costly than a 
single CNN method.  

The prevalence of human re-modeling mainly derives from two ideas: First, human modeling 
does succeed in ML fields. Second, based on the different imaging conditions compared to 
ImageNet-1K, the domain gap may weaken the pre-trained CNN’s performance on RSI. These 
viewpoints, however, are not exactly as correct as we think. The reason is twofold. First, as concluded 
before, some complex human re-modeling strategies reduce the probability of finding better solutions. 
Meanwhile, a deep CNN is easy to overfit on the smaller RSI sets. Second, the invariant feature in 
ImageNet-1K does have similarities to RSI. Given an all-layer-frozen CNN, we can still achieve an 
OA of approximately 75% on AID and NWPU if the last classifier can be trained (see Table 2).  

Based on the above mathematical derivations and analyses, this work employed a simpler transfer 
learning strategy by using a pre-trained CNN that has built-in attention modules. In particular, the 
proposed method excludes any architecture modification or feature fusion to maintain the unexpanded 
NPSC. Given this premise, this work also cautiously evaluated the real value of the invariant feature 
in the smaller RSI sets. More importantly, it employed a smaller LR and an effective combination of 
TTs as regularization to avoid overfitting. 

Table 2. OA (%) comparison of frozen tests on AID and NWPU. 

Methods Roadmap 
AID NWPU 

TR-20%  TR-50% TR-10% TR-20% 
Frozen CNN layers with a trainable classifier An EfficientNet-B0 78.66 83.42 72.74 76.87 

𝐶𝑁𝑃𝑆𝐶െ𝐹𝐹 ൌ  ෍𝐶𝑁𝑃𝑆𝐶െ𝐸𝑇  

𝑘

𝑗ൌ1
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3.2. Training framework 

In this paper, we propose a concise and beginner-friendly training framework, as shown in 
Figure 2. In summary, the training process consists of 300 successive training epochs in total but can 
be viewed as two steps because the DA and regularization strategy (DARS) in training have some 
differences. In detail, the DARS of the first 60 epochs, named Step 1, only consists of a cascading 
combination of routine geometric transformations, coupled with m-OLS as regularization. The DARS 
of the second 240 epochs, called Step 2, also includes a combination of cascading routine geometric 
transformations. It additionally uses m-OLS and m-CutMix as regularizations.  

The training procedures, as shown in Figure 2, start with the red arrows with the DARS of Step 1 
activated. Then, at epoch 61, the model undergoes another 240 training epochs using the DARS of 
Step 2, just as the blue arrows indicate.  

 

Figure 2. The proposed training framework. 

3.3. Training algorithm  

The procedures of RE-CNN are presented in Algorithm 1. In training, the training and testing 
images’ resolutions are 2562. In detail, the combination of transformations in Steps 1 and 2 is the same, 
consisting of a resize, a color jitter, a horizontal and vertical flip and a rotation. The mini-batch size in 
training is 30. The initial LRs in Steps 1 and 2 are both 1E-04. The LR optimizer is a cosine decay 
algorithm with maximum iterations equal to the training epochs. The object function is cross-entropy. 
The error’s back-propagating algorithm is Adam-W [44], with a weight decay of 1E-06. 

 

 

 



1610 

Networks and Heterogeneous Media  Volume 18, Issue 4, 1600–1629. 

Algorithm 1: The procedures of RE-CNN. 
 Definition. 

 

X: a mini-batch of image samples; Y: the corresponding labels of X; 𝑻𝑵𝑰: the total 
number of images in the training dataset; CT: a combination of transformations; 
CM: the m-CutMix transformation; CM-Loss: the corresponding loss function of 
𝑪𝑴 ; OLS-Loss : the corresponding loss function of m-OLS; F: the forward 
function of the CNN model; Update: the parameter updating function of CNN 
through back propagating; 𝑨𝒄𝒄: the model’s prediction accuracy; 𝑹𝒆𝒔𝒖𝒍𝒕𝒔: the 
dictionary of 𝑨𝒄𝒄 and its weights file. 

1 CT = { resize, color Jitter, horizontal and vertical flip, rotation } 
2 Initialize (model, pre-trained weighs file from ImageNet-1k )  
3 for Epoch = 1, …, 60 do 
4       for batch = 1, …, TNI / 30 do 
5             Z = F ( CT (X) ) 
6 Grad = OLS-Loss (Z, Y) 
7 Update (model, Grad) 
8       end for 
9 Acc = F (Testing Dataset) 
10 If Acc is the best then 
11 Save the weights file of the best Acc in Results 
12 end for 
13 Initialize (model, the weights file of the best Acc in Results) 
14 for Epoch = 61, …, 300 do 
15       for batch = 1, …, TNI / 30 do 
16             Z = F ( CM ( CT (X) ) ) 
17 Grad = CM-Loss ( OLS-Loss (Z, Y) ) 
18 Update (model, Grad) 
19       end for 
20 Acc = F (Testing Dataset) 
21 If Acc is the best then 
22 Save the weights file of the best Acc in Results 
23 end for 

3.4. Model’s architecture 

RE-EfficientNet employs a single EfficientNet-B3 model as the base model, while EfficientNet-
B0 is also used to support some viewpoints. EfficientNets are well-known deep CNN models with 
built-in SE blocks, and their architecture charts can be found in [8]. The attention mechanism, as 
concluded before, helps EfficientNets gain better performance on ImageNet-1K. In this work, all the 
CNN models, as well as the pre-trained weights on ImageNet-1K, follow the original settings in 
PyTorch without any modification. 

3.5. OLS modification 

Szegedy et al. [45] proposed label smoothing as regularization to boost performance and avoid 
overfitting. This technique converts the one-hot hard label of 1 or 0 to a soft version. For example, a 
value of 0.9 denotes the probability of a certain sample belonging to class A, while a residual value 
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of 0.1 denotes the sum of likelihoods belonging to the other classes. In this setting of 0.1, the 
likelihoods share an equal average value without considering the difference in similarity between 
classes. To tackle this problem using an online-updated training style, Zhang et al. [41] proposed the 
OLS as a solution to learn category similarity from training sets. Let 𝐿ை௅ௌ be the final label of a 
subclass, 𝐿ு denote the hard label and 𝐿ௌ denote the value of OLS. Then, the computation of a final 
label can be described as follows: 

, (3.10) 

where α (∈ [0, 1]) is a hyperparameter to balance the hard and soft labels. In training, the OLS stores 
and accesses the labels in a matrix variable of the categories’ similarity. Let 𝑀𝑎𝑡𝑟𝑖𝑥ௌ be this soft label 
matrix and 𝑛 be the number of classes in a dataset. Then, the data shape of 𝑀𝑎𝑡𝑟𝑖𝑥ௌ can be described 
as follows: 

,
 

(3.11) 

where 𝑙𝑎𝑏𝑒𝑙ଵ,௡ denotes the updated probability that the first-class sample belongs to class 𝑛. The 

updating algorithm for 𝑀𝑎𝑡𝑟𝑖𝑥ௌ can be found in [41]. 
Experiments on ImageNet-1K in [41] set the 𝛼  in Eq (3.10) at 0.5 and proved that its 

effectiveness surpasses label smoothing. In this paper, based on the obvious larger difference in 
similarity between subclasses, the 𝛼 is given an empirical value of 0.9 for the RSI. 

3.6. CutMix modification 

Mixup, proposed by Zhang et al. [46], can help a CNN avoid overconfidence on the training 
dataset. In implementation, it overlaps an A-class sample onto another B-class sample with a fuzzy 
overlap rather than a complete replace. Consequently, in training, the model will learn an unnatural 
image. As an improved version, Yun et al. [40] proposed another, CutMix, giving its operation 
algorithm in the paper. Different from Mixup, CutMix directly replaces an equal proportion of a class-
B sample with an A-class sample’s cut patch. Following that, CutMix also modifies the label of the 
cut-and-mixed image according to the proportion of patches. Let 𝐿஼ெ be the label of a cut-and-mixed 
image, 𝐿ை be the label of the original image and 𝜆 be the proportion of patches. Then, the 𝐿஼ெ can 
be described as follows: 

.
 

(3.12) 

Experiments on ImageNet-1K proved CutMix combined with OLS can further improve CNN 
performance. However, with the same experiments on RSI, it may not work that well. The reason lies 
in Figure 3. 

𝐿𝑂𝐿𝑆 ൌ  𝛼 ൈ 𝐿𝐻  ൅ ሺ1 –  𝛼ሻ ൈ 𝐿𝑆 

𝑀𝑎𝑡𝑟𝑖𝑥𝑆 ൌ  ൥
𝑙𝑎𝑏𝑒𝑙1,1 ⋯ 𝑙𝑎𝑏𝑒𝑙1,𝑛

⋮ ⋱ ⋮
𝑙𝑎𝑏𝑒𝑙1,𝑛 ⋯ 𝑙𝑎𝑏𝑒𝑙𝑛,𝑛

൩ 

𝐿𝐶𝑀 ൌ  𝜆 ൈ 𝐿𝑂𝐴 ൅   ሺ1 െ 𝜆ሻ ൈ 𝐿𝑂𝐵 
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Figure 3. The cut-and-mixed images. 

In Figure 3, rows 1 and 2 are images from ImageNet-1K, with originals in the first and cut-and-
mixed ones in the second. At the bottom of Figure 3, rows 3 and 4 are originals and cut-and-mixed 
images from the RSI dataset. Without zooming in, taking the natural images for instance, we can easily 
tell where the image patch is and classify the patch to a certain class, as well as the background. 
However, with a quick look at the RSI without zooming out, it will become more difficult to locate the 
patch and tell the cut-and-mixed image’s category as the semantic scenes change from left to right.  

This contradiction in Figure 3 clearly explains the large difference in similarity between natural 
images and RSI. With the definition in Eq (3.12), it can work well for natural images; however, it is 
not absolutely right for RSI. More specifically, taking the RSI into account, the patch of A-class images 
does have some similarity with the cut-and-mixed background of B-class. In training, if we assign a 
B-class label to an A-class patch, the CNN model will correlate some features in the patch to the B-
category and eliminate the correlation with the A-category. As a result, with the impaired features of 
the A-class samples, the model will show poor performance when classifying those samples similar to 
the A-category. Hence, we argue that we should modify TTs based on the inherent difference in RSI. 
Therefore, we rebuilt several parts of CutMix, including its algorithm and usage, as follows: 

First, based on the greater similarity of RSI, this paper sets a new parameter to control the 
probability of a cut-and-mixed operation in training. In detail, this parameter has an empirical value 
of 0.1 based on extensive experimental results. Second, based on the similarity of RSI, this paper 
further utilizes the hierarchical similarity among categories contained in the 𝑀𝑎𝑡𝑟𝑖𝑥ௌ as defined in 
Eq (3.11). More specifically, in each training epoch, the image patch of m-CutMix is only cut from 
those images belonging to the 15 classes in the lowest order of similarity. The m-CutMix algorithm is 
shown in Algorithm 2.  
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Algorithm 2: The cut-and-mix procedures of m-CutMix. 
 Definition. 

 

X: a mini-batch of samples; Z: a mini-batch of cut-and-mixed samples; CMO: the 
original CutMix function; P: the probability of a cut-and-mix operation in training; 
𝑀𝑎𝑡𝑟𝑖𝑥ௌ: the matrix contains the hierarchical similarity among categories updated 
by OLS; sort: the sorting function; random: the random pick-one-out function. 

1 for x in X do 
2    if P > 0.1 then 
3       index = sort (𝑀𝑎𝑡𝑟𝑖𝑥ௌ (x), type = ascent) 
4       target = random ( index [0 : 15] ) 
5 …..z = CMO ( x, X [target] ) 
6       Z.append(z) 
7    else 
8    Z.append(x) 

In Step 2, the m-CutMix is active in conjunction with the m-OLS. Hence, the label of each training 
sample should be recalculated according to Eqs (3.10) and (3.12). Let 𝐿ௌ௧௘௣ଶ be the sample’s label in 

Step 2, and then its calculation can be described as follows: 

, 
(3.13) 

where 𝐿ை and 𝐿஼ெ are the same as in Eqs (3.10) and (3.12). 

3.7. Datasets and evaluation criteria 

This study employs AID and NWPU as benchmarks to verify the method’s effectiveness. The 
introduction to the two datasets can be found in [5,6]. As a brief summary, these two sets are both 
cropped from Google Earth. AID has 30 categories of 10,000 images with a fixed resolution of 6002, 
while NWPU contains 45 categories of 31,500 images with a fixed resolution of 2562. With categories 
numbered, the representative images for each AID category are shown in Figure 4, while those for 
NWPU are shown in Figure 5. 

In this study, to get a fair comparison, the TRs of two datasets are used with the same settings as 
previous studies, i.e., AID is 20% and 50%, and NWPU is 10% and 20%. The training subsets are also 
selected at random, using the rest of the samples as testing subsets. This paper also employs the OA 
and confusion matrix as criteria for different methods' effectiveness evaluations. In detail, the 𝑂𝐴 can 
be described as follows: 

,
 

(3.14) 

Where 𝑁஼ is the total number of accurately classified samples, and 𝑁் is the total number of tested 
samples. 

𝐿𝑆𝑡𝑒𝑝2 ൌ 𝐿𝐶𝑀  ൫𝐿𝑂𝐴, 𝐿𝑂𝐵൯ ൌ  𝜆 ൈ 𝐿𝑂𝐴 ൅   ሺ1 െ 𝜆ሻ ൈ 𝐿𝑂𝐵 

𝑂𝐴 ൌ  
𝑁𝐶

𝑁𝑇
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Figure 4. Sample images for each AID category. 

 

Figure 5. Sample images for each NWPU category. 
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3.8. Hardware and software environments 

The experiments were performed on four computers, each equipped with a single RTX 2060. 
PyTorch 1.11.0 was running with the Compute Unified Device Architecture 11.5 on Windows 10. All 
the experimental results were averaged over five runs. 

4. Experimental results 

4.1. Training curves 

The training curves at different TRs are shown in Figure 6, with the top two charts corresponding 
to loss curves and the bottom two charts being testing accuracy curves. As shown in Figures 6a and 6b, 
the training losses of AID and NWPU both show a fast decrease in Step 1, rebound with obvious 
amplitude at the beginning of Step 2 and then present a slow decrease in the following epochs. As 
mentioned before, the loss calculations in Steps 1 and 2 are very different according to Eqs (3.10) and 
(3.13).  

 

Figure 6. The fitting curves of AID and NWPU. 

Hence, as shown in Figure 6c,d, the testing accuracy (i.e., the OA) in Step 2 achieves visible 
improvement on AID as well as NWPU. Similarly, as the m-CutMix was activated, the OA curves 
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showed a clear but slight decline at the beginning of Step 2. In other words, the cut-and-mix operation 
does have a shocking effect on the model’s performance, but with a cautious reconstruction, it can still 
help the CNN model gain better accuracy. This phenomenon indicates that a higher frequency of cut-
and-mix operations may generate greater impacts on the loss and gradient changes. As some evidence 
in the experimental results [8] suggests, it will result in larger updates to the parameters through 
backpropagation and make the CNN suboptimal. 

4.2. Accuracy results 

The OA comparison of different methods published from 2017 to 2023 is shown in Table 3. In 
summary, the OA results include 30 previous studies, which consist of 23 CNN and 7 ViT methods. 
The “parameter size” column is the exact value self-reported or a minimum estimate according to the 
open information in the related papers. In addition, “not mentioned” means lacking exact information, 
while “none” corresponds to no relative information. 

As shown in Table 3, RE-EfficientNet shows an obvious advance on AID and NWPU, while only 
the CNN ensemble in [18] and the ViT in [30] show a partial lead in a TR of 50% on AID. Even with 
the advantage of more parameters, the methods [18,30] still show a notable OA gap when the testing 
samples are getting larger in the fourth, sixth and last columns of Table 3. Hence, based on the authors’ 
viewpoint, the partial leading in [18,30] may come from a reduced total number of testing samples. If 
taking RE-EfficientNet’s OA as the baseline, the improvement on the 20% TR of AID is 0.50% over 
the leading method [31], while the improvements on the 10% and 20% TRs of NWPU are 0.70% 
and 0.75% over the other leading method [34], respectively. We can see that RE-EfficientNet’s lead is 
more notable when the testing sets are larger. Taking the parameter size into account, we can find that 
RE-EfficientNet only has a quarter of the parameters in [31] and far fewer than the parameters in [34], 
which has several CNNs and a ViT inside. Hence, as a fair comparison, the results demonstrate that 
RE-EfficientNet is more effective and lightweight than the previous ones. 

In Table 3, given the OA results between different technical routes, we can find out some valuable 
facts as follows: 

First, the strategy of feature fusion in [10,11,14,20,24,25] commonly falls behind, while the one 
using attention modules in [13,15,17,27,33] is more likely to perform better if the feature fusion is 
abandoned. Attention modules, however, do not guarantee better performance when the feature fusion 
is coupled with attention modules like [23] does.  

Second, putting the complex training procedure and huge parameter size aside, we can find that 
the strategy of model combinations in [16,26,28] has not shown significant improvements over the 
single CNN with built-in attention modules. However, in [28], the combination strategy using 
individually trained models can get a slight lead over its competitor with built-in attention modules if 
its hardware-extensive budget is acceptable.  

Third, despite the complex training procedure, the ensemble of CNNs in [18] does show 
competitive performance. In [18], each CNN of the ensemble has newly added attention modules, and 
for this reason, we can see that the ensemble in [12] falls behind due to its inferior individual classifiers 
without attention modules.  

Fourth, regardless of the larger parameter size, the ViT methods commonly perform better on the 
larger NWPU than the other single-CNN methods except RE-EfficientNet. In other words, the ViT has 
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not shown persuasive advantages when training sets are smaller. Anyhow, considering the “data-
hungry” effect of the ViT architecture widely shown in natural images [47,48], we can easily accept 
these results. In addition, it is commonly considered that a CNN can have inductive biases inside, such 
as translation invariance, that can quicken the model’s fitting [49]. Contrary to CNNs, however, the 
ViT’s advantage is the long-range dependence of different features and sequence information [50]. 
Hence, based on the authors’ viewpoint, the transfer learning tasks of RSI are easier and cheaper by 
employing CNNs, unless the hardware-expensive ViT has other acceptable advantages in special tasks. 

Fifth, the two TTs, i.e., label smoothing and Mixup, are used in several previous 
methods [13,17,27] without any modification. More specifically, the study in [37] even proposed an 
adaptive label updating pipeline. However, in Table 3, these four methods do not show exciting 
performance.  

Table 3. OA (%) comparison of different methods on AID and NWPU. 

Methods Roadmap Parameter size 
(M) 

AID NWPU 
TR20% TR50% TR10% TR 20% 

[10] in 2019 Feature fusion 23.4 93.68 ± 0.29 94.75 ± 0.24 90.58 ± 0.19 91.91± 0.23 
[11] in 2019 276 95.02 ± 0.28 96.66 ± 0.19 91.30± 0.18 93.45 ± 0.17 
[20] in 2017 138 None 89.71 ±0.33 None None 
[24] in 2019 145 91.63 ± 0.19 94.74 ± 0.17 89.18 ± 0.14 85.08 ± 0.13 
[25] in 2019 138 93.60 ± 0.12 96.66 ± 0.11 89.89 ± 0.16 92.55 ± 0.14 
[14] in 2020 24 93.33 ± 0.29 95.38 ± 0.29 92.17 ± 0.08 92.46 ± 0.09 
[23] in 2019 A single EfficientNet-B3  

with feature fusion 
> 12 94.19 ± 0.15 None 91.08 ± 0.14 None 

[9] in 2018 Fine-tuning Loss 138 90.82 ± 0.16 91.89 ± 0.22 89.22 ± 0.50 91.89 ± 0.22 
[21] in 2019 Models combination with 

fusion and fine-tuning loss 
633 None 96.37 ±0.30*1 None 93.27 ± 0.17*1 

[22] in 2019 237 None 97.24 ± 0.32*1 None None 
[13] in 2020 Attention aided 14 95.73 ± 0.22 97.16 ± 0.26 92.70± 0.32 94.58 ± 0.26 
[17] in 2022 8 95.43 ± 0.32 97.39 ± 0.24 93.39 ± 0.39 94.95 ± 0.36 
[15] in 2021 24 94.45 ± 0.76 96.56 ± 0.12 None None 
[27] in 2020 89 None None 93.15 ± 0.09 94.86 ± 0.15 
[33] in 2022 26 95.60 ± 0.17 97.14 ± 0.03 92.32 ± 0.15 94.66 ± 0.11 
[28] in 2021 Models combination 276 93.33 ± 0.29 95.38 ± 0.29 91.09 ± 0.13 92.42 ± 0.16 
[26] in 2020 138 92.20 ± 0.23 95.48 ± 0.12 None None 
[16] in 2022 54 96.19 ± 0.48 97.48 ± 0.39 93.67 ± 0.21 95.32 ± 0.36 
[12] in 2019 CNNs ensemble 167 None None 92.44 ± 0.37 None 
[18] in 2022 47 96. 0 ± 0.15 98.54 ± 0.17 93.24 ± 0.15 95.58 ± 0.08 
[29] in 2021 ViT 307 95.86 ± 0.28 None 93.83 ± 0.46 None 
[30] in 2021 46 95.54 ± 0.18 98.48 ± 0.06 93.06 ± 0.11 95.56 ± 0.20 
[31] in 2022 28 96.61 ± 0.07 98.08 ± 0.03 93.90 ± 0.07 95.29 ± 0.12 
[47] in 2022 40 95.56 ± 0.17 96.98±0.16 92.72±0.04 94.66±0.10 
[32] in 2022 A self-designed CNN 0.5 93.15 ± 0.25 97.31 ± 0.10 92.02 ± 0.50 94.39 ± 0.16 
[34] in 2022 CNNs combined with ViT Not mentioned 96.25 ± 0.10 97.70 ± 0.11 93.90 ± 0.14 95.40 ± 0.15 
[35] in 2023 Decoupling CNNs Not mentioned 86.52 ± 0.18 None 84.81 ± 0.36 91.41 ± 0.69 
[36] in 2022 CNN using clustering Not mentioned 91.32*2 None 91.96*2 None 
[37] in 2022 CNNs using adaptive 

transform 
16 94.55 ± 0.27 96.72 ± 0.23 90.25 ± 0.14 93.05 ± 0.12 

[38] in 2022 CNN combined with ViT Not mentioned 95.58 96.88 92.72 94.50 

RE-

EfficientNet  

[this work] 

Single EfficientNet-B3 12 97.11 ± 0.06 98.15 ± 0.10 94.60 ± 0.05 96.15 ± 0.03 

*1: The methods used a testing ratio of 30% on AID and 70% on NWPU. 

*2: The method only used a testing ratio of 20% on AID and NWPU, respectively. 
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Therefore, all the results validate the effectiveness and superiority of RE-EfficientNet. Meanwhile, 
based on the comparable results and analysis, it is revealed that the systematic reasons related to the 
leading performance of RE-EfficientNet come from several aspects. First, the attention modules in 
EfficientNet-B3 provide a great chance for RE-EfficientNet to achieve better performance if compared 
to the other classical CNNs without attention. Second, the unmodified EfficientNet-B3 in RE-
EfficientNet avoids an expanded search space and can effectively take advantage of better starting 
points in the search space provided by pre-training on ImageNet-1K. Third, RE-EfficientNet has well 
handled the data distribution shift from DA by using different effective combinations of 
transformations. Fourth, the modified TTs according to the nature of RSI are more effective than the 
simple usage in previous studies. Fifth, compared to ViTs, the inductive biases of CNNs have enhanced 
RE-EfficientNet’s performance for classifying the smaller RSI sets like AID and NWPU. 

4.3. Confusion matrixes 

The confusion matrixes for AID and NWPU are presented in Figures 7 and 8, while the most 
confusing categories are marked with a red arrow. As concluded before, RE-EfficientNet shows more 
obvious leads when the training dataset is smaller. Hence, to get a good understanding of how     
RE-EfficientNet works, this paper selectively shows the matrixes of AID and NWPU with the same 
TR of 20%. 

As shown in Figure 7, the confusion mainly occurs in the categories including center, church, 
industry, park, resort, school and square. Meanwhile, except for medium residential, which has an OA 
of 96.60%, all the OAs of other classes are higher than the mean value of 97.11%. Comparing the 
confusion result to the feature fusion methods [11,24,25], we can see remarkable improvements in all 
categories. However, making the same comparison to another fusion method [10], we can find that 
RE-EfficientNet still shows obvious leads in most categories, excluding resort, school and square. 
More specifically, in this paper, the OA result of the three classes is less than the results in [10]. This 
fact proves that feature fusion may have a positive impact on CNN’s performance in a certain class. 
With a close look at the CNN methods with attention modules [13,17,33], we can see that RE-
EfficientNet also shows clear leads in all categories. However, when looking at the ViTs [30,38], we 
will find another contradiction of confusing categories. In detail, in [30], the most confusing classes 
are bare land and desert, with OAs of 87% and 51%, respectively. Yet, in [38], the most confusing 
classes are the same as RE-EfficientNet, with a slight OA gap. Because the other ViT methods [29,31] 
lack related information, we cannot further analyze this deviation. In addition, among the other 
methods providing necessary information, the CNN ensemble [18] and model combination [28] also 
have suboptimal performance compared to RE-EfficientNet. In particular, in [18], the ensemble shows 
the same partial improvements on three categories as [10] does and also has worse performance on 
the other categories. 

As shown in Figure 8, at the 20% TR of NWPU, the most confusing categories include the church, 
dense residential, industry, medium residential, palace, rectangular farmland and wetland, with OA 
less than 93%. Meanwhile, another ten categories have an OA greater than 93% but below the mean 
value of 96.15%, including commercial area, desert, freeway, island, lake, meadow, mountain, railway, 
railway station and runaway. Comparing the RE-EfficientNet’s results to the other 
methods [10,11,13,24,25,30,33,38], we can see an overall improvement for all the most confusing 
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categories, and the temporary lead on AID in [10] does not exist on NWPU. However, in [18], the 
CNN ensemble’s most confusing categories are quite different from all others, including sparse 
residential, forest and overpass, with OA less than 90%. Yet, the OAs of these three categories in RE-
EfficientNet are all above 96.30%. Hence, this contradiction still proves the local-optimal-solution 
problem in deep learning. 

 

Figure 7. The confusion matrix of AID at a 20% TR. 

 

Figure 8. The confusion matrix of NWPU at a 50% TR. 
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In summary, based on all the comparisons, we can draw two conclusions. First, comparing the 
previous studies, RE-EfficientNet does perform better on AID and NWPU with fewer training samples, 
and the improvements are clear for all categories. Second, some previous methods have found partial 
advances for several confusing categories when the RSI set is small. However, the improved 
performance will also disappear if the RSI set becomes larger.  

4.4. Changes in m-OLS labels 

To understand the difference in regularization between RSI and ImageNet-1K, this work also 
studied the changes in soft labels modified by the m-OLS, and the results are shown in Figure 9. In the 
figure, the category number has the same definition as in Figures 4 and 5, while “Step” is also the same 
as in Figure 2.    

As shown in Figure 9a, we can see three facts. First, with a 20% TR, the smallest category labels 
in Step 1 are school and resort. In contrast, the smallest labels in Step 2 are the railway station and 
storage tank, and all 30 category labels share a small gap of less than 0.1. Second, with a 50% TR, the 
school and resort in Step 1 still have the smallest label values, but the values are obviously higher than 
the ones of the 20% TR. However, the categories with the smallest label values in Step 2 change to the 
church and school, corresponding to the confusing categories in Figure 7. Third, we can see that all the 
labels of Step 2 are obviously less than the ones of Step 1, while the values of Step 1 show greater 
volatility with a 20% TR. This phenomenon is mainly because the m-OLS algorithm dynamically 
updates label values according to the model’s prediction results for training sets (see [41]). 

Similarly, as shown in Figure 9b, we can see two facts. First, all 45 label values of Step 1 show 
greater volatility and are smaller than the values of Step 2. Second, the categories with the smallest 
label, including the church, medium residential and palace, are the same in Steps 1 and 2 but still 
correspond to the confusing categories shown in Figure 8. Taking Figure 10 as a whole, we can find 
that the m-OLS value shows smoother fluctuations as the sum of training samples increases. This 
phenomenon is also because the model’s increasing prediction accuracy on training sets has caused the 
m-OLS algorithm to make slight changes to the category’s similarity.  

Based on all the facts, we can understand that the m-OLS is an adaptive soft label generator based 
on the similarity of training sets. It can prevent a CNN from being overconfident based on hard labels. 
Meanwhile, comparing these m-OLS labels to the ones for nature images shown in [41], we can see a 
larger gap of approximately 0.2. Hence, we should modify the usage of OLS formed in ImageNet-1K 
to exclude larger fluctuations first and then design an algorithm with proper training epochs to get the 
soft labels closer to the similarity distribution nature of RSI.  
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Figure 9. Changes in the category labels modified by m-OLS. 

4.5. Ablation experiments 

To validate the effectiveness of modified TTs in training, as shown in Table 4, this work performed 
ablation experiments for RE-EfficientNet. In the table, a single selected baseline denotes the same 
training procedures described in Algorithm 1 but excludes m-OLS and m-CutMix. Similarly, with the 
baseline and m-OLS chosen at the same time, it shows that the training procedures have the m-OLS 
activated. In other words, the last row of Table 4 represents the entire training procedure described in 
Algorithm 1. 

Table 4. OAs (%) of ablation experiments with different combinations of DARS. 

DA and regularization AID NWPU 

Baseline m-OLS m-CutMix TR20% TR50% TR10% TR20% 

   96.09 ± 0.16 97.61 ± 0.13 93.52 ± 0.10 95.37 ± 0.06 

   96.41 ± 0.01 97.74 ± 0.02 93.89 ± 0.06 95.66 ± 0.11 

   96.84 ± 0.08 98.08 ± 0.02 94.38 ± 0.07 96.03 ± 0.04 

   97.11 ± 0.06 98.15 ± 0.10 94.60 ± 0.05 96.15 ± 0.03 
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As shown in the first row of Table 4, we can see that the baseline training strategy can also let a 
single EfficientNet-B3 model achieve competitive performance compared to the other previous 
methods shown in Table 1. Comparing the baseline result to that of the more lightweight EfficientNet-
B0 in Table 1, however, we can find no obvious improvements, though the EfficientNet-B3 has a larger 
capacity. This reveals that, without proper regularization, a CNN model is easily overfitted on the same 
RSI dataset. As shown in the second row of Table 4, with m-OLS activated, a single EfficientNet-B3 
can achieve clearly improved OAs by 0.10% to 0.30%. The advances are more visible on those smaller 
TRs. As shown in the third row of Table 4, when m-CutMix is active, a single EfficientNet-B3 model 
can gain more OA by 0.3% to 0.7%, while similarly, the improvements are clearer in the scenario with 
smaller TRs. At the end, we can see that RE-EfficientNet can achieve remarkable improved OAs 
by 0.55% to 1.1% compared to the baseline model trained without TTs.  

4.6. Visualization and analysis 

4.6.1. Class activation mapping 

To gain a deeper understanding of RE-EfficientNet, we employed the gradient class activation 
mapping (CAM) technique [43] to generate visualizations for different cut-and-mixed samples, and 
the related images are shown in Figure 10. Ten different categories are included in the CAM 
visualization. In Figure 10, the label of each column at the top corresponds to a certain category, while 
the pair of two labels surrounded by a red rectangle means the two categories were cut and mixed with 
each other. Note that all images are separated into five rows: The first and third are the original and 
cut-and-mixed images; the second is the CAM of the original; and the fourth and fifth are the CAM of 
the cut-and-mixed, with a prediction corresponding to the first and second label in each label pair. 

As shown in the first and second rows of Figure 10, the brighter part of the CNN’s CAM, also 
known as the activation part with more important information, agrees with human semantic cognitive 
patterns if the RSI scene has a salient ground object: e.g., the waves of a beach, the station of a railway 
station, the court of a basketball court and so on. The result proves that the model has learned to classify 
different samples based on invariant features that belong to a certain category. However, without a 
salient object, we can see that the activation becomes wider and relatively darker. This result still agrees 
with humans because we also classify this scene through its global pattern, though this recognition 
pattern is not as discriminative as a salient ground object is. Looking at the cut-and-mixed images, as 
shown in the fourth and fifth rows of Figure 10, we can find two facts as follows: 

First, for the fourth row with a prediction of a first category, its activation is almost the same as 
the one in the second row, while the activation also gets distracted if the cut-and-mixed image patch 
closes to its original activating location. Second, for the last row with a prediction of the patch’s 
category, its activation also focuses on the image patch if the patch is part of the activation location 
shown in the second row. 

Hence, based on the CAM results, we can tell that RE-CNN has helped the model focus its 
attention on the salient object of the RSI scene. Meanwhile, with a restrained cut-and-mix operation, 
the model’s attention has not obviously been distracted. However, if the cut-and-mix operation 
frequently happens, this learned attention will very likely be weakened, letting the model be suboptimal. 
Taking this fact into account, the proposed modification for CutMix is quite reasonable. 
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Figure 10. Gradient class activation mapping visualizations. 

4.6.2. Stochastic neighbor embedding 

To validate the effectiveness of extracted features, this paper employs the t-Distributed Stochastic 
Neighbor Embedding (t-SNE) [51] technique to intuitively visualize the similarity of classified 
samples, and the contrastive results are shown in Figure 11. Two EfficientNet-B3 models are involved 
in the comparison, while the left one is trained with a combination of m-OLS and m-CutMix, but the 
right one is not.  

 

Figure 11. Visualization of the category’s similarity through t-SNE. 
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In Figure 11, each category of NWPU consists of two hundred samples selected at random, while 
the category name is the same as in Figure 5. As shown in Figure 11, most of the categories are clearly 
separated from each other. This reveals that the features extracted by RE-EfficientNet are effective. A 
quick glance at Figure 11 shows that the right model has more overlapping categories (marked with 
red rectangles). More specifically, the overlapping pairs on the right include the church with palace, 
the dense residential with medium residential and the rectangular farm with terrace, while the left only 
consists of the church with palace. Comparing the result to the confusion matrix, we can see 
consistency. Similarly, this result also clearly visualizes the performance gap between the different 
training strategies. Comparing the t-SNE visualization to those in previous studies [14,18,33,35,38], 
we can see that this work shows a better separation of categories. Hence, the t-SNE visualization also 
proves the effectiveness and superiority of RE-EfficientNet. 

5. Discussion 

To date, the overwhelming majority of proposed methods for RSI-SC employ deep models pre-
trained on natural image datasets. The main reason lies in the fact that the RSI research domain lacks 
large-scale datasets. However, there are still researchers who claim to be developing and trying to 
release larger-scale RSI datasets. For example, in [31], Wang et al. have tried to train a ResNet-50 
CNN model and a ViT from scratch on an RSI dataset called Million-AID [52], which has about a 
million images cropped from Google Earth. Using the pre-trained weights on Million-AID, [31] did 
the classifying tests on AID and NWPU, and the results are shown in Table 5. 

Table 5. OA (%) comparison of different models pre-trained on natural images and RSI. 

Methods Roadmap Parameter 

size (M) 

AID NWPU 

20%-TR 50%-TR 10%-TR 20%-TR 

Wang et al. [31] A single Resnet-50 pre-trained on 

Million-AID 

24 96.81 ± 0.03 97.89 ± 0.08 93.93 ± 0.10 95.02 ± 0.06 

A single Vision Transformer pre-

trained on Million-AID 

19 96.91 ± 0.06 98.22 ± 0.09 94.41 ± 0.11 95.60 ± 0.06 

RE-EfficientNet 

(This work) 

A single EfficientNet-B3 pre-trained 

on ImageNet-1K 

12 97.11 ± 0.06 98.15 ± 0.10 94.60 ± 0.05 96.15 ± 0.03 

As shown in Table 5, with pre-trained weights on Million-AID, the ViT shows clearly improved 
OAs compared to the one using pre-trained weights on ImageNet-1K. Compared to the ViT pre-trained 
on Million-AID, we can see that RE-EfficientNet still performs better, though the OA gaps are slightly 
reduced. Compared to the ResNet-50 pre-trained on Million-AID, however, we can see that RE-
EfficientNet performs much better with improved OAs by 0.26% to 1.13%. As mentioned before, ViTs 
commonly need more training samples to perform better. Therefore, the result indicates that the time-
consuming pre-training in [31] still has not eliminated the performance gap in RSI sets if compared to 
RE-EfficientNet. Meanwhile, the ResNet-50 in [31] lacks attention modules, and its training algorithm 
excludes effective combinations of DA transformations and TTs, resulting in poor performance 
compared to RE-EfficientNet. 
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Based on the basic rule in deep learning, a CNN model pre-trained on a large-scale RSI set has a 
big chance of achieving better performance because the domain gaps are larger in ImageNet-1K. 
Currently, only 10,000 samples of the open Million-AID have category information. Hence, if possible, 
the authors will test this promising pre-training strategy on large-scale RSI datasets in the future. 

6. Conclusions 

As deep learning techniques quickly dominate the computer vision task of RSI, a lot of creative 
CNN and ViT methods have been proposed for SC. Recently, researchers have proposed many 
effective but costly methods to seek ideal performance. However, there is still a better way to achieve 
a simple, lightweight and accurate solution. 

In the beginning, we presented a set of deep and reasonable studies on theoretical analysis and 
attempts to explain why it is difficult for those complex and costly methods to achieve ideal solutions 
as expected. Then, we selected an easy way to gain competitive performance for RSI-SC by using a 
single CNN and beginner-friendly transfer learning. The proposed RE-Efficient only includes a 
lightweight EfficientNet-B3 with 12 M parameters. The RE-CNN training algorithm only consists of 
routine DA transformations and two modified TTs. Experimental results on AID and NWPU prove that 
RE-Efficient can perform much better. It presents remarkable OA improvements of 0.5% to 0.75% 
over the leading one among the 30 SOTA methods published before 2023. The ablation experimental 
results also demonstrate that the proposed combinations of DA transformations and modified TTs are 
effective. It can boost EfficientNet-B3’s performance with improved OAs by 0.55% to 1.1%. Since 
RE-Efficient only consists of an open-source model and training algorithm, it is easier to reproduce. 
Given its fewer parameters and transfer-leaning strategy, RE-EfficientNet is more efficient and 
beginner-friendly. The performance of RE-EfficientNet reveals that a single CNN can perform better 
for RSI-SC if the whole pipeline and training algorithm is effective. In addition, the authors argue that 
the proposed mathematical derivation can help us develop more efficient methods for RSI-SC in the 
future. 

There are still some shortcomings in this work. First, RE-EfficientNet may perform better if it has 
been pre-trained on a large-scale RSI set. Second, the effectiveness of the RE-CNN algorithm for other 
classical CNNs has not been verified. The authors will make progress on these prospects in the future.   
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